光刻技术

合集下载

光刻技术

光刻技术

光刻机总体结构
照明系统 掩模台系统 环境控制系统 掩模传输系统 投影物镜系 统
自动对准系 统
调平调焦测 量系统 框架减振系 统
硅片传输系 统
工件台系统
整机控制系统
整机软件系统
图为CPU内部SEM图像
图为硅芯片集成电路放大图像
图为在硅片上进行的光刻图样
图为Intel 45nm高K金属栅晶体 管结构
SU-8交联示意图
正胶与负胶性能对比
正胶 缺点 (DQN) 特征 优点 优点 分辨率高、对比度好 粘附性差、抗刻蚀能力差、高成本 近紫外,365、405、435nm的波长曝 光可采用 良好的粘附能力、抗蚀能力、感光能 力以及较好的热稳定性。可得到垂直 侧壁外形和高深宽比的厚膜图形 显影时发生溶胀现象,分辨率差 对电子束、近紫外线及350-400nm紫 外线敏感
投影式印刷:在投影式印刷中,
用镜头和反光镜使得像聚焦到硅平 面上,其硅片和掩模版分得很开。
三种方法的比较
接触曝光:光的衍射效应较小,因而分辨率高;但易损
坏掩模图形,同时由于尘埃和基片表面不平等,常常存 在不同程度的曝光缝隙而影响成品率。
接近式曝光:延长了掩模版的使用寿命,但光的衍射效
应更为严重,因而分辨率只能达到2—4um 左右。
坚膜也是一个热处
理步骤。 除去显影时胶膜 吸收的显影液和水分, 改善粘附性,增强胶 膜抗腐蚀能力。 时间和温度要适 当。 时间短,抗蚀性 差,容易掉胶;时间 过长,容易开裂。
刻蚀就是将涂胶前所
沉积的薄膜中没有被 光刻胶覆盖和保护的 那部分去除掉,达到 将光刻胶上的图形转 移到其下层材料上的 目的。
等离子体去胶,氧气在强电场作用下电离产生的活性氧, 使光刻胶氧化而成为可挥发的CO2、H2O 及其他气体而被 带走。

光刻的四条技术路线

光刻的四条技术路线

光刻的四条技术路线
1. 接触式光刻(Contact Lithography):此技术路线将掩模直接与光刻胶接触,通过紫外光照射来传导图案。

接触式光刻具有高分辨率和高精度的特点,但会产生掩模和光刻胶之间的化学反应。

2. 脱接触式光刻(Proximity Lithography):在脱接触式光刻中,光刻胶和掩模之间仅存在微小的距离,而不接触彼此。

当紫外光照射时,通过距离短暂拉近并拉开来传递图案。

脱接触式光刻比接触式光刻更容易控制化学反应,但相对于接触式光刻的分辨率和精度较低。

3. 投影式光刻(Projection Lithography):这是最常用的光刻技术路线之一。

先通过光学方式将掩模上的图案投射到光刻胶的表面上。

投影式光刻的特点是具有高分辨率和高通量,但需要复杂的光学系统。

4. 电子束光刻(Electron Beam Lithography,EBL):电子束光刻是一种高分辨率光刻技术,利用聚焦的电子束直接写入图案。

电子束光刻具有非常高的分辨率,但速度较慢,适用于制造高级芯片和小批量生产。

这些光刻技术路线在微电子器件制造中起着重要的作用,根据不同的需求和应用领域选择合适的技术路线。

(10)光刻技术剖析

(10)光刻技术剖析
第10章 光刻技术
•影响光刻的主要因素为掩膜版、光刻胶和光刻机。
•掩膜版由透光的衬底材料(石英玻璃)和不透光金属吸收玻璃
(主要是金属铬)组成。通常还有一层保护膜。
•光刻胶又称为光致抗蚀剂,是由光敏化合物、基体树脂和有机溶
剂等混合而成的胶状液体。光刻胶受到特定波长光线的作用时化
学结构发生变化,使光刻胶在特定溶液中的溶解特性改变。正胶
X射线光刻胶:
43
10.3 光学分辨率增强技术
光学分辨率增强技术包括: 移相掩模技术(phase shift mask )、 离轴照明技术(off-axis illumination)、 光学邻近效应校正技术(optical proximity correction)、
光瞳滤波技术(pupil filtering technology)等。
26
27
28
10.2 光刻胶(PR-光阻)
光刻时接受图像的介质称为光刻胶。 以光刻胶构成的图形作为掩膜对薄膜进行腐蚀,图形就
转移到晶片表面的薄膜上了,所以也将光刻胶称为光致 抗蚀剂。 光刻胶在特定波长的光线下曝光,其结构发生变化。 如果胶的曝光区在显影中除去,称为正胶;反之为负胶。
29
45
通过移相层后光波与正常光波产生的相位差可用 下式表达:
Q 2d (n 1)
式中 d——移相器厚度; n——移相器介质的折射率; λ——光波波长。
46
附加材料造成 光学路迳差异, 达到反相
47
10.3.1 移相掩模技术
粗磨、精磨、厚度分类、粗抛、精抛、超声清洗、检验、平 坦度分类等工序后,制成待用的衬底玻璃。
2、铬膜的蒸发 铬版通常采用纯度99%以上的铬粉作为蒸发
源,把其装在加热用的钼舟内进行蒸发。蒸发前 应把真空度抽至10-3mmHg以上,被蒸发的玻璃 需加热。其它如预热等步骤与蒸铝工艺相似。

简述光刻技术

简述光刻技术

简述光刻技术光刻技术是一种半导体加工技术,它被广泛应用于集成电路制造、平板显示器制造、MEMS(微机电系统)制造以及其他微纳米器件的制造中。

通过光刻技术,可以将图案投影到半导体材料表面上,然后使用化学刻蚀等工艺将图案转移到半导体材料上,从而制作出微小而精密的结构。

光刻技术的发展对现代电子工业的发展起到了关键作用,其不断提升的分辨率和精度,为微电子领域的发展提供了强大的支持。

光刻技术的基本原理是利用光学投影系统将图案投射到半导体材料的表面上。

该图案通常由一个硅片上的光刻透镜形成,这个硅片被称为掩膜,通过掩膜和投影光源的组合来形成所需的图案。

投影光源照射到掩模上的图案,然后通过光学投影系统将图案投影到待加工的半导体材料表面上,形成微小的结构。

在现代的光刻技术中,使用的光源通常是紫外线光源,其波长为193nm或者更短的EUV(极紫外光)光源。

这样的光源具有较短的波长,可以实现更高的分辨率,从而可以制作出更小尺寸的微结构。

光刻机的光学镜头和控制系统也在不断地提升,以满足对分辨率和精度的需求。

光刻技术在半导体制造中的应用主要包括两个方面,一是用于制作集成电路中的各种微小结构,例如晶体管的栅极、金属线路、电容等;二是用于制作各种传感器、MEMS等微纳米器件。

在集成电路制造中,光刻技术通常是在硅片上进行的,硅片经过多道工艺,将图案逐渐转移到硅片上,并最终形成完整的芯片。

在平板显示器制造中,光刻技术则是用于制作液晶显示器的像素结构;而在MEMS器件的制造中,光刻技术则是用于制作微机械结构和微流体结构。

光刻技术的发展受到了许多因素的影响,包括光学技术、光源技术、掩膜制备技术、光刻胶技术等。

在光学技术方面,光学投影系统的分辨率和变像畸变都会直接影响到光刻的精度;在光源技术方面,光刻机所使用的光源的波长和功率都会对分辨率和加工速度有直接影响;掩膜制备技术则影响到了掩模的制备精度和稳定性;光刻胶技术则直接影响到了图案的传输和转移过程。

光刻的工作原理

光刻的工作原理

光刻的工作原理光刻技术是一种用于制造集成电路的重要工艺,其工作原理是利用光的作用将图案投射到硅片上,形成微小的电路结构。

本文将从光刻的原理、设备和应用等方面进行详细介绍。

一、光刻的原理光刻技术是利用光的干涉、衍射和透射等特性实现的。

首先,需要将待制作的电路图案转化为光学遮罩,通常使用光刻胶涂覆在硅片上,然后通过光刻机将光学遮罩上的图案投射到光刻胶上。

光刻胶在光的照射下会发生化学反应,形成光刻胶图案。

接下来,通过将光刻胶暴露在特定的化学溶液中,去除未曝光的光刻胶,得到所需的光刻胶图案。

最后,通过将硅片进行化学腐蚀或沉积等工艺步骤,形成微小的电路结构。

二、光刻的设备光刻机是光刻技术中最关键的设备之一。

光刻机主要由光源、光学系统、对准系统和运动控制系统等部分组成。

光源是产生紫外光的装置,通常使用汞灯或氙灯等。

光学系统由透镜、反射镜和光刻胶图案的投射系统等组成,用于将光学遮罩上的图案投射到光刻胶上。

对准系统是用于确保光刻胶图案和硅片之间的对准精度,通常采用显微镜和自动对准算法等。

运动控制系统是用于控制硅片在光刻机中的移动和旋转等。

三、光刻的应用光刻技术在集成电路制造中有着广泛的应用。

首先,光刻技术是制造集成电路中最关键的工艺之一,可以实现微米甚至纳米级别的电路结构。

其次,光刻技术还可以制作光学元件,如光纤、激光器等。

此外,光刻技术还被应用于平面显示器、传感器、光学存储器等领域。

四、光刻技术的发展趋势随着集成电路制造工艺的不断发展,光刻技术也在不断进步和改进。

首先,光刻机的分辨率越来越高,可以实现更小尺寸的电路结构。

其次,光刻胶的性能也在不断提高,可以实现更高的对比度和较低的残留污染。

此外,光刻技术还在朝着多层光刻、次波长光刻和非接触式光刻等方向发展。

光刻技术是一种利用光的特性制造微小电路结构的重要工艺。

光刻技术的原理是利用光的干涉、衍射和透射等特性实现的,通过光刻机将光学遮罩上的图案投射到光刻胶上,最终形成所需的电路结构。

第四章光刻技术

第四章光刻技术

二,光刻版(掩膜版)
基版材料:玻璃,石英. 要求:在曝光波长下的透光度高,热膨胀系数 与掩膜材料匹配,表面平坦且精细抛光.
二,光刻版(掩膜版)
掩膜版的质量要求 若每块掩膜版上图形成品率=90%,则 6块光刻版,其管芯图形成品率=(90%)6=53% 10块光刻版,其管芯图形成品率=(90%)10=35% 15块光刻版,其管芯图形成品率=(90%)15=21% 最后的管芯成品率当然比其图形成品率还要低 ①图形尺寸准确,符合设计要求; ②整套掩膜版中的各块版应能依次套准,套准误差应尽可能小; ③图形黑白区域之间的反差要高; ④图形边缘要光滑陡直,过渡区小; ⑤图形及整个版面上无针孔,小岛,划痕等缺陷; ⑥固耐用,不易变形.
三,光刻机(曝光方式)
④1:1扫描投影光刻机(美国Canon公司)
三,光刻机(曝光方式)
⑤分步重复投影光刻机--Stepper DSW:direct-step-on-wafer ⅰ)原理: 采用折射式光学系统和4X~5X的缩小透镜. 曝光场:一次曝光只有硅片的一部分,可以大大 提高NA(0.7),并避免了许多与高NA有关的聚 焦深度问题,加大了大直径硅片生产可行性. 采用了分步对准聚焦技术.
一,光刻胶
4.感光机理 ①负胶
聚乙烯醇肉桂酸脂-103B,KPR
一,光刻胶
双叠氮系(环化橡胶)-302胶,KTFR
一,光刻胶
②正胶 邻-叠氮萘醌系-701胶,AZ-1350胶
二,光刻版(掩膜版)
掩膜版在集成电路制造中占据非常重要的地位,因为 它包含着欲制造的集成电路特定层的图形信息,决定 了组成集成电路芯片每一层的横向结构与尺寸. 所用掩膜版的数量决定了制造工艺流程中所需的最少 光刻次数. 制作掩膜版首先必须有版图.所谓版图就是根据电路 ,器件参数所需要的几何形状与尺寸,依据生产集成 电路的工艺所确定的设计规则,利用计算机辅助设计 (CAD)通过人机交互的方式设计出的生产上所要求 的掩膜图案.

光刻的应用领域

光刻的应用领域

光刻的应用领域
1. 半导体芯片制造:光刻技术是制造集成电路(IC)的关键步骤之一。

通过将芯片设计投影到硅片上,利用光刻技术进行图形转移,形成微米级的电路结构和器件。

2. 平面显示器制造:光刻技术用于制造液晶显示器(LCD)、有机发光二极管显示器(OLED)等平面显示器。

通过光刻技术,在基板上制造导线、电极、像素点等微细结构。

3. 光子学:光刻技术被广泛应用于制造光学器件和光纤通信设备。

通过光刻技术制造微光学结构,如分光器、光栅、微透镜等。

4. 生物芯片制造:光刻技术可用于制造生物芯片和实验室微芯片。

通过光刻技术制造微细通道、微阀门等微流控结构,实现对微小液滴和生物分子的控制和分析。

5. 微机电系统(MEMS)制造:光刻技术在MEMS制造中起到关键作用。

通过光刻技术制造微米级的机械结构、传感器和执行器,实现微小机械和电子的集成。

6. 光刻制造设备:光刻技术的应用也推动了光刻设备的发展。

光刻机是一种关键的制造设备,能够将光刻胶的图形转移到硅片或其他基板上,并具备高分辨率、高精度和高速度等特性。

芯片制造中的光刻技术

芯片制造中的光刻技术
芯片制造中的光刻技术
01
光刻技术的基本原理及其在芯片制造中的重要性
光刻技术的发展历程及现状
光刻技术的起源
• 20世纪50年代,光刻技术起源于 美国贝尔实验室 • 20世纪60年代,光刻技术应用于 集成电路制造 • 20世纪70年代,光刻技术实现大 规模集成电路制造
光刻技术的发展阶段
• 20世纪80年代,光刻技术采用g 线光源,分辨率达到0.5微米 • 20世纪90年代,光刻技术采用i线 光源,分辨率达到0.35微米 • 21世纪初,光刻技术采用ArF光 源,分辨率达到193纳米
光刻胶材料的发展方向
• 光刻胶材料将实现更高分辨率、更高灵敏度、更高抗蚀性等方面的突破 • 光刻胶材料将采用新型材料、新工艺等创新手段
04
光刻工艺过程中的关键技术
光刻工艺的基本流程及关键技术点
光刻工艺的基本流程
• 光刻工艺包括光刻胶涂覆、对准、曝 光、显影、刻蚀等步骤 • 光刻工艺需要实现工艺参数的优化和 协同
• 光刻胶材料将实现更高分辨率、更高敏感度、更低成本 • 光刻设备材料将实现更高精度、更高稳定性、更低损耗
光刻技术面临的挑战及应对策略
• 光刻技术将面临光源、材料、工艺等方面的挑战 • 光刻技术将采用创新技术、优化工艺、提高产线自动化等手段应对挑战
02
光刻设备及其工作原理
光刻设备的分类及特点
01
谢谢观看
THANK YOU FOR WATCHING
光刻设备的工作原理
• 光刻设备通过光源照射光刻胶,实现图 形的转移和复制 • 光刻设备通过曝光、显影、刻蚀等工艺 实现图形的转移和复制
光刻设备的工艺流程
• 光刻设备的工艺流程包括光刻胶涂覆、 对准、曝光、显影、刻蚀等步骤 • 光刻设备的工艺流程需要实现工艺参数 的优化和协同
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

光刻的一般流程
1 底膜处理 2 涂胶 3 前烘 4 曝光
5 显影 6 坚模 7 刻蚀 8 去胶
底模处理
底膜处理是光刻工艺的第一步,其主要目的
是对底膜表面进行处理,以增强其与光刻胶之间
的粘附性。
步骤: 1 清洗 2 烘干 3 增粘处理
涂胶
进行底模处理后,便可进行涂胶,即在底模上涂一层
粘附良好厚度适当,均匀的光刻胶。一般采用旋转法进行
显影就是用显影 液溶解掉不需要的光 刻胶,将光刻掩模板 上的图形转移到光刻 胶上。显影液的选择 原则是:对需要去除 的那部分光刻胶膜溶 解的快,溶解度大; 对需要保留的那部分 光刻胶膜溶解度极小。
竖模
坚膜也是一个热处理 步骤。坚膜的目的就 是使残留的光刻胶溶 剂全部挥发,提高光 刻胶与衬底之间的粘 附性以及光刻胶的抗 腐蚀能力。
刻蚀
刻蚀就是将涂
胶前所沉积的薄膜
中没有被光刻胶覆
盖和保护的那部分
去除掉,达到将光
刻胶上的图形转移
刻蚀
到其下层材料上的
目的。
刻蚀-湿法刻蚀
湿法刻蚀是将刻蚀材料浸泡在腐蚀液内进行
腐蚀的技术。
优点:
1:具有优良的选择性。
2:各向同性腐蚀
缺点:抗蚀剂在溶液中,特别在较高温度的溶液 中易受破坏而使掩蔽失效,因而对于那些只能在 这种条件下刻蚀的薄膜必须采用更为复杂的掩蔽 方案。
种试剂也要清除掉。
去胶
去胶结束,整个光刻流程
也就结束了。
光刻技术在PVDF压电薄膜电极制作中的应用
聚偏二氟乙烯(PVDF)是一种高结晶度的含氟聚 合物 ,属于一种坚韧的热塑性工程材料。
PVDF 压电薄膜是经过高压电场极化从而具有压电 效应的薄膜 。
PVDF压电薄膜的优点:压电电压常数高、声阻抗 小、频率响应宽、介电常数小、耐冲击性强、可 以加工成任意形状等。
光刻技术在PVDF压电薄膜电极制作中的应用 第一步:设计要制作的电极的形状与尺寸
光刻技术在PVDF压电薄膜电极制作中的应用
第二步:对PVDF压电薄膜进行清洗处理。采用有机溶剂丙 酮。
第三步:涂胶。选用正性光刻胶,采用手工操作涂到需要 保护的电极层上。
第四步:前烘与曝光。 第五步:腐蚀。采用湿法刻蚀方法。选取碘和碘化钾的水
刻蚀-干法刻蚀
干法刻蚀是用等离子体 进行薄膜刻蚀的技术。
特点:分辨率高,各向 异性强。
干法刻蚀又分为物理性 刻蚀(溅射刻蚀)、化 学性刻蚀和物理化学性 刻蚀。
例如:反应离子刻蚀-
RIE。
去胶
当刻蚀完成后,光
刻胶膜已经不再有用,需
要将其彻底去除,完成这
一过程的工序就是去胶。
此外刻蚀过程中残留的各
光刻胶
光刻胶:也称为 光致抗蚀剂,它 是由感光树脂、 增感剂和溶剂三 部分组成的对光 敏感的混合液体。
光刻胶主要用 来将光刻掩模板 上的图形转移到 元件上。
光刻胶
根据光刻胶的化学反应 机理和显影原理,可将 其分为正性胶和负性胶。
负胶在光刻工艺上应用 最早,其工艺成本低, 产量高,但由于它吸收 显影液后会膨胀,导致 其分辨率不如正胶,因 此对于亚微米甚至更小 尺寸加工技术,主要使 用正胶作为光刻胶。
溶液(质量比为1:4:40)作为金的腐蚀溶剂,体积分数为 40%的氢氟酸作为铬层的腐蚀溶剂。 第六步:去胶。需要将起保护作用的正性胶去掉,采用乙 醇做去胶溶剂。
光刻技术在PVDF压电薄膜电极制作中的应用 制备好的电极:
与设计图样一 样:
设计图样
制备的电极
涂胶,其原理是利用底模转动时产生的离心力,将滴于模
上的胶液甩开。在光刻胶表面张力和旋转离心力的共同作
用下,最终形成光刻胶膜。
光刻胶膜 底膜
涂胶
增粘层
前烘
前烘,又称软 烘,就是在一定的 温度下,使光刻胶 膜里面的溶剂缓慢 的、充分的逸出来 ,使光刻胶膜干燥 。
曝光
曝光就是对涂有
光源
光刻胶的基片进行选
光刻技术
机械工程学院 宋新海
主要内容
一,光刻技术简介
(1)光刻的原理概述 (2)光刻胶-光致抗蚀剂 (3)光刻的一般流程
二,光刻技术应用举例
光刻的原理简介
光刻:利用照相复制与化学腐蚀相结合的技术, 在工件表面制取精密、微细和复杂薄层图形的化 学加工方法。多用于半导体器件与集成电路的制 作。
原理:利用光致抗蚀剂(或称光刻胶)感光后因光 化学反应而形成耐蚀性的特点,将掩模板模
使接受到光照的光刻
板 光刻胶
增粘 层
胶的光学特性发生改 膜 底膜
变。
曝光
曝光光源选择
光源的波长对光 刻胶的感光性有 很大影响,每种 光刻胶都有自己 的吸收峰和吸收 范围,它只对波 长在吸收范围内 的光才比较敏感, 因此选择的曝光 光源必须要满足 光刻胶的感光特 性。
显影
光刻技术在PVDF压电薄膜电极制作中的应用
PVDF压电薄膜被广泛的应用于超声领域。本例中 选择了厚度为9微米的PVDF压电薄膜作为超声敏 感元件。
传统方法制作电极的缺陷:
1:PVDF压电薄膜两侧的电极层的尺寸大小和形 状与薄膜不匹配。
2:未经过处理的压电薄膜在电极两侧加上电压时, 会产生放电现象。
相关文档
最新文档