合成氨脱碳工艺.doc.doc

合集下载

合成氨装置脱碳过程工艺分析(摘要)

合成氨装置脱碳过程工艺分析(摘要)
理 论 基 础
气 质量 满 足二类 天然 气 指 标 要求 。与 MDE 溶剂 A
相 比, S溶 剂 具 有 同 等 的 H S脱 除效 果 和 明 显 UD
更 高 的脱 除 C OS等有机 硫化 物 的性 能 。 关 键词 : 焦化 干气 高 酸 性 石油 天 然 气 UD S
拟试 算 。
本文 首先 对川东 北普 光高 含硫天 然气 情况 进行 简 单介绍 , 并对 天然 气 脱 硫 脱碳 技 术 发 展进 行 了展 望, 也简 单介 绍 了主要 的脱 硫脱 碳方 法 ; 过对 专利 通 技 术 比较 , 最终 确定 适 合 川 东北 普 光 天 然气 脱 硫 脱 碳 的方法 , 对脱硫 溶剂进 行 了净化性 能验 证 ; 并 根据 川 东北普 光气 田净化 厂原 料气 的气 质条件 和基 本操 作 条件 , 利用 HY YS对普 光 净 化 厂 脱硫 脱 碳 流程 S 进 行模 拟 , 别对利 用 级 间冷却 技 术 工 况 和未 利用 分 级 间冷 却工 进行模 拟 分 析 比较 , 出级 间 冷却 技术 得 的优点 ; 通过 模拟结 果对 要设 备进行 计算 和设计 ; 通 过 吸 收塔塔 体关键 参数对 脱硫 脱碳效 果 的影 响以及

2 ・ 8
气 体 净化
21 0 2年 第 l 卷 第 2 2 期
处 理和储 运过 程 中会 造 成设 备 和 管 道腐 蚀 , 且 用 而 作燃 料时会 污染 环境 , 危害 用户健 康 ; 天然气 中 C ) ( 含量 过高会 降低 热值 。因此 当天然气 中酸性 组分 含
U S溶 剂吸 收 脱除 焦 化干 气和 D 天 然 气 中有 机 硫效 果研 究
溶 剂
本文 首先 分析 了华 昌脱 碳 工艺在 一个 月 内的实 际生 产数 据 , 脱碳 工艺进 行 了总体 的评 价 , 对 出 对 针

合成氨脱碳系统的优化及稳定(NHD脱炭)

合成氨脱碳系统的优化及稳定(NHD脱炭)

合成氨脱碳系统的优化及稳定(NHD脱炭)摘要:合成氨脱碳系统中NHD脱硫、脱碳技术具有能耗低、净化度高、设备和流程简单等特点,已在舍成氨、甲醇和醋酸生产企业的脱硫、脱碳中得到了成功应用,并取得了丰富的实践经验。

近年来,又全力开发NHD技术在焦炉气脱硫中的应用,并取得了突破性的成果。

为实现焦炉气制甲醇技术的工业化提供了有效的脱硫工艺。

关键词:NHD脱硫脱碳优化稳定一、合成氨脱碳系统中NHD溶剂性质、吸收机理及工艺特点1.物理性质NHD(脱碳)溶剂的主要成分是聚乙二醇二甲醚的同系物,分子式为CH3一O一(C2HO) CH ,式中凡=2—8,为浅黄色液体。

在25cI:时,其密度为l027kg /m ,蒸气压为0.093Pa,冰点为一2一29cI:,闪点为l5l℃,燃点为157cI:。

2.工艺原理NHD(脱碳)溶剂吸收H:S、COS、CO:的过程具有典型的物理吸收特征,在H:S、COS、CO:一NHD溶剂系统,当上述气体分压低于lMPa时,气相压力与液相浓度基本符合亨利定律。

HS、COS、CO在NHD溶剂中的溶解度随压力升高、温度降低而增大,因此宜在高压、低温下进行}{2S、COS、CO 的吸收过程;当系统压力降低、温度升高时,溶液中溶解的气体得以释放,实现溶液的再生过程。

3.工艺特点3.1净化度高正常操作工况下,在l台吸收塔内可将H S和COS脱除至l×10~,CO:脱除至0.1%以下。

3.2能选择性吸收H:S和有机硫。

3.3吸收H:S、有机硫、CO:等气体的能力强。

3.4溶剂蒸气压低,挥发损失少。

流程中不设置洗涤回收溶液的装置,企业实际吨氨溶剂消耗一般为0.2kg。

3.5溶剂无腐蚀性实践经验表明,即使溶剂含水量达10%、累积含硫量达300mg/L,也未发现设备有明显腐蚀,工艺装置基本采用碳钢材料,投资少,维护和维修费用低。

二、合成氨NHD(脱碳)技术的优化与稳定1.合成氨NHD(脱碳)溶液工艺条件的优化NHD溶液的脱碳能力、脱碳指标与很多工艺条件有关,在压力基本不变的前提下,影响因素还有温度、溶液循环量和溶液含水量。

(完整版)年产30万吨合成氨原料气脱碳工段工艺设计毕业论文

(完整版)年产30万吨合成氨原料气脱碳工段工艺设计毕业论文

本科毕业设计年产30万吨合成氨原料气脱碳工段工艺设计Decarbonization Process design on synthetic ammonia目录摘要 ............................................................................................................................................................ Abstract ........................................................................................................................ 错误!未定义书引言 ............................................................................................................................................................第一章总论 ....................................................................................................................................1.1 概述..........................................................................................................................1.1.1 氨的性质...................................................................................................................1.1.2 氨的用途及在化工生产中的地位 ..........................................................................1.2 合成氨的发展历史......................................................................................................1.2.1 氨气的发现...............................................................................................................1.2.2 合成氨的发现及其发展 ..........................................................................................1.2.3 世界合成氨工业发展 ..............................................................................................1.3 文献综述......................................................................................................................1.3.1合成氨脱碳................................................................................................................1.3.2合成氨脱碳的方法概述 ...........................................................................................1.4 设计的依据..................................................................................................................第二章流程方案的确定 ...............................................................................................................2.1各脱碳方法对比...........................................................................................................2.1.1化学吸收法................................................................................................................2.1.2物理吸收法................................................................................................................2.1.3物理化学吸收法........................................................................................................2.2碳酸丙烯酯(PC)法脱碳工艺基本原理 .................................................................2.2.1 PC法脱碳技术国内外现状 .....................................................................................2.2.2发展过程....................................................................................................................2.2.3技术经济....................................................................................................................第三章生产流程的简述 ...............................................................................................................3.1 气体流程......................................................................................................................3.1.1 原料气流程...............................................................................................................3.1.2 解吸气体回收流程...................................................................................................3.2液体流程.......................................................................................................................3.2.1 碳酸丙烯酯脱碳流程简述 ......................................................................................3.2.2 稀液流程循环...........................................................................................................3.3存在的问题及解决的办法 ..........................................................................................3.3.1综合分析PC法脱碳存在的主要问题有 ................................................................3.3.2解决办法....................................................................................................................第四章物料衡算和热量衡算 ....................................................................................................4.1工艺参数及指标...........................................................................................................4.1.1计算依据CO2在PC中的溶解度关系 ...................................................................4.1.2 PC的密度与温度的关系 .........................................................................................4.1.3 PC的蒸汽压 .............................................................................................................4.1.4 PC的黏度 .................................................................................................................4.2物料衡算.......................................................................................................................4.2.1各组分在PC中的溶解量 ........................................................................................4.2.2溶剂夹带量................................................................................................................4.2.3溶液带出的气量........................................................................................................4.2.4出脱碳塔净化气量....................................................................................................4.2.6 入塔液中CO2夹带量..............................................................................................4.2.7 带出气体的质量流量 ..............................................................................................4.2.8 验算吸收液中净化气中CO2的含量 .....................................................................4.2.9出塔气的组成............................................................................................................4.3热量衡算.......................................................................................................................第五章吸收塔的结构设计..........................................................................................................5.1确定吸收塔塔径及相关参数 ......................................................................................5.1.1基础数据....................................................................................................................5.1.2求取塔径....................................................................................................................5.1.3核算数据....................................................................................................................5.1.4填料层高度的计算....................................................................................................5.1.5 气相总传质单元高度 ..............................................................................................5.1.6塔附属高度................................................................................................................第六章塔零部件和辅助设备的设计与选取.....................................................................6.1 吸收塔零部件的选取..................................................................................................6.1.1筒体、封头等部件的尺寸选取 ...............................................................................6.1.2防涡流挡板的选取....................................................................................................6.1.3液体初始分布器........................................................................................................6.1.4 液体再分布器...........................................................................................................6.1.5 填料支撑装置...........................................................................................................6.1.6接管管径的确定........................................................................................................6.2 解吸塔的选取..............................................................................................................6.3贮槽的选择...................................................................................................................结论..........................................................................................................................................................致谢.......................................................................................................................... 错误!未定义书参考文献 ...............................................................................................................................................年产30万吨合成氨原料气脱碳工段工艺设计摘要:本设计为年产30万吨合成氨原料气脱碳工段工艺设计,是由指导老师指定的产量和生产规模,结合生产实习中收集的各类生产技术指标以及参考文献所提供的数据为依据而设计的。

年产30万吨合成氨脱碳工段工艺设计

年产30万吨合成氨脱碳工段工艺设计

合成氨脱碳工段工艺设计的目标是实现年产量为30万吨的合成氨的脱碳处理。

脱碳是通过去除氨气中的二氧化碳来净化合成氨的过程。

以下是关于合成氨脱碳工段工艺设计的详细说明。

1.工艺概述:合成氨脱碳工段的主要目标是将合成氨中的二氧化碳浓度降低到规定水平以下,以满足产品质量要求。

脱碳过程采用吸收法,通过将合成氨与吸收剂接触来去除二氧化碳。

脱碳过程是在一套多级吸收装置中进行的。

2.设备选择:在设计合成氨脱碳工段时,需选择合适的吸收装置和相应的吸收剂。

常见的吸收装置包括板式吸收器、填料吸收塔或喷雾吸收器。

在选择吸收剂时,应考虑其吸收效率和再利用性。

3.工艺流程:合成氨脱碳工段的主要流程包括氨气进料、吸收装置、二氧化碳排出以及废气处理。

具体流程如下:-氨气进料:合成氨从合成氨工段进入脱碳工段,浓度约为60-80%。

-吸收装置:合成氨与吸收剂接触,吸收剂可以是各种吸收液,如碱性溶液。

吸收装置分为多个级别,通过多级吸收可以提高脱碳效率。

-二氧化碳排出:将富二氧化碳的吸收液与空气进行反应,将二氧化碳释放出来。

常见的方法是通过加热、压缩或换热来实现。

-废气处理:二氧化碳排出后的废气需要进行处理,通常采用气体净化设备来去除废气中的污染物。

4.工艺参数:合成氨脱碳工段的工艺参数包括吸收剂浓度、吸收剂流量、吸收剂-氨气接触时间和温度等。

这些参数的选择会影响脱碳效率和能耗。

-吸收剂浓度:一般选择适当浓度的吸收液,以实现高效的气液接触。

-吸收剂流量:流量的选择需要考虑吸收装置的吸收能力和分离效果。

-吸收剂-氨气接触时间:合理的接触时间可以提高脱碳效果。

-温度:适当的温度可以促进脱碳反应的进行。

5.安全措施:在合成氨脱碳工艺设计过程中,需考虑操作安全及环境保护。

其中包括废气处理设备的选择和设计,以及设备的安全运行控制系统。

综上所述,合成氨脱碳工段工艺设计应包括吸收装置和吸收剂的选择,合理的工艺流程和参数设定,以及必要的安全措施。

只有通过完善的工艺设计和操作管理,才能实现30万吨合成氨的脱碳处理。

合成氨过程中二氧化碳的脱除

合成氨过程中二氧化碳的脱除

合成氨过程中二氧化碳的脱除经变换的原料气含有大量的二氧化碳,二氧化碳是制造尿素、碳酸氢铵和纯碱的重要原料。

原料气在进合成工序前,必须将二氧化碳清除干净。

因此,合成氨生产中,二氧化碳的脱除及其回收利用具有双重目的。

习惯上,将二氧化碳的脱除过程称为脱碳。

目前,脱碳多采用溶液吸收法。

根据吸收剂性能的不同,分为化学吸收法和物理吸收法两类。

化学吸收法是二氧化碳与碱性溶液反应而被除去,常用的有改良热钾碱法、氨水法和乙醇胺法。

物理吸收法是利用二氧化碳比氢气、氨气在吸收剂中溶解度大的特性,用吸收的方法除去原料气中的二氧化碳,常用的有低温甲酵法、聚乙二酵二甲醚法和碳酸丙烯酯法。

(l)改良热钾碱法改良热钾碱法也称本菲尔法,该法采用热碳酸钾吸收二氧化碳:K2CO3+CO2+H2O = 2KHCO3碳酸钾溶液吸收二氧化碳后,应进行再生以使溶液循环使用,再生反应为2KHCO3 = K2CO3+H2O+CO2↑产生的二氧化碳可回收利用。

加压利于二氧化碳的吸收,故吸收在加压下操作;减压加热利于二氧化碳的解吸,故再生过程是在减压和加热的条件下完成的。

吸收溶液中,除碳酸钾之外,并有活化剂二乙醇胺,并加有缓蚀剂偏钒酸钾、消泡剂聚醚或硅酮乳状液等。

近几年,美国UOP公司开发了一种可取代二乙醇胺的新活化剂ACT-l。

(2)聚乙二酵二甲醚法也称谢列克索法,属于物理吸收。

聚乙二醇二甲醚能选择性脱除气体中的COz和H2S,无毒,能耗较低。

20世纪80年代初,美国将此法用于以天然气为原料的大型合成氨厂,至今世界上仍有许多工厂采用。

中国南化公司研究院开发的同类脱碳工艺(NHD净化技术)在中型氨厂试验成功,NHD溶液吸收c0.和H.S的能力均优于国外的Selexol溶液,而价格便宜,技术与设备全部国产化。

合成氨原料气脱CO2.

合成氨原料气脱CO2.

CO+3H2→CH4+H2O =-206.2kJ/mol 0298HΔ CO2+4H2→CH4+2H2O =-165.1kJ/mol 0298HΔ
2、气体分离原理
分离的基本原理是:将经过净化的带压或加压的原料气逐级冷却至 各分离组分的冷凝温度进行分凝(单级或逐级冷凝);或使原料气加压 冷却、液化、再精馏进行分离。常用的气体冷凝温度(在101.325千 帕压力下)见表1[常见的气体冷凝温度 法( 以 冷 密 分化 分 却 度 离学 为 , 不 。) : 根 同 反压据、 应缩沸扩 吸气点散 附体温速 气,度度 体物不不 等理同同 方 可,
甲烷化法是在催化剂存在下使少量CO、CO2与H2反应生成CH4和 H2O的一种净化工艺,要求入口原料气中碳的氧化物含量(体积分数) 一般应小于0.7%。甲烷化法可以将气体中碳的氧化物(CO+CO2)含量 脱除到10cm3/m3以下,但是需要消耗有效成分H2,并且增加了惰 性气体CH4的含量。甲烷化反应如下:
CO2既是氨合成催化剂的毒物,又是制造尿素、碳酸氢铵等氮肥的 重要原料。因此变换气中CO2的脱除必须兼顾这两方面的要求。
③ 气体精制过程
经CO变换和CO2脱除后的原料气中尚含有少量残余的CO和 CO2。为了防止对氨合成催化剂的毒害,规定CO和CO2总含量 不得大于10cm3/m3(体积分数)。因此,原料气在进入合成工 序前,必须进行原料气的最终净化,即精制过程。 目前在工业生产中,最终净化方法分为深冷分离法和甲烷化法。
初步方案的制定
一、合成氨的工艺物料
(1)原料气制备 将煤和天然气等原料制成含氢和 氮的粗原料气。对于固体原料煤和焦炭,通常 采用气化的方法制取合成气;渣油可采用非催 化部分氧化的方法获得合成气;对气态烃类和 石脑油,工业中利用二段蒸汽转化法制取合成 气。 (2)净化 对粗原料气进行净化处理,除去氢气和 氮气以外的杂质,主要包括变换过程、脱硫脱 碳过程以及气体精制过程。

合成氨脱碳工艺

合成氨脱碳工艺简介合成氨生产工艺简述合成氨是一个传统的化学工业,诞生于二十世纪初。

就世界范围来说,氨是最基本的化工产品之一,其主要用于制造硝酸和化学肥料等。

合成氨的生产过程一般包括三个主要步骤: (l)造气,即制造含有氢和氮的合成氨原料气,也称合成气;(2)净化,对合成气进行净化处理,以除去其中氢和氮之外的杂质;(3)压缩和合成,将净化后的氢、氮混合气体压缩到高压,并在催化剂和高温条件下反应合成为氨。

其生产工艺流程包括:脱硫、转化、变换、脱碳、甲烷化、氨的合成、吸收制冷及输人氨库和氨吸收八个工序[1]。

在合成氨生产过程中,脱除CO2是一个比较重要的工序之一,其能耗约占氨厂总能耗的10%左右。

因此,脱除CO2,工艺的能耗高低,对氨厂总能耗的影响很大,国外一些较为先进的合成氨工艺流程,均选用了低能耗脱碳工艺。

我国合成氨工艺能耗较高,脱碳工艺技术也显得比较落后,因此,结合具体情况,推广应用低能耗的脱除CO2工艺,非常有必要。

1.1.4脱碳单元在合成氨工业中的作用在最终产品为尿素的合成氨中,脱碳单元处于承前启后的关键位置,其作用既是净化合成气,又是回收高纯度的尿素原料CO2。

以沪天化1000t/d合成氨装置脱碳单元为例,其需要将低变出口的CO2含量经吸收后降到0.1%以下,以避免甲烷化系统超温并产生增加能耗的的合成惰气,同时将吸收的CO2再生为99%纯度的产品CO2。

在此过程中吸收塔压降还应维持在合理范围内以降低合成气压缩机的功耗。

系统的扩能改造工程中,脱碳单元将为系统瓶颈,脱碳运行的好坏,直接关系到整个装置的安全稳定与否。

脱碳系统的能力将影响合成氨装置的能力,必须同步进行扩能改造。

但是不论用什么原料及方法造气,经变换后的合成气中都含有大量的CO2,原料中烃的分子量越大,合成气中CO2就越多。

用天然气(甲烷)为原料的烃类蒸汽转化法所得的CO2量较少,合成气中CO2浓度在15-20%,每吨氨副产CO2约1.0-1.6吨。

合成氨脱碳工艺

合成氨脱碳工艺简介合成氨生产工艺简述合成氨是一个传统的化学工业,诞生于二十世纪初。

就世界范围来说,氨是最基本的化工产品之一,其主要用于制造硝酸和化学肥料等。

合成氨的生产过程一般包括三个主要步骤: (l)造气,即制造含有氢和氮的合成氨原料气,也称合成气;(2)净化,对合成气进行净化处理,以除去其中氢和氮之外的杂质;(3)压缩和合成,将净化后的氢、氮混合气体压缩到高压,并在催化剂和高温条件下反应合成为氨。

其生产工艺流程包括:脱硫、转化、变换、脱碳、甲烷化、氨的合成、吸收制冷及输人氨库和氨吸收八个工序[1]。

在合成氨生产过程中,脱除CO2是一个比较重要的工序之一,其能耗约占氨厂总能耗的10%左右。

因此,脱除CO2,工艺的能耗高低,对氨厂总能耗的影响很大,国外一些较为先进的合成氨工艺流程,均选用了低能耗脱碳工艺。

我国合成氨工艺能耗较高,脱碳工艺技术也显得比较落后,因此,结合具体情况,推广应用低能耗的脱除CO2工艺,非常有必要。

1.1.4脱碳单元在合成氨工业中的作用在最终产品为尿素的合成氨中,脱碳单元处于承前启后的关键位置,其作用既是净化合成气,又是回收高纯度的尿素原料CO2。

以沪天化1000t/d合成氨装置脱碳单元为例,其需要将低变出口的CO2含量经吸收后降到0.1%以下,以避免甲烷化系统超温并产生增加能耗的的合成惰气,同时将吸收的CO2再生为99%纯度的产品CO2。

在此过程中吸收塔压降还应维持在合理范围内以降低合成气压缩机的功耗。

系统的扩能改造工程中,脱碳单元将为系统瓶颈,脱碳运行的好坏,直接关系到整个装置的安全稳定与否。

脱碳系统的能力将影响合成氨装置的能力,必须同步进行扩能改造。

但是不论用什么原料及方法造气,经变换后的合成气中都含有大量的CO2,原料中烃的分子量越大,合成气中CO2就越多。

用天然气(甲烷)为原料的烃类蒸汽转化法所得的CO2量较少,合成气中CO2浓度在15-20%,每吨氨副产CO2约1.0-1.6吨。

合成氨脱碳系统的优化及稳定(NHD脱炭)

合成氨脱碳系统的优化及稳定(NHD脱炭)摘要:合成氨脱碳系统中NHD脱硫、脱碳技术具有能耗低、净化度高、设备和流程简单等特点,已在舍成氨、甲醇和醋酸生产企业的脱硫、脱碳中得到了成功应用,并取得了丰富的实践经验。

近年来,又全力开发 NHD技术在焦炉气脱硫中的应用,并取得了突破性的成果。

为实现焦炉气制甲醇技术的工业化提供了有效的脱硫工艺。

关键词:NHD 脱硫脱碳优化稳定一、合成氨脱碳系统中NHD溶剂性质、吸收机理及工艺特点1.物理性质NHD(脱碳)溶剂的主要成分是聚乙二醇二甲醚的同系物,分子式为CH3一O一(C2HO) CH ,式中凡=2―8,为浅黄色液体。

在 25cI:时,其密度为 l027kg/m ,蒸气压为 0.093Pa,冰点为一2一 29cI:,闪点为 l5l℃,燃点为 157cI:。

2.工艺原理NHD(脱碳)溶剂吸收 H:S、COS、CO:的过程具有典型的物理吸收特征,在 H:S、COS、CO:一NHD溶剂系统,当上述气体分压低于 lMPa时,气相压力与液相浓度基本符合亨利定律。

HS、COS、CO在 NHD溶剂中的溶解度随压力升高、温度降低而增大,因此宜在高压、低温下进行 }{2S、COS、CO 的吸收过程;当系统压力降低、温度升高时,溶液中溶解的气体得以释放,实现溶液的再生过程。

3.工艺特点3.1净化度高正常操作工况下,在 l台吸收塔内可将 H S和 COS 脱除至 l×10~,CO:脱除至 0.1%以下。

3.2能选择性吸收 H:S和有机硫。

3.3吸收 H:S、有机硫、CO:等气体的能力强。

3.4溶剂蒸气压低,挥发损失少。

流程中不设置洗涤回收溶液的装置,企业实际吨氨溶剂消耗一般为 0.2kg。

3.5溶剂无腐蚀性实践经验表明,即使溶剂含水量达10%、累积含硫量达 300mg/L,也未发现设备有明显腐蚀,工艺装置基本采用碳钢材料,投资少,维护和维修费用低。

二、合成氨 NHD(脱碳)技术的优化与稳定1.合成氨NHD(脱碳)溶液工艺条件的优化NHD溶液的脱碳能力、脱碳指标与很多工艺条件有关,在压力基本不变的前提下,影响因素还有温度、溶液循环量和溶液含水量。

年产18万吨合成氨脱碳工段工艺设计

合成氨脱碳工段是合成氨生产过程中的一个重要环节,主要目的是将合成氨中的CO2去除,以提高合成氨的纯度和质量。

本文将对年产18万吨合成氨脱碳工段的工艺设计进行详细介绍。

1.工艺流程(1)吸收:将合成氨气体通过吸收剂床,与富CO2溶液进行接触,使合成氨中的CO2被吸收到溶液中。

在吸收过程中,需控制吸收剂的流量、压力和温度,以实现高效的CO2吸收。

(2)解吸:将富CO2溶液通过解吸剂床,与低压蒸汽接触,使溶液中的CO2从液体转为气体,同时生成富CO2气体。

解吸过程中需要控制解吸剂的流量、压力和温度,以实现高效的CO2解吸。

(3)净化:将富CO2气体通过一系列的净化装置,如冷凝器、吸附器等,对气体中的杂质进行去除。

净化过程主要包括冷凝、吸附和再生步骤,以确保气体质量的稳定性和CO2的纯度。

(4)再生:将去除杂质后的富CO2溶液进行加热,使其中的CO2从溶液中析出,以得到纯净的CO2、再生过程中需控制溶液的温度和压力,以实现高效的CO2再生。

2.关键技术和设备(1)吸收塔:吸收塔是将合成氨与吸收剂进行接触的装置,主要由塔体和填料组成。

合适的填料能够增加接触面积,提高CO2的吸收效率。

吸收塔还需配置进料系统、排料系统和循环液系统等。

(2)解吸塔:解吸塔是将富CO2溶液与解吸剂进行接触的装置,主要由塔体和填料组成。

解吸塔的设计应考虑接触效果和操作稳定性,以保证CO2的解吸效率和产品质量。

(3)冷凝器:冷凝器主要通过冷却作用,将富CO2气体中的水分和杂质进行去除。

合适的冷凝器设计能够提高气体的净化效果,增加产品的纯度。

(4)吸附器:吸附器主要通过吸附剂对气体中的杂质进行吸附,以净化气体。

合适的吸附剂选择和吸附器设计可以有效去除气体中的杂质,并提高产品的质量。

(5)再生器:再生器主要通过加热作用,将富CO2溶液中的CO2析出,以得到纯净的CO2、再生器的设计应考虑加热方式和操作稳定性,以实现高效的CO2再生。

3.控制策略(1)温度控制:吸收剂和解吸剂的温度是影响CO2吸收和解吸效率的重要因素。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

合成氨脱碳工艺简介
合成氨生产工艺简述
合成氨是一个传统的化学工业,诞生于二十世纪初。

就世界范围来说,氨是最基本的化
工产品之一,其主要用于制造硝酸和化学肥料等。

合成氨的生产过程一般包括三个主要步骤: (l )造气,即制造含有氢和氮的合成氨原料气,也称合成气;
(2)净化,对合成气进行净化处理,以除去其中氢和氮之外的杂质;
(3)压缩和合成,将净化后的氢、氮混合气体压缩到高压,并在催化剂和高温条件下
反应合成为氨。

其生产工艺流程包括:脱硫、转化、变换、脱碳、甲烷化、氨的合成、吸收
制冷及输人氨库和氨吸收八个工序[1]。

在合成氨生产过程中,脱除CO2是一个比较重要的工序之一,其能耗约占氨厂总能耗
的10%左右。

因此,脱除 CO2,工艺的能耗高低,对氨厂总能耗的影响很大,国外一些较
为先进的合成氨工艺流程,均选用了低能耗脱碳工艺。

我国合成氨工艺能耗较高,脱碳工艺技术也显得比较落后,因此,结合具体情况,推广应用低能耗的脱除CO2工艺,非常有必要。

1.1.4 脱碳单元在合成氨工业中的作用
在最终产品为尿素的合成氨中,脱碳单元处于承前启后的关键位置,其作用既是净化合成气,又是回收高纯度的尿素原料CO2。

以沪天化 1000t/d 合成氨装置脱碳单元为例,其需
要将低变出口的 CO2含量经吸收后降到 0.1% 以下,以避免甲烷化系统超温并产生增加能耗
的的合成惰气,同时将吸收的CO2再生为 99%纯度的产品 CO2。

在此过程中吸收塔压降还
应维持在合理范围内以降低合成气压缩机的功耗。

系统的扩能改造工程中,脱碳单元将为系统瓶颈,脱碳运行的好坏,直接关系到整个装置的安全稳定与否。

脱碳系统的能力将影响合成氨装置的能力,必须同步进行扩能改造。

但是不论用什么原料及方法造气,经变换后的合成气中都含有大量的CO2,原料中烃的分子量越大,合成气中 CO2就越多。

用天然气(甲烷 )为原料的烃类蒸汽转化法所得的CO2
量较少,合成气中 CO2浓度在15-20%,每吨氨副产 CO2约 1.0-1.6 吨。

这些 CO2如果不在合成工序之前除净,不仅耗费气体压缩功,空占设备体积,而且对后续工序有害。

此外,
CO2还是重要的化工原料,如合成尿素就需以CO2为主要原料。

因此合成氨生产中把脱除工艺
气中CO2的过程称为“脱碳”,在合成氨尿素联产的化肥装置中,它兼有净化气体和回收纯净CO2的两个目的。

1.1.5 脱碳方法概述
由变换工序来的低变气进脱碳系统的吸收塔,经物理吸收或者化学吸收法吸收二氧化
碳。

出塔气中二氧化碳含量要求小于0.1% 。

为了防止气体夹带出脱碳液,脱碳后的液体进
人洗涤塔,用软水洗去液沫后再进入甲烷化换热器。

脱碳塔出来的富液经换热器后,减压送至二氧化碳再生塔,用蒸汽加热再沸器,再脱去二氧化碳。

由再生塔顶出来的CO2,经空冷器和水冷器,气体温度降至40℃,再经二氧化碳分离器除去冷凝水,送到尿素车间作原料。

再生后的脱碳液(贫液),先进溶液空冷器,冷却至65℃左右,由溶液循环泵加压,再经溶
液水冷器冷却至 40℃后,送入二氧化碳吸收塔循环使用。

1.2 净化工序中脱碳方法
在合成氨的整个系统中,脱碳单元将为系统关键主项,脱碳工序运行的好坏,直接关系到整个装置的安全稳定与否。

脱碳系统的能力将影响合成氨装置和尿素装置的能力。

CO2 是一种酸性气体,对合成氨合成气中CO2的脱除,一般采用溶剂吸收的方法。

根据 CO2与溶剂结合的方式,脱除CO2的方法有化学吸收法、物理吸收法和物理化学
吸收法三大类。

1.2.1 化学吸收法
化学吸收法即利用CO2是酸性气体的特点,采用含有化学活性物质的溶液对合成气进
行洗涤, CO2与之反应生成介稳化合物或者加合物,然后在减压条件下通过加热使生成物分。

相关文档
最新文档