复合场知识点总结

合集下载

高考物理带电粒子在复合场中的运动知识归纳

高考物理带电粒子在复合场中的运动知识归纳

带电粒子在复合场中的运动基础知识归纳1.复合场复合场是指电场、磁场和重力场并存,或其中两场并存,或分区域存在,分析方法和力学问题的分析方法基本相同,不同之处是多了电场力和磁场力,分析方法除了力学三大观点(动力学、动量、能量)外,还应注意:(1) 洛伦兹力永不做功.(2) 重力和电场力做功与路径无关,只由初末位置决定.还有因洛伦兹力随速度而变化,洛伦兹力的变化导致粒子所受合力变化,从而加速度变化,使粒子做变加速运动.2.带电粒子在复合场中无约束情况下的运动性质(1)当带电粒子所受合外力为零时,将做匀速直线运动或处于静止,合外力恒定且与初速度同向时做匀变速直线运动,常见情况有:①洛伦兹力为零(v与B平行),重力与电场力平衡,做匀速直线运动,或重力与电场力合力恒定,做匀变速直线运动.②洛伦兹力与速度垂直,且与重力和电场力的合力平衡,做匀速直线运动.(2)当带电粒子所受合外力充当向心力,带电粒子做匀速圆周运动时,由于通常情况下,重力和电场力为恒力,故不能充当向心力,所以一般情况下是重力恰好与电场力相平衡,洛伦兹力充当向心力.(3)当带电粒子所受合外力的大小、方向均不断变化时,粒子将做非匀变速的 曲线运动 .3.带电粒子在复合场中有约束情况下的运动带电粒子所受约束,通常有面、杆、绳、圆轨道等,常见的运动形式有 直线运动 和 圆周运动 ,此类问题应注意分析洛伦兹力所起的作用.4.带电粒子在交变场中的运动带电粒子在不同场中的运动性质可能不同,可分别进行讨论.粒子在不同场中的运动的联系点是速度,因为速度不能突变,在前一个场中运动的末速度,就是后一个场中运动的初速度.5.带电粒子在复合场中运动的实际应用(1)质谱仪①用途:质谱仪是一种测量带电粒子质量和分离同位素的仪器.②原理:如图所示,离子源S 产生质量为m ,电荷量为q 的正离子(重力不计),离子出来时速度很小(可忽略不计),经过电压为U 的电场加速后进入磁感应强度为B 的匀强磁场中做匀速圆周运动,经过半个周期而达到记录它的照相底片P 上,测得它在P 上的位置到入口处的距离为L ,则qU =21mv 2-0;q B v =m r v 2;L =2r联立求解得m =U L qB 822,因此,只要知道q 、B 、L 与U ,就可计算出带电粒子的质量m ,若q 也未知,则228L B Um q又因m ∝L 2,不同质量的同位素从不同处可得到分离,故质谱仪又是分离同位素的重要仪器.(2)回旋加速器①组成:两个D 形盒、大型电磁铁、高频振荡交变电压,D 型盒间可形成电压U .②作用:加速微观带电粒子.③原理:a .电场加速qU =ΔE kb .磁场约束偏转qBv =m r v 2,r =qBmv ∝v c .加速条件,高频电源的周期与带电粒子在D 形盒中运动的周期相同,即T 电场=T 回旋=qBm π2 带电粒子在D 形盒内沿螺旋线轨道逐渐趋于盒的边缘,达到预期的速率后,用特殊装置把它们引出.④要点深化a .将带电粒子在两盒狭缝之间的运动首尾相连起来可等效为一个初速度为零的匀加速直线运动.b .带电粒子每经电场加速一次,回旋半径就增大一次,所以各回旋半径之比为1∶2∶3∶…c .对于同一回旋加速器,其粒子回旋的最大半径是相同的.d .若已知最大能量为E km ,则回旋次数n =qUE 2km e .最大动能:E km =m r B q 22m 22f .粒子在回旋加速器内的运动时间:t =UBr 2π2m (3)速度选择器①原理:如图所示,由于所受重力可忽略不计,运动方向相同而速率不同的正粒子组成的粒子束射入相互正交的匀强电场和匀强磁场所组成的场区中,已知电场强度为B ,方向垂直于纸面向里,若粒子运动轨迹不发生偏转(重力不计),必须满足平衡条件:qBv =qE ,故v =BE ,这样就把满足v =BE 的粒子从速度选择器中选择出来了. ②特点:a .速度选择器只选择速度(大小、方向)而不选择粒子的质量和电荷量,如上图中若从右侧入射则不能穿过场区.b .速度选择器B 、E 、v 三个物理量的大小、方向互相约束,以保证粒子受到的电场力和洛伦兹力等大、反向,如上图中只改变磁场B 的方向,粒子将向下偏转.c .v ′>v =B E 时,则qBv ′>qE ,粒子向上偏转;当v ′<v =BE 时,qBv ′<qE ,粒子向下偏转.③要点深化a .从力的角度看,电场力和洛伦兹力平衡qE =qvB ;b .从速度角度看,v =BE ; c .从功能角度看,洛伦兹力永不做功.(4)电磁流量计①如图所示,一圆形导管直径为d ,用非磁性材料制成,其中有可以导电的液体流过导管.②原理:导电液体中的自由电荷(正、负离子)在洛伦兹力作用下横向偏转,a 、b 间出现电势差,形成电场.当自由电荷所受电场力和洛伦兹力平衡时,a 、b 间的电势差就保持稳定.由Bqv =Eq =d U q ,可得v =Bd U液体流量Q =Sv =4π2d ·Bd U =BdU 4π (5)霍尔效应如图所示,高为h 、宽为d 的导体置于匀强磁场B 中,当电流通过导体时,在导体板的上表面A 和下表面A ′之间产生电势差,这种现象称为霍尔效应,此电压称为霍尔电压.设霍尔导体中自由电荷(载流子)是自由电子.图中电流方向向右,则电子受洛伦兹力 向上 ,在上表面A 积聚电子,则qvB =qE , E =Bv ,电势差U =Eh =Bhv .又I =nqSv导体的横截面积S =hd得v =nqhdI 所以U =Bhv =d BI k nqd BI k=nq 1,称霍尔系数.重点难点突破一、解决复合场类问题的基本思路1.正确的受力分析.除重力、弹力、摩擦力外,要特别注意电场力和磁场力的分析.2.正确分析物体的运动状态.找出物体的速度、位置及其变化特点,分析运动过程,如果出现临界状态,要分析临界条件.3.恰当灵活地运用动力学三大方法解决问题.(1)用动力学观点分析,包括牛顿运动定律与运动学公式.(2)用动量观点分析,包括动量定理与动量守恒定律.(3)用能量观点分析,包括动能定理和机械能(或能量)守恒定律.针对不同的问题灵活地选用,但必须弄清各种规律的成立条件与适用范围.二、复合场类问题中重力考虑与否分三种情况1.对于微观粒子,如电子、质子、离子等一般不做特殊交待就可以不计其重力,因为其重力一般情况下与电场力或磁场力相比太小,可以忽略;而对于一些实际物体,如带电小球、液滴、金属块等不做特殊交待时就应考虑其重力.2.在题目中有明确交待是否要考虑重力的,这种情况比较正规,也比较简单.3.直接看不出是否要考虑重力的,在进行受力分析与运动分析时,要由分析结果,先进行定性确定是否要考虑重力.典例精析1.带电粒子在复合场中做直线运动的处理方法【例1】如图所示,足够长的光滑绝缘斜面与水平面间的夹角为α(sin α=0.6),放在水平方向的匀强电场和匀强磁场中,电场强度E =50 V/m ,方向水平向左,磁场方向垂直纸面向外.一个电荷量q =+4.0×10-2 C 、质量m =0.40 kg 的光滑小球,以初速度v 0=20 m/s 从斜面底端向上滑,然后又下滑,共经过3 s脱离斜面.求磁场的磁感应强度(g 取10 m /s 2).【解析】小球沿斜面向上运动的过程中受力分析如图所示.由牛顿第二定律,得qE cos α+mg sin α=ma 1,故a 1=g sin α+m qE αcos =10×0.6 m/s 2+40.08.050100.42⨯⨯⨯- m/s 2=10 m/s 2,向上运动时间t 1=100a v --=2 s小球在下滑过程中的受力分析如图所示.小球在离开斜面前做匀加速直线运动,a 2=10 m/s 2运动时间t 2=t -t 1=1 s脱离斜面时的速度v =a 2t 2=10 m/s在垂直于斜面方向上有:qvB +qE sin α=mg cos α故B =T 106.050-T 10100.48.01040.0 sin cos 2⨯⨯⨯⨯⨯=--v E qv mg αα=5 T 【思维提升】(1)知道洛伦兹力是变力,其大小随速度变化而变化,其方向随运动方向的反向而反向.能从运动过程及受力分析入手,分析可能存在的最大速度、最大加速度、最大位移等.(2)明确小球脱离斜面的条件是F N =0.【拓展1】如图所示,套在足够长的绝缘粗糙直棒上的带正电小球,其质量为m ,带电荷量为q ,小球可在棒上滑动,现将此棒竖直放入沿水平方向且互相垂直的匀强磁场和匀强电场中.设小球电荷量不变,小球由静止下滑的过程中( BD )A.小球加速度一直增大B.小球速度一直增大,直到最后匀速C.杆对小球的弹力一直减小D.小球所受洛伦兹力一直增大,直到最后不变【解析】小球由静止加速下滑,f洛=Bqv 在不断增大,开始一段,如图(a):f 洛<F 电,水平方向有f 洛+F N =F电,加速度a =m f mg -,其中f =μF N ,随着速度的增大,f 洛增大,F N 减小,加速度也增大,当f 洛=F 电时,a 达到最大;以后如图(b):f 洛>F 电,水平方向有f 洛=F 电+F N ,随着速度的增大,F N 也增大,f 也增大,a =mf mg -减小,当f =mg 时,a =0,此后做匀速运动,故a 先增大后减小,A 错,B 对,弹力先减小后增大,C 错,由f 洛=Bqv 知D 对.2.灵活运用动力学方法解决带电粒子在复合场中的运动问题【例2】如图所示,水平放置的M 、N 两金属板之间,有水平向里的匀强磁场,磁感应强度B =0.5 T.质量为m 1=9.995×10-7kg 、电荷量为q =-1.0×10-8 C 的带电微粒,静止在N 板附近.在M 、N 两板间突然加上电压(M 板电势高于N 板电势)时,微粒开始运动,经一段时间后,该微粒水平匀速地碰撞原来静止的质量为m 2的中性微粒,并粘合在一起,然后共同沿一段圆弧做匀速圆周运动,最终落在N 板上.若两板间的电场强度E =1.0×103 V/m ,求:(1)两微粒碰撞前,质量为m 1的微粒的速度大小;(2)被碰撞微粒的质量m 2;(3)两微粒粘合后沿圆弧运动的轨道半径.【解析】(1)碰撞前,质量为m 1的微粒已沿水平方向做匀速运动,根据平衡条件有m 1g +qvB =qE解得碰撞前质量m 1的微粒的速度大小为v =5.0100.11010995.9100.1100.187381⨯⨯⨯⨯-⨯⨯⨯=----qB g m qE m/s =1 m/s (2)由于两微粒碰撞后一起做匀速圆周运动,说明两微粒所受的电场力与它们的重力相平衡,洛伦兹力提供做匀速圆周运动的向心力,故有(m 1+m 2)g =qE解得m 2=g qE 1m -=)10995.910100.1100.1(738--⨯-⨯⨯⨯ kg =5×10-10 kg (3)设两微粒一起做匀速圆周运动的速度大小为v ′,轨道半径为R ,根据牛顿第二定律有qv ′B =(m 1+m 2)R v 2'研究两微粒的碰撞过程,根据动量守恒定律有m 1v =(m 1+m 2)v ′ 以上两式联立解得R =5.0100.1110995.9)(87121⨯⨯⨯⨯=='+--qB v m qB v m m m ≈200 m 【思维提升】(1)全面正确地进行受力分析和运动状态分析,f 洛随速度的变化而变化导致运动状态发生新的变化.(2)若mg 、f 洛、F 电三力合力为零,粒子做匀速直线运动.(3)若F 电与重力平衡,则f 洛提供向心力,粒子做匀速圆周运动.(4)根据受力特点与运动特点,选择牛顿第二定律、动量定理、动能定理及动量守恒定律列方程求解.【拓展2】如图所示,在相互垂直的匀强磁场和匀强电场中,有一倾角为θ的足够长的光滑绝缘斜面.磁感应强度为B ,方向水平向外;电场强度为E ,方向竖直向上.有一质量为m 、带电荷量为+q 的小滑块静止在斜面顶端时对斜面的正压力恰好为零.(1)如果迅速把电场方向转为竖直向下,求小滑块能在斜面上连续滑行的最远距离L 和所用时间t ;(2)如果在距A 端L /4处的C 点放入一个质量与滑块相同但不带电的小物体,当滑块从A 点静止下滑到C 点时两物体相碰并黏在一起.求此黏合体在斜面上还能再滑行多长时间和距离?【解析】(1)由题意知qE =mg场强转为竖直向下时,设滑块要离开斜面时的速度为v ,由动能定理有(mg +qE )L sin θ=221mv ,即2mgL sin θ=221mv 当滑块刚要离开斜面时由平衡条件有qvB =(mg +qE )cos θ,即v =qBmg θ cos 2 由以上两式解得L =θθ sin cos 2222B q g m根据动量定理有t =θθ cot sin 2qBm mg mv = (2)两物体先后运动,设在C 点处碰撞前滑块的速度为v C ,则2mg ·4L sin θ=21mv 2 设碰后两物体速度为u ,碰撞前后由动量守恒有mv C =2mu 设黏合体将要离开斜面时的速度为v ′,由平衡条件有qv ′B =(2mg +qE )cos θ=3mg cos θ由动能定理知,碰后两物体共同下滑的过程中有3mg sin θ·s =21·2mv ′2-21·2mu 2 联立以上几式解得s =12sin cos 32222L B q g m -θθ将L 结果代入上式得s =θθ sin 12cos 352222B q g m碰后两物体在斜面上还能滑行的时间可由动量定理求得t ′=qBm mg mu v m 35 sin 322=-'θcot θ 【例3】在平面直角坐标系xOy 中,第Ⅰ象限存在沿y 轴负方向的匀强电场,第Ⅳ象限存在垂直于坐标平面向外的匀强磁场,磁感应强度为B .一质量为m 、电荷量为q的带正电粒子从y 轴正半轴上的M 点以速度v 0垂直于y轴射入电场,经x 轴上的N 点与x 轴正方向成θ=60°角射入磁场,最后从y 轴负半轴上的P 点垂直于y 轴射出磁场,如图所示.不计重力,求:(1)M 、N 两点间的电势差U MN ;(2)粒子在磁场中运动的轨道半径r ;(3)粒子从M 点运动到P 点的总时间t .【解析】(1)设粒子过N 点时的速度为v ,有vv 0=cos θ ①v =2v 0 ②粒子从M 点运动到N 点的过程,有qU MN =2022121mv mv - ③U MN =3mv 20/2q ④(2)粒子在磁场中以O ′为圆心做匀速圆周运动,半径为O ′N ,有qvB =r mv 2 ⑤r =qBmv 02 ⑥(3)由几何关系得ON =r sin θ ⑦设粒子在电场中运动的时间为t 1,有ON =v 0t 1 ⑧t 1=qB m 3 ⑨粒子在磁场中做匀速圆周运动的周期T =qBm π2 ⑩ 设粒子在磁场中运动的时间为t 2,有t 2=2ππθ-T ⑪ t 2=qBm 32π ⑫ t =t 1+t 2=qB m 3π)233(+【思维提升】注重受力分析,尤其是运动过程分析以及圆心的确定,画好示意图,根据运动学规律及动能观点求解.【拓展3】如图所示,真空室内存在宽度为s=8 cm 的匀强磁场区域,磁感应强度B =0.332 T ,磁场方向垂直于纸面向里.紧靠边界ab 放一点状α粒子放射源S ,可沿纸面向各个方向放射速率相同的α粒子.α粒子质量为m =6.64×10-27 kg ,电荷量为q =+3.2×10-19 C ,速率为v =3.2×106 m/s.磁场边界ab 、cd 足够长,cd 为厚度不计的金箔,金箔右侧cd 与MN 之间有一宽度为L =12.8 cm 的无场区域.MN 右侧为固定在O 点的电荷量为Q =-2.0×10-6 C 的点电荷形成的电场区域(点电荷左侧的电场分布以MN 为边界).不计α粒子的重力,静电力常量k =9.0×109 N ·m 2/C 2,(取sin 37°=0.6,cos 37°=0.8)求:(1)金箔cd 被α粒子射中区域的长度y ;(2)打在金箔d 端离cd 中心最远的粒子沿直线穿出金箔,经过无场区进入电场就开始以O 点为圆心做匀速圆周运动,垂直打在放置于中心线上的荧光屏FH 上的E 点(未画出),计算OE 的长度;(3)计算此α粒子从金箔上穿出时损失的动能.【解析】(1)粒子在匀强磁场中做匀速圆周运动,洛伦兹力提供向心力,有qvB =m R v 2,得R =Bqmv =0.2 m 如图所示,当α粒子运动的圆轨迹与cd 相切时,上端偏离O ′最远,由几何关系得O ′P =22)(s R R --=0.16 m当α粒子沿Sb 方向射入时,下端偏离O ′最远,由几何关系得O ′Q =)(2s R R --=0.16 m故金箔cd 被α粒子射中区域的长度为y =O ′Q +O ′P =0.32 m(2)如上图所示,OE 即为α粒子绕O 点做圆周运动的半径r .α粒子在无场区域做匀速直线运动与MN 相交,下偏距离为y ′,则tan 37°=43,y ′=L tan 37°=0.096 m 所以,圆周运动的半径为r =︒'+'37 cos Q O y =0.32 m (3)设α粒子穿出金箔时的速度为v ′,由牛顿第二定律有k r v m r Qq 22'=α粒子从金箔上穿出时损失的动能为ΔE k =21mv 2-21mv ′2=2.5×10-14 J 易错门诊3.带电体在变力作用下的运动【例4】竖直的平行金属平板A 、B 相距为d ,板长为L ,板间的电压为U ,垂直于纸面向里、磁感应强度为B 的磁场只分布在两板之间,如图所示.带电荷量为+q 、质量为m 的油滴从正上方下落并在两板中央进入板内空间.已知刚进入时电场力大小等于磁场力大小,最后油滴从板的下端点离开,求油滴离开场区时速度的大小.【错解】由题设条件有Bqv =qE =q dU ,v =Bd U ;油滴离开场区时,水平方向有Bqv +qE =ma ,v 2x =2a ·m qU d 22= 竖直方向有v 2y =v 2+2gL离开时的速度v ′=m qU d B U gL v v y x 2222222++=+【错因】洛伦兹力会随速度的改变而改变,对全程而言,带电体是在变力作用下的一个较为复杂的运动,对这样的运动不能用牛顿第二定律求解,只能用其他方法求解.【正解】由动能定理有mgL +qE 212122-'=v m d mv 2 由题设条件油滴进入磁场区域时有Bqv =qE ,E =U /d由此可以得到离开磁场区域时的速度v ′=m qU d B U gL ++2222【思维提升】解题时应该注意物理过程和物理情景的把握,时刻注意情况的变化,然后结合物理过程中的受力特点和运动特点,利用适当的解题规律解决问题,遇到变力问题,特别要注意与能量有关规律的运用.。

复合场知识点总结

复合场知识点总结

复合场知识点总结在物理学中,复合场是一个重要且富有挑战性的概念。

复合场通常指的是电场、磁场和重力场中的两个或多个同时存在于同一空间区域的情况。

理解和掌握复合场的相关知识,对于解决许多物理问题至关重要。

首先,让我们来了解一下电场。

电场是由电荷产生的,它对处在其中的电荷有力的作用。

电场强度是描述电场强弱和方向的物理量,用E 表示。

电场强度的定义式为 E =F / q,其中 F 是电荷所受的电场力,q 是电荷量。

磁场则是由电流或磁体产生的。

磁场对运动电荷或电流有力的作用,这个力被称为洛伦兹力或安培力。

磁感应强度 B 用来描述磁场的强弱和方向。

当电场和磁场同时存在时,就形成了电磁场。

在电磁场中,带电粒子的运动情况较为复杂。

如果带电粒子的初速度与电场和磁场的方向都垂直,那么它将做匀速圆周运动。

此时,洛伦兹力提供向心力,即qvB = mv²/ r,由此可以得出半径 r = mv /(qB) 。

重力场是我们日常生活中最为熟悉的场之一,物体在重力场中会受到重力的作用。

重力的大小 G = mg,其中 m 是物体的质量,g 是重力加速度。

在复合场中,带电粒子的运动情况取决于电场、磁场和重力场的强度、方向以及带电粒子的初速度、电荷量和质量等因素。

如果电场力和重力平衡,而磁场力不为零,带电粒子将在磁场中做匀速圆周运动。

例如,在速度选择器中,电场力和洛伦兹力平衡,只有速度满足特定条件的带电粒子才能通过。

当电场力、磁场力和重力三力平衡时,带电粒子将做匀速直线运动。

这种情况在实际问题中也较为常见。

还有一种情况是,带电粒子在复合场中的运动轨迹是复杂的曲线。

解决这类问题时,通常需要将带电粒子的运动分解为沿着电场、磁场和重力场方向的分运动,然后分别进行分析和计算。

在解决复合场问题时,我们需要熟练运用牛顿运动定律、动能定理、能量守恒定律等物理规律。

例如,当带电粒子在复合场中做非匀变速运动时,动能定理和能量守恒定律往往能发挥重要作用。

复合场

复合场

(2)小球在第一象限内做匀速圆周运动,如图所 示,设半径为 R,由 qBvB= mvB m 3qBL 3 R= qB =qB· = L 3m 3
2 mvB
R

设图中 C 点为小球做圆周运动的圆心,它第一 次的落地点为 D 点,则 CD=R 3 3 3 OC=OB-R= L- L= L 2 3 6 所以,第一次落地点到 O 点的距离为 OD= R -OC =
3.如图所示,坐标系 xOy 在竖直平面内,长为 L 的水平轨 3 道 AB 光滑且绝缘,B 点坐标为(0, L).有一质量为 m、 2 电荷量为+q 的带电小球(可看成质点)被固定在 A 点.已 知在第一象限内分布着互相垂直的匀强电场和匀强磁 mg 场,电场方向竖直向上,场强大小 E2= ,磁场为水平方 q 向(在图中垂直纸面向外),磁感应强度大小为 B;
3qBL 答案:(1) 3m
L (2) 2
2π m (3)(2 3+ )qB 3
引伸第(2n-1)次到达x轴时
*13.如图所示,在y>0的空间中存在匀强电场, 场强沿y轴负方向;在y<0的空间中,存在匀强磁 场,磁场主向垂直xy平面(纸面)向外。一电量 为q、质量为m的带正电的运动粒子,经过y轴上 y=h处的点P1时速率为υ0,方向沿x轴正方向;然 后,经过x轴上x=2h处的P2点进入磁场,并经过y 轴上y=-2h处的P3点。不计重力。求 (1)电场强度的大小。粒子到达P2时速度的大小和 方向。 (2)磁感应强度的大小。
复合场
其中有可以导电的液体向左流动, 导电流体中
出现电势差. 当自由电荷所受电场力和洛伦兹 1.自由微粒在复合场中做直线运动一般是 , 时,a、b 间的电势差就保持稳定. 此状态下洛伦兹力方向 U 。 由 qvB=qE=q d 2.我们学习过的在复合场中的运动模型有哪些? U 可得 v= Bd 入电场和磁场共存空间 间磁场的磁感应强度为 B, 板外电阻为 U 当等 πd2 R, πdU 伦兹力作用,F 电=Eq, Q=Sv=(3)粒子在边界射出时,都有相 4.霍尔效应 流量 · = . 4 Bd 4B 子气体匀速通过 A、 板间时, B 板间电势差最大, E mv 如图所示,厚度为 h、 ,有 v0= .即能从 S2 孔 有 R= . B qB 子受力平衡:qE 场=qvB,E 场=vB,电动势 E 垂直于磁感应强度为 ,而与粒子的质量、电 L E 场 L=BLv,电源内电阻 r=ρ ,故 R 中的电 流过导体板时,在导体 S (4)粒子飞出加速器时的动能 BLv BLvS E 2 2 2 B R q 势差.U=kIB(k 为霍 I= = = . L RS+ρL R+r .在粒子质量、电量确 d R+ρ 2m

高中物理复习精讲 第10讲 复合场专题

高中物理复习精讲  第10讲 复合场专题

1.带电粒子在复合场中的受力复合场是指电场、磁场和重力场并存,或者其中某两场并存,或分区域存在的某一空间。

粒子经过该空间时可能受到的力有重力、电场力和洛伦兹力,抓住三个力的特点是分析和求解相关问题的前提和基础。

2.带电粒子在复合场中的几种典型运动 ⑴ 直线运动 自由的带电粒子(无轨道约束)在匀强电场、匀强磁场和重力场中做的直线运动应该是匀速直线运动,除非运动方向沿匀强磁场方向而粒子不受洛伦兹力,这是因为电场力和重力都是恒力,带电粒子在复合场中的运动知识点睛第10讲 复合场专题重力:若为基本粒子(如电子、质子、α粒子、离子等)一般不考虑重力;若为带电颗粒(如液滴、油滴、小球、尘埃等)一般需要考虑重力。

电场力:带电粒子(体)在电场中一定受到电场力作用,在匀强电场中,电场力为恒力,大小为F qE =。

电场力的方向与电场的方向相同或相反。

静电场中,电场力做功也与路径无关,只与初末位置的电势差有关,电场力做功一定伴随着电势能的变化。

洛伦兹力:带电粒子(体)在磁场中受到的洛伦兹力与运动的速度(大小、方向)有关,洛伦兹力的方向始终既和磁场方向垂直,又和速度方向垂直,故洛伦兹力永远不做功,也不会改变粒子的动能。

当速度变化时,会引起洛伦兹力的变化,合力也相应的发生变化,粒子的运动方向就要改变而做曲线运动。

当匀速直线运动时,0F 合,常用力的合成法分析。

⑵ 匀速圆周运动......当带电粒子进入匀强电场、匀强磁场和重力场共存的复合场中,电场力和重力相平衡,粒子运动方向与匀强磁场方向相垂直时,带电粒子就在洛伦兹力作用下做匀速圆周运动。

可等效为仅在洛伦兹力作用下的匀速圆周运动。

此种情况下要同时应用平衡条件和向心力公式分析。

⑶ 曲线运动.... 当带电粒子所受的合外力是变力,且与初速度方向不在一条直线上时,粒子做非匀变速曲线运动,这时粒子的运动轨迹不是圆弧,也不是抛物线。

3.带电粒子在复合场中运动的力学观点⑴ 正确的受力分析:除重力、弹力、摩擦力外,要特别注意电场力和洛伦兹力的分析,搞清场和力的空间方向及关系。

高中物理知识点复合场

高中物理知识点复合场

高中物理知识点复合场复合场是指重力场、电场、磁场并存,或其中两场并存。

分布方式或同一区域同时存在,或分区域存在。

复合场是高中物理中力学、电磁学综合综合型问题的沃苏什卡。

既体现了运动情况说明受力情况、受力情况决定运动情况的思想,又能考查电磁学中的关键环节重点知识,因此,近年来这类题备受青睐。

通过上表可以推断出,由于复合场的综合性弱,覆盖考点较多,预计在2021年高考(微博)中仍是一个热点。

复合场的考查方式:复合场可以图文形式直接出题,也可以与各种仪器(质谱仪,回旋加速器,速度选择器等)相结合考查。

一、重力场、电场、磁场分区域存在(例如质谱仪,回旋加速器)此种出题方式要求熟练掌握平抛运动、类平抛运动、圆周运动的基本公式及解决这种方式。

重力场:平抛运动电场:1.加速场:动能定理2.偏转场:类平绞运动或动能定理磁场:圆周运动二、重力场、电场、磁场同区域存在(例如速度选择器)带电粒子在复合场做什么运动取决于带电粒子所受合力及初速度,因此,把带电粒子的运动情况和变形情况结合是分析起来解决此类问题的关键。

(一)若带电粒子在复合场中做匀速直线运动时应根据平衡条件解题,例如速度选择器。

则有Eq=qVB(二)当带电粒子在复合场中做圆周运动时,则有Eq=mgqVB=mv2/R(2021年天津10题)如图所示,直角坐标系xOy位于竖直平面内,在水平的x轴下方存存在匀强磁场和匀强电场,磁场的磁感应为B,方向垂直xOy平面向里,电场线平行于y轴。

一质量为m、电荷量为q的带正电的小球,从y轴上的A点水平向右抛出,经x轴上的M 点位进入电场和磁场,恰能做匀速圆周运动,从x轴上的N点第一次离开引力场和磁场,MN之间的距离为L,小球过M点时的速度方向与x 轴的方向夹角为θ。

不计空气阻力,重力加速度为g,求(1)电场强度E的大小和方向;(2)小球从A点抛出时初速度v0的大小;(3)A点到x轴的高度h。

解析:本题考查平挥运动和带电小球在复合场中的运动。

复合场

复合场
复合场
2 2
类型二: 类型二:复合场中的多过程运动 6.组合场
答案: 答案:
E= B= m0 3 v q 2 h m0 3 v 2 h q
2
(2)
P1 O
y
P2
x
t=
2 h 4 3 h π + v 9 0 v 0
P3
复合场
7、叠加场
复合场
任务完成!
复合场
复合场
5、复合场中的圆周运动 、
(1)
O
(2)
A
C
引申思考 问题一:能否判断液滴电性? 问题一:能否判断液滴电性? 问题二: 问题二:能否判断液滴的绕行方向
复合场
类型二: 类型二:复合场中的多过程运动 6.组合场
(1)
S
P
O1 U
O
O2
3 qB r 答案: = m 2 U π r2 B t= 2 U
第三讲 带电粒子在复合场中的运动
复合场
ห้องสมุดไป่ตู้合场
带电粒子在复合场中的运动专题复习
知识准备: 知识准备: 一、复合场是指电场、磁场、重力场并存,或某两场并存,或分区域存在。 复合场是指电场、磁场、重力场并存,或某两场并存,或分区域存在。 电场 并存 ☆★弄清楚复合场的组成.(尤其是是否需要考虑重力, ☆★弄清楚复合场的组成.(尤其是是否需要考虑重力,除非题目有明确 弄清楚复合场的组成.(尤其是是否需要考虑重力 说明或暗示,通常带电粒子 如质子 电子、 粒子 正负离子等, 重力, 如质子、 粒子、 说明或暗示,通常带电粒子,如质子、电子、α粒子、正负离子等, 重力,而带 电微粒、小球、 电微粒、小球、液滴等则需要 重力。) 重力。)
类型一: 类型一:复合场中的单一运动过程 1、平行进入匀强电磁场 、

复合场知识点总结

复合场知识点总结

复合场知识点总结在物理学中,复合场是一个重要且复杂的概念。

它涵盖了电场、磁场和重力场等多种场的综合作用。

理解复合场对于解决许多物理问题至关重要。

一、电场电场是由电荷产生的一种物质场。

电荷分为正电荷和负电荷,同种电荷相互排斥,异种电荷相互吸引。

电场强度是描述电场强弱和方向的物理量,用 E 表示。

其定义为单位正电荷在电场中所受的力。

电场强度的计算公式为 E = F / q ,其中 F 是电荷所受的电场力,q 是电荷的电量。

电场线是用来形象地描述电场的假想曲线。

电场线的疏密表示电场强度的大小,电场线的切线方向表示电场强度的方向。

常见的电场有:1、点电荷产生的电场:其电场强度的大小与距离电荷的距离 r 的平方成反比,即 E = kQ / r²,其中 k 是静电力常量,Q 是点电荷的电荷量。

2、匀强电场:电场强度的大小和方向处处相同。

二、磁场磁场是由磁体或电流产生的一种物质场。

磁场对放入其中的磁体或电流会产生力的作用。

磁感应强度是描述磁场强弱和方向的物理量,用 B 表示。

其定义为垂直放入磁场中的一小段通电导线所受的磁场力 F 与电流 I 和导线长度 L 的乘积的比值,即 B = F /(IL) 。

磁感线是用来形象地描述磁场的假想曲线。

磁感线的疏密表示磁感应强度的大小,磁感线的切线方向表示磁场的方向。

常见的磁场有:1、条形磁铁产生的磁场:两端磁性最强,中间磁性最弱。

2、通电直导线产生的磁场:其磁感应强度的大小与距离导线的距离 r 成反比,与电流大小 I 成正比。

3、通电螺线管产生的磁场:类似于条形磁铁的磁场。

三、重力场重力场是由地球对物体的引力产生的。

物体在重力场中会受到重力的作用,重力的大小 G = mg ,其中 m 是物体的质量,g 是重力加速度。

四、复合场的类型1、电场与磁场的复合:这种复合场中,带电粒子同时受到电场力和洛伦兹力的作用。

当带电粒子的运动速度 v 与磁场方向平行时,洛伦兹力为零,粒子只受电场力作用,做匀变速直线运动。

1复合场

1复合场

第十一章《磁场》第六课时带电粒子在复合场中电荷的运动(一)一、基础知识扫描1、带电粒子在复合场中的运动比较复杂。

(1)按轨迹分,有直线运动、曲线运动。

(2)按速度变化情况分,有匀速运动、变速运动;(3)按场的叠加情况分,有带电粒子先后进入不同场中的运动,带电粒子同时在几个叠加场中的运动。

2、带电粒子在复合场中做直线运动仍遵循力学规律。

即当带电粒子受到的合外力与速度在一条直线上时,粒子做直线运动。

其中合外力恒定时,做匀变速直线运动;合外力大小变化或方向改变但仍与速度在一条直线上时,做变速直线运动;合外力为零时,做匀速直线运动。

3、分析带电粒子受力时,要注意各力的特点。

如:重力是恒力,重力做功与途径无关,只与始末位置的高度差有关,重力做功的多少是重力势能和其他形式的能之间发生相互转化的量度。

带电粒子在匀强电场中所受电场力为恒力,电场力做功也与途径无关,只与始末位置的电势差有关,电场力做功的多少是电势能和其他形式的能之间发生转化的量度。

带电粒子在磁场中运动时才受洛仑兹力,力的大小随运动速度的大小而改变,方向始终与速度垂直,且洛仑兹力永远不做功。

二、疑难知识点辨析1、电场力和洛仑兹力的比较(1)在电场中的电荷,不管其运动与否,均受到电场力的作用;而磁场仅仅对运动着的、且速度与磁场方向不平行的电荷有洛仑兹力的作用。

(2)电场力的大小F=Eq,与电荷的运动的速度无关;而洛仑兹力的大小f=Bqvsinα,与电荷运动的速度大小和方向均有关。

(3)电场力的方向与电场的方向或相同、或相反;而洛仑兹力的方向始终既和磁场垂直,又和速度方向垂直。

(4)电场既可以改变电荷运动的速度大小,也可以改变电荷运动的方向,而洛仑兹力只能改变电荷运动的速度方向,不能改变速度大小。

(5)电场力可以对电荷做功,能改变电荷的动能;洛仑兹力不能对电荷做功,不能改变电荷的功能。

(6)匀强电场中在电场力的作用下,运动电荷的偏转轨迹为抛物线;匀强磁场中在洛仑兹力的作用下,垂直于磁场方向运动的电荷的偏转轨迹为圆弧。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

知识点总结
带电粒子在复合场中的运动是近几年高考重点和热点,准确分析受力和运动情况,并由几何知识画出轨迹是关键。

两种基本模型:速度选择器(电磁场正交)和回旋加速器(电磁场相邻)
考点1. 带电粒子在复合场中的运动
1.带电粒子在电场、磁场和重力场等共存的复合场中的运动,其受力情况和运动图景都比较复杂,但其本质是力学问题,应按力学的基本思路,运用力学的基本规律研究和解决此类问题。

2.分析带电粒子在复合场中的受力时,要注意各力的特点。

如带电粒子无论运动与否,在重力场中所受重力及在匀强电场中所受的电场力均为恒力,它们的做功只与始末位置在重力场中的高度差或在电场中的电势差有关,而与运动路径无关。

而带电粒子在磁场中只有运动(且速度不与磁场平行)时才会受到洛仑兹力, 力的大小随速度大小而变, 方向始终与速度垂直,故洛仑兹力对运动电荷不做功.
3.带电微粒在重力、电场力、磁场力共同作用下的运动(电场、磁场均为匀强场)
⑴带电微粒在三个场共同作用下做匀速圆周运动:必然是电场力和重力平衡,而洛伦兹力充当向心力.
⑵带电微粒在三个场共同作用下做直线运动:重力和电场力是恒力,它们的合力也是恒力。

当带电微粒的速度平行于磁场时,不受洛伦兹力,因此可能做匀速运动也可能做匀变速运动;
当带电微粒的速度垂直于磁场时,一定做匀速运动。

⑶与力学紧密结合的综合题,要认真分析受力情况和运动情况(包括速度和加速度)。

必要时加以讨论
考点2.带电粒子在复合场中的运动实例
运动的带电粒子在磁场中的应用:速度选择器、磁流体发电机、质谱仪、回旋加速器、电磁流量计、霍尔元件等
1.速度选择器
两平行金属板(平行金属板足够长)间有电场和磁场,一个带电的粒子(重力忽略不计)垂直于电、磁场的方向射入复合场,具有不同速度的带电粒子受力不同,射入后发生偏转的情况不同。

如果能满足所受到的洛仑兹力等于电场力,那这一粒子将沿直线飞出。

这种装置能把具有某一定速度(必须满足V=E/B)的粒子选择出来,所以叫做速度选择器。

而且:在装置确定的情况下,速度选择器所选则的粒子,与电性无关,只与带电粒子的速度大小方向有关,是名副其实的速度选择器。

2.磁流体发电机
磁流体发电机是一项新兴技术,它可以把物体的内能直接转化成电能,两个平行金属板之间有一个很强的匀强磁场,将一束等离子体(即高温下电离的气体,含有大量的正、负带电粒子)喷入磁场,这些等离子体在洛仑兹力的作用下,回分别打在两个金属板上形成电源的正负极,就可以给外电路供电。

若外电路接通,等离子体时刻向两个金属板聚集形成持续电源。

3.质谱仪
质谱仪最初是由汤姆生的学生阿斯顿设计的,让带电粒子飘进加速电场,后进入偏转磁场最终打在照相底片上,假设粒子质量为m,电量为q,加速电场电压为U,磁感应强度为B,可以得到打在照相底片的位
常见考法
带电粒子在复合场中运动的问题,往往综合性较强、物理过程复杂.在分析处理该部分的问题时,要充分挖掘题目的隐含信息,利用题目创设的情景,对粒子做好受力分析、运动过程分析,培养空间想象能力、分析综合能力、应用数学知识处理物理问题的能力. 理论与实践相结合是高考命题的热点.往往与最新科技成果、前沿相联系,有一定的综合性,具有浓厚的时代气息.而与带电粒子在复合场中的运动紧密相连正好符合了这一高考命题特点,成为科技与高考相结合的切入点.解决此类问题的方法往往是抽去科技背景,建立物理模型,由相关规律分析求得.
误区提醒
对复合场中粒子重力是否考虑的三种情况:
(1)对于微观粒子,如电子、质子、离子等,因为其重力一般情况下与电场力或磁场力相比太小,可以忽略;而对于一些实际物体,如带电小球、液滴、金属块等一般应当考虑其重力.
(2)在题目中有明确说明是否要考虑重力的,这种情况比较正规,也比较简单.
(3)不能直接判断是否要考虑重力的,在进行受力分析与运动分析时,要由分析结果确定是否要考虑重力.
例题1. 如图所示,在距水平地面一定高度处以初速度v0水平抛出一个质量为m、电荷量为Q的带正电的小球。

当小球运动的空间范围内不存在电场和磁场时,小球的落地点与抛出点之间有相应的一段水平距离(即射程),已知重力加速度为g。

(1)若在此空间加上一个竖直方向的匀强电场使小球的射程增加为原来的1/2倍,试求此电场的电场强度。

(2)若除存在上述电场外,还存在一个与v0方向垂直的水平方向匀强磁场,使小球抛出后恰好能做匀速直线运动。

试求此匀强磁场的磁感应强度。

(3)若在空间存在上述的电场和磁场,而将带电小球的初速度大小变为2v0(方向不变),试说明小球运动过程中动能最小时的速度方向。

⑶将带电小球的初速度大小变为2v0(方向不变),根据洛仑兹力的公式得知洛仑兹力变成原来的2倍,那么洛仑兹力就比向下的重力和电场力的合力大了,带电小球会向上运动,在向上运动的过程中电场力和重力均做负功洛仑兹力不做功,所以动能减少。

小球运动过程中动能最小时就是不能再向上运动了,即竖直方向速度为零,就剩下水平方向的速度了。

所以动能最小时的速度方向水平向右。

相关文档
最新文档