Ns2网络仿真实验要.
基于NS2软件 的网络协议仿真

基于网络模拟软件NS2的网络协议仿真【摘要】:网络模拟是网络协议性能及研究中非常重要的一个组成部分。
本文介绍了网络模拟软件 NS2 的结构和特点以及仿真过程,并实例介绍了基于NS2的网络协议仿真。
【关键词】:NS2;TCP;UDP;路由;仿真一、引言网络模拟是网络协议性能及研究中非常重要的一个组成部分,算法是否合理、是否具有实用价值、是否能够提高网络的性能等都需要通过实验证明。
由于在真实的网络环境中进行实践验证耗资巨大,多数高校和科研机构并不具备完整有效的实验环境,而且真实网络中实验数据的收集和分析也有一定困难。
网络仿真软件通过在计算机上建立一个虚拟的网络环境来实现对真实网络环境的模拟,科研人员在这个平台上不仅能对网络的通信、设备、协议、结构以及应用进行研究,还能对网络的性能进行分析和评估。
仿真软件大大提高了网络设计开发的效率,同时也降低了费用和风险,已经成为研究中不可或缺的工具。
二、NS2 的结构和特点目前,使用较多的网络仿真软件有OPNET,Matlab,NS2 和GloMoSim 等。
选择免费且开放源代码的NS2作为仿真平台,是因为该平台是一种离散事件网络仿真平台,可以运行在Linux或Windows操作系统上。
作为一种可扩展、易配置、可编程的事件驱动的网络仿真软件,NS2能够近乎真实地在各个层次上模拟网络运行,并支持多种协议。
其主要功能包括以下几点。
一)灵活的仿真环境作为一款开源软件,NS2所有源代码公开,任何人都可以获得、使用和修改其源代码。
这对于利用NS2来构建特殊的网络仿真实验环境非常方便和迅速。
二)结果分析及再现容易研究人员通过配置环境参数获得理想的网络环境,即可实时跟踪并记录关键节点的重要信息,从而获得网络性能参数,并可以随时再现某些特殊情况,这在真实网中是难以做到的。
三)良好的可扩展性NS2使用C++和OTCL两种程序设计语言,分别完成具体协议的模拟,实现与网络仿真环境的配置和建立。
NS2仿真实验报告

Ns2简单有线网络仿真实验报告一、实验概述1、在windows系统下安装Centos虚拟机2、在Centos系统下安装NS2仿真工具包3、Nam方式示例二、实验内容1)NS2仿真工具包安装说明1.在Centos系统下设置root账户2.解压NS2文件3.安装ns-allinone-2.35设置环境变量4.验证NS2工具包安装情况2)Nam方式Otcl脚本# 产生一个仿真的对象set ns [new Simulator]#针对不同的资料流定义不同的颜色,这是要给NAM用的$ns color 1 Green$ns color 2 Red#开启一个NAM trace fileset nf [open out.nam w]$ns namtrace-all $nf#开启一个trace file,用来记录封包传送的过程set nd [open out.tr w]$ns trace-all $nd#定义一个结束的程序proc finish {} {global ns nf nd$ns flush-traceclose $nfclose $nd#以背景执行的方式去执行NAMexec nam out.nam &exit 0}#产生6个网络节点set n0 [$ns node]set n1 [$ns node]set n2 [$ns node]set n3 [$ns node]set n4 [$ns node]set n5 [$ns node]#把节点连接起来$ns duplex-link $n0 $n2 2Mb 10ms DropTail$ns duplex-link $n1 $n2 2Mb 10ms DropTail$ns duplex-link $n2 $n3 1.7Mb 20ms DropTail$ns duplex-link $n3 $n4 1.7Mb 30ms DropTail$ns duplex-link $n3 $n5 1.5Mb 30ms DropTail#设定ns2到n3之间的Queue Size为10个封包大小$ns queue-limit $n2 $n3 10$ns queue-limit $n3 $n4 5#$ns queue-limit $n3 $n5 10#设定节点的位置,这是要给NAM用的$ns duplex-link-op $n0 $n2 orient right-down$ns duplex-link-op $n1 $n2 orient right-up$ns duplex-link-op $n2 $n3 orient right$ns duplex-link-op $n3 $n4 orient right-up$ns duplex-link-op $n3 $n5 orient right-down#观测n2到n3之间queue的变化,这是要给NAM用的$ns duplex-link-op $n2 $n3 queuePos 0.5#建立一条n0-n5TCP的联机set tcp [new Agent/TCP]$ns attach-agent $n0 $tcpset sink [new Agent/TCPSink]$ns attach-agent $n5 $sink$ns connect $tcp $sink#在NAM中,TCP的联机会以Green表示$tcp set fid_ 1#在TCP联机之上建立FTP应用程序set ftp [new Application/FTP]$ftp attach-agent $tcp$ftp set type_ FTP#建立一条UDP的联机set udp [new Agent/UDP]$ns attach-agent $n1 $udpset null [new Agent/Null]$ns attach-agent $n3 $null$ns connect $udp $null#在NAM中,UDP的联机会以红色表示$udp set fid_ 2#在UDP联机之上建立CBR应用程序set cbr [new Application/Traffic/CBR]$cbr attach-agent $udp$cbr set type_ CBR$cbr set packet_size_ 1000$cbr set rate_ 1mb$cbr set random_ false#设定FTP和CBR资料传送开始和结束时间$ns at 0.1 "$cbr start"$ns at 1.0 "$ftp start"$ns at 4.0 "$ftp stop"$ns at 4.5 "$cbr stop"#结束TCP的联机(不一定需要写下面的程序代码来实际结束联机)$ns at 4.5 "$ns detach-agent $n0 $tcp ; $ns detach-agent $n3 $sink"#在仿真环境中,5秒后去呼叫finish来结束仿真(这样要注意仿真环境中#的5秒并不一定等于实际仿真的时间$ns at 5.0 "finish"#执行仿真$ns run3)仿真结果仿真结束后,会产生out.nam和out.tr两个档案用来把仿真的过程用可视化的方式呈现出来4)数据分析1.End-to-End Delay把测量CBR封包端点到端点间延迟时间的awk程序,写在档案measure-delay.awk档案中BEGIN {#程序初始化,设定一变量以记录目前最高处理封包的ID。
基于NS2的无线自组网路由协议的研究与仿真

仿真工具NS2
NS2(Network Simulator version 2)是面向 对象的、 离散事件驱动的网络环境模拟器,主要用 于解决网络研究方面的问题。NS2提供了在无线或有 线网络上的TCP/IP、路由、队列管理、IP QoS等多 种协议的模拟。
NS2使用C++和OTcl(具有面向对象特性的Tcl脚 本程序设计语言)作为开发语言。
不同平台对NS2的支持情况
仿真流程
无线自组网路由协议
无线自组网的路由协议作为影响网络性能的一 个重要因素,是确保移动自组网络正确运行的关键。 对该领域进行深入而广泛的研究将为移动自组网的 应用提供重要科学依据。
分类:根据源端何时获得路由信息
仿真的三种路由协议
❖ 动态源路由协议DSR ❖ 无线自组网按需平面距离矢量路由协议
❖ 在拓扑变化频繁的无线自组网环境中,采用 按需路由协议可减少实时路由维护的信道资 源消耗;在网络拓扑结构相对稳定的环境中, 如果业务对实时性要求较高时,应尽量采用 表驱动方式的路由协议。
主要内容:
无线自组网 仿真工具NS2 无线自组网路由协议 路由仿真
无线自组网
无线自组网是一个多跳、临时、可自 由移动无中心网络。它不需要现有信息 基础网络设施的支持,可以在任何时候、 任何地点快速构建。
特点: ❖ 自组织 ❖ 动态拓扑 ❖ 多跳路由 ❖ 无中心且所有节点地位平等 ❖ 灵活性好
应用领域: ❖ 军事应用 ❖ 无线传感器网络 ❖ 个人通信 ❖ 移动会议 ❖ 应用于紧急和突发场合 ❖ 与蜂窝移动通信系统等现有移动通
AODV ❖ 目的序列距离矢量路由协 NhomakorabeaDSDV
性能评价指标
丢包率 端到端时延 路由开销 吞吐量
基于NS2的网络仿真实验教学研究-最新教育文档

基于NS2的网络仿真实验教学研究网络的发展日新月异,作为电气信息类和计算机类专业的核心专业课――计算机网络,需要教师在教学的过程中不断更新和追踪最新网络技术,以更加适应“计算机网络”教学的要求。
但目前计算机网络教学中存在两个方面的突出问题,首先,缺少必要的实验设备。
像路由器、网关等实验设备比较昂贵,一般的院校无法为学生配备,只能在教学的过程中安排较多的演示,学生无法更好地通过真正的实验环境亲自动手来理解和掌握网络通信原理、锻炼网络工程应用能力[1]。
其次,网络技术和产品的更新换代速度非常快,像近年来无线网络技术飞速发展,对于想学习和研究无线网络的学生而言,再依靠原有局域网环境已无法验证无线网络协议的正确性以及对无线网络性能进行直观、可靠的测试。
因此,尝试将网络仿真软件NS2(Network Simulator Version 2)运用到计算机网络课程教学中,利用NS2,特别是Nam 工具的动画演示可以清晰地向学生演示网络协议的运行过程。
通过NS2进行教学,学生可以直观的看到网络协议的行为,了解各种环境或因素对网络的影响,将抽象的网络概念形象化,把枯燥的网络原理具体化。
1NS2原理和结构NS2是由加州大学伯克利分校(University of California at Berkeley)开发的一种面向对象的、离散事件驱动的网络环境模拟器。
NS2是一款源代码开放且免费的模拟软件,是用于教学、网络研究与分析等方面的网络模拟工具,它内含离散事件模拟引擎,构件库丰富,可以构建并仿真分析整个协议栈的运行情况,也可使用自带的Nam 动画演示程序来观察网络的运行效果,它集成了多种网络协议(如TCP、UDP),业务类型(如FTP、Telnet、Web、CBR等),路由排队机制(如Droptail、RED),路由算法(如Dijkstra算法)可以对固定、无线、卫星以及混合等多种网络进行仿真,实现了绝大多数常见的网络协议以及链路层的模型,利用这些类的实例可以搭建起整个网络的模型。
基于NS2的移动自组网路由协议的仿真与实现.

2007,43(6Computer Engineering and Applications计算机工程与应用1引言移动自组网具有完全自组的运行方式和灵活的网络结构,可以真正地实现任何时间任何地点的网络互联通信,是一种无中心的网络,网络的带宽有限,而且网络拓扑动态变化的网络,这些特点决定了移动自组网在现实中应用的关键问题取决于路由问题的解决;而在真实的网络中,设计和调试网络协议是一件困难和复杂的事情,仿真成了最佳可供选择的测试、评估和验证手段之一,这不仅适用于网络模型的构造和设计、协议性能的评价与分析,还适用于网络协议的开发与研究以及真实网络的故障诊断。
网络模拟器NS2(Network Simulator v2是一种免费、源代码公开的模拟软件平台,其协议代码与真实网络应用代码很相似,仿真结果具有可靠性。
NS2是一个面向对象的离散事件驱动的网络模拟器,支持多个流行的网络协议如TCP、UDP和路由调度、拥塞控制算法等[1];相对于一般的离散型模拟器,NS2的优势在于它有非常丰富的构件库,而且这些对象易于组合,易于拓展,但是对用户的编程能力,实际网络协议的理解能力要求较高[2]。
在本文中,利用NS2已有的对象,组合所要研究的网络系统模型,在NS2中添加移动自组网中一个单播路由协议后进行网络仿真。
2NS2的仿真原理和拓展方法2.1NS2的仿真原理NS2采用编译和解释双层结构,编译层由C++类组成,C++语言执行速度快而修改和编译速度慢,故只用于编译层协议细节的实现;前端是一个OTCL(Object Tool Command Language解释器,OTCL修改快且可用于交互操作,用于解释层中仿真对象的设置,这种分裂对象仿真增强了构件库的可扩展性和可组合性[3]。
仿真器内核定义了有层次的编译类结构;在OTCL解释器中有相似的解释类结构。
用户通过解释器创立新的仿真对象之后,解释器对它进行初始化,与编译类结构中相应的对象建立映射。
NS2简单无线网络模拟实验报告

HUNAN CITY UNIVERSITYNS2与网络模拟实验报告实验题目:简单无线网络模拟 __专业: ____班级学号_____ _2015年 10月 27日1.实验目的•熟悉NS2网络模拟的基本操作流程•练习TCL脚本代码的编写•理解基本的无线网络节点的配置过程、以及数据流的发生2.实验原理NS2是指 Network Simulator version 2,NS(Network Simulator)是一种针对网络技术的源代码公开的、免费的软件模拟平台,研究人员使用它可以很容易的进行网络技术的开发,而且发展到今天,它所包含的模块几乎涉及到了网络技术的所有方面。
所以,NS成了目前学术界广泛使用的一种网络模拟软件。
此外,NS也可作为一种辅助教学的工具,已被广泛应用在了网络技术的教学方面。
因此,目前在学术界和教育界,有大量的人正在使用NS。
NS2是一种面向对象的网络仿真器,本质上是一个离散事件模拟器,由UC Berkeley开发而成。
它本身有一个虚拟时钟,所有的仿真都由离散事件驱动的。
目前NS2可以用于仿真各种不同的IP网,已经实现的一些仿真有网络传输协议,比如TCP和UDP, 流量产生器,比如FTP, Telnet, Web CBR和VBR;路由队列管理机制,比如Droptail, RED和CBQ;路由算法,比如AODV、DSDV、DSR等无线路由协议。
NS2也为进行局域网的仿真而实现了多播以及一些MAC 子层协议。
3.实验内容和步骤•打开虚拟机播放器VMware Player•打开播放Ubuntu虚拟机镜像(Ubuntu.vmx)•登录系统后,打开控制台Terminal输入下列命令:•cd Desktop/EXP/•ns 6-simple-wireless.tcl•模拟运行完毕后,动画演示器NAM自动打开,播放动画,观察模拟过程。
4.实验结论•截取NAM动画演示结果。
••详细解释TCL脚本文件中与无线网络相关的代码。
NS2仿真实验分析报告

NS2仿真实验分析报告一引言1 NS2简介NS2是一款开放源代码的网络模拟软件,最初由UC Berkeley开发。
它是一种向象的网络模拟器,它本质上是一个离散事件模拟器,其本身有一个模拟时钟,所有的模拟都由离散事件驱动。
其采用了分裂对象模型的开发机制,采用C++和OTcl两种语言进行开发。
它们之间采用Tclcl 进行自动连接和映射。
考虑效率和操作便利等因素,NS2将数据通道和控制通道的实现相分离。
为了减少分组和事件的处理时间,事件调度器和数据通道上的基本网络组件对象都使用C++编写,这些对象通过Tclcl映射对OTcl解释器可见。
目前NS2可以用于模拟各种不同的通信网络,它功能强大,模块丰富,已经实现的主要模块有:网络传输协议,如TCP和UDP;业务源流量产生器,如FTP、Telnet、CBR、We b和VBR;路由队列管理机制,如DropTail、RED和CBQ;路由算法;以及无线网络WLAN、移动IP和卫星通信网络等模块,也为进行局域网的模拟实现了多播协议以及一些MAC子层协议。
2 基本概念(1)RED:随机早期探测(Random Early Detect,RED)。
RED属于主动队列管(Active Queue Management, AQW),是目前常见的TCP上防止拥塞的手段。
它通过以一定概率丢失或标记报文来通知端系统网络的拥塞情况。
RED使用平均队列长度度量网络的拥塞程度,然后以线性方式将拥塞信息反馈给端系统。
RED使用最小阈值,最大阈值和最大概率等几个参数。
RED的基本思想是通过监控路由器输出端口队列的平均长度来探测拥塞,一旦发现拥塞逼近,就随机地选择连接来通知拥塞,使它们在队列溢出导致丢包之前减少拥塞窗口,降低发送数据速度,缓解网络拥塞。
RED配置在路由器监视网络流量以便避免拥塞,当拥塞即将发生时,它随机丢弃进来的分组,而不是等到队列缓冲区满是才开始丢弃所有进来的分组,这样可以最少化全局同步的发生。
计算机网络ns2实验报告

课程:计算机网络项目:实验4 ns2 实验一、实验目的安装并运行网络仿真器NS2,了解其功能模块及配套工具的使用,掌握利用NS2进行网络仿真的方法,为进一步的网络系统性能分析设计创造良好的条件。
二、实验原理NS2(Network Simulator version 2,网络仿真软件第二版)是一种面向对象的网络仿真器,本质上是一个离散事件模拟器。
最早来源于1989年哥伦比亚大学开发的Real Network Simulator项目,是一款开源免费的网络模拟软件。
由加州大学伯克利分校(UC Berkeley)开发而成。
它本身有一个虚拟时钟,所有的仿真都由离散事件驱动的。
目前NS2 可用于仿真各种不同的通信网络。
已经实现的仿真模块有:网络传输协议,如TCP 和UDP;业务源流量产生器,如FTP、Telnet、Web CBR 和VBR;路由队列管理机制,如Droptai、RED和CBQ;路由算法,如Dijkstra,以及无线网络的WLAN,Ad hoc路由,移动IP 和卫星通信网络等。
NS2也为进行局域网的仿真而实现了多播以及一些MAC子层协议。
NS2使用C++和OTcl作为开发语言。
NS2可以说是OTcl的脚本解释器,它包含仿真事件调度器、网络组件对象库以及网络构建模型库等。
事件调度器用于计算仿真时间,并且激活事件队列中的当前事件,执行一些相关的事件,网络组件通过传递分组来相互通信,但这并不耗费仿真时间。
所有需要花费仿真时间来处理分组的网络组件都必须要使用事件调度器,它先为这个分组发出一个事件,然后等待这个事件被调度回来之后,才能做下一步的处理工作。
事件调度器的另一个用处就是计时。
由于效率的原因,NS2将数据通道和控制通道的实现相分离,为了减少分组和事件的处理时间,事件调度器和数据通道上的基本网络组件对象都使用C++写出并编译的,这些对象通过映射对OTcl解释器可见。
三、实验内容(1)安装ns-allinone-2.35(2)NS2仿真示例-nam方式四、实验结果与分析:建立一个OTcl脚本文件set ns [new Simulator] /建立对象$ns color 1 Blue /设定颜色$ns color 2 Redset nf [open out.nam w] /打开跟踪文件$ns namtrace-all $nfproc finish {} { /定义结束过程global ns nf$ns flush-traceclose $nfexec nam out.nam &exit 0}set ns0 [$ns node]set ns1 [$ns node]set ns2 [$ns node]set ns3 [$ns node]$ns duplex-link $ns0 $ns2 1Mb 10ms DropTail$ns duplex-link $ns1 $ns2 1Mb 10ms DropTail$ns duplex-link $ns3 $ns2 1Mb 10ms DropTail$ns duplex-link-op $ns0 $ns2 orient right-down$ns duplex-link-op $ns1 $ns2 orient right-up$ns duplex-link-op $ns2 $ns3 orient right$ns duplex-link-op $ns2 $ns3 queuePos 0.5set udp0 [new Agent/UDP] /建立代理UDP $udp0 set class_ 1$ns attach-agent $ns0 $udp0set cbr0 [new Application/Traffic/CBR]$cbr0 set packetSize_ 500$cbr0 set interval_ 0.005$cbr0 attach-agent $udp0set udp1 [new Agent/UDP]$udp1 set class_ 2$ns attach-agent $ns1 $udp1set cbr1 [new Application/Traffic/CBR]$cbr1 set packetSize_ 500$cbr1 set interval_ 0.005$cbr1 attach-agent $udp1set null0 [new Agent/Null] /建立代理NULL$ns attach-agent $ns3 $null0$ns connect $udp0 $null0$ns connect$udp1 $null0$ns at 0.5 "$cbr0 start" /传送数据$ns at 1.0 "$cbr1 start"$ns at 4.0 "$cbr1 stop"$ns at 4.5 "$cbr0 stop"$ns at 5.0 "finish" /调用结束过程$ns run /仿真结果如下:实验分析:系统从n0开始传送数据实验分析:系统从n1开始传送数据实验分析:采用FIFO机制丢包,丢弃n0发送的数据包(3)代码:set ns [new Simulator]set f0 [open out0.tr w]set f1 [open out1.tr w]set f2 [open out2.tr w]for { set i 0 } { $i<5 } {incr i} {set n$i [$ns node]}$ns duplex-link $n0 $n3 1Mb 100ms DropTail$ns duplex-link $n1 $n3 1Mb 100ms DropTail$ns duplex-link $n2 $n3 1Mb 100ms DropTail$ns duplex-link $n3 $n4 1Mb 100ms DropTailproc finish {} {global f0 f1 f2close $f0close $f1close $f2exec xgraph out0.tr out1.tr out2.tr -geometry 800x400 & exit 0}proc attach-expoo-traffic { node sink size burst idle rate } { set ns [Simulator instance]set source [new Agent/UDP]$ns attach-agent $node $sourceset traffic [new Application/Traffic/Exponential]$traffic set packetSize_ $size$traffic set burst_time_ $burst$traffic set idle_time_ $idle$traffic set rate_ $rate$traffic attach-agent $source$ns connect $source $sinkreturn $traffic}proc record {} {global sink0 sink1 sink2 f0 f1 f2set ns [Simulator instance]set time 0.5set bw0 [$sink0 set bytes_]set bw1 [$sink1 set bytes_]set bw2 [$sink2 set bytes_]set now [$ns now]puts $f0 "$now [expr $bw0/$time*8/1000000]"puts $f1 "$now [expr $bw1/$time*8/1000000]"puts $f2 "$now [expr $bw2/$time*8/1000000]"$sink0 set bytes_ 0$sink1 set bytes_ 0$sink2 set bytes_ 0$ns at [expr $now+$time] "record"}set sink0 [new Agent/LossMonitor]set sink1 [new Agent/LossMonitor]set sink2 [new Agent/LossMonitor]$ns attach-agent $n4 $sink0$ns attach-agent $n4 $sink1$ns attach-agent $n4 $sink2set source0 [attach-expoo-traffic $n0 $sink0 200 2s 1s 100k]set source1 [attach-expoo-traffic $n1 $sink1 200 2s 1s 200k]set source2 [attach-expoo-traffic $n2 $sink2 200 2s 1s 300k]$ns at 0.0 "record"$ns at 10.0 "$source0 start"$ns at 10.0 "$source1 start"$ns at 10.0 "$source2 start"$ns at 50.0 "$source0 stop"$ns at 50.0 "$source1 stop"$ns at 50.0 "$source2 stop"$ns at 60.0 "finish"$ns run结果如下:实验分析:三条数据流的峰值分别为0.1Mbit/s, 0.2Mbit/s,0.3Mbit/s五、实验总结在nam辅助分析工具中发现ftp1在零秒开始启动,ftp2在第三秒时刻开始启动,都在第十秒停止,这符合设计目标。