高中物理热学知识点【高考备考】【总结】【笔记】

合集下载

高中物理热学知识点总结

高中物理热学知识点总结

高中物理热学知识点总结热学是物理学的重要分支之一,研究传热、热力学和热量转化等问题。

在高中阶段,学生学习物理时,热学知识是必不可少的内容。

下面将对高中物理热学知识点进行总结,帮助学生系统地掌握相关内容。

1. 热量和温度的概念热量是物体内部微观粒子的热运动能量总和,通常用单位焦耳(J)表示;温度是物体内微观粒子平均动能的大小,通常用单位开尔文(K)表示。

热量和温度有密切的联系,但并不完全相同。

2. 热力学第一定律热力学第一定律也称能量守恒定律,它表明能量不会自发产生或消失,只能在热量和功之间相互转化。

数学表达式为:ΔQ=ΔU+ΔW,其中ΔQ表示系统吸收或释放的热量,ΔU表示系统内能的变化,ΔW表示系统对外做功。

3. 热量传递热量可以通过传导、对流和辐射来传递。

传导是在固体、液体和气体中通过分子间碰撞传递热量;对流是流体物质内部和周围环境之间热量传递的方式;辐射是通过电磁波传播进行的热量传递。

4. 热力学第二定律热力学第二定律表明自发热量传递只能从高温物体传递到低温物体,不可能自发实现反向的热量传递。

另外,这个定律也可以解释物质不能永久自行转化为热能,也不能热能完全转化为其他形式的能量。

5. 理想气体的热力学过程理想气体的热力学过程包括等容过程、等压过程、绝热过程和等温过程。

在不同的过程中,气体的压强、温度和体积会发生变化,根据理想气体状态方程,可以计算出气体的各种物理量。

6. 热力学循环热力学循环是指在相同温度下气体做一系列不同的过程后回到起始状态的过程。

常见的热力学循环有卡诺循环、斯特林循环和布雷顿循环等,这些循环在工程实践中有重要的应用。

通过以上总结,我们可以看到高中物理热学知识点的重要性和复杂性。

掌握这些知识对于理解能量守恒、热量传递和热力学循环等问题至关重要。

希望同学们在学习物理的过程中,能够加强对热学知识点的理解和掌握,为今后的学习和科研打下坚实基础。

高三物理热学知识点总结归纳

高三物理热学知识点总结归纳

高三物理热学知识点总结归纳热学是物理学中的一个重要分支,研究物体的热力学性质和热传导等问题。

在高三物理学习中,热学是一个重要的知识点,掌握热学的基本概念和理论是学好物理的关键。

本文将对高三物理热学知识点进行总结归纳,帮助同学们更好地理解相关知识。

一、热传导热传导是物体内部或不同物体之间热量的传递过程。

热的传导方式有三种:导热、对流和辐射。

1. 导热:指的是物体内部分子间的热传递。

导热可以通过材料的导热性能来衡量,导热性能好的材料对热传递效果好,如金属等。

2. 对流:指的是流体内部或不同流体之间的热传递。

对流的热传递受流速、温度差、流体性质等因素的影响。

3. 辐射:指的是以电磁波的形式传递热量。

辐射的热传递与物体的表面特性有关,如表面的颜色、光亮度等。

二、热力学基本概念热力学是研究热和功的相互转化关系的学科。

下面介绍几个热力学中常用的基本概念。

1. 热平衡:指的是物体与周围环境之间没有温度差的状态。

在热平衡状态下,热量不会自发地从一个物体传递到另一个物体。

2. 温度:是表示物体热平衡状态下的热能大小的物理量。

常用的温度单位有摄氏度、华氏度和开尔文。

3. 热量:是物体间传递热能的物理量。

热量的传递通常是从高温物体向低温物体传递。

4. 内能:是物体分子热运动的总能量。

内能的变化可以通过热量和对外界做功来改变。

三、热容和比热容热容是物体吸收或放出一定量的热量时,温度改变的比例关系。

比热容是单位质量物体吸收或放出一定量的热量时,温度改变的比例关系。

四、热膨胀热膨胀是物体在受热时发生的尺寸变化。

常见的热膨胀有线膨胀、面膨胀和体膨胀。

热膨胀可以通过线膨胀系数、面膨胀系数和体膨胀系数来衡量。

五、热机热机是将热能转化为机械能的装置。

其中最为重要的是热机效率和卡诺循环。

1. 热机效率:热机效率是指热机输出功与吸收热量之比。

热机效率一般小于1,高效率的热机效率接近于1。

2. 卡诺循环:卡诺循环是一种理想的热机循环。

卡诺循环工作在高温热源和低温热源之间,具有最高热机效率。

物理高考热学知识点总结

物理高考热学知识点总结

物理高考热学知识点总结热学是物理学中的一个重要分支,研究热量与能量之间的转化关系以及物体的热力学性质。

在高考物理考试中,热学常常是一个重要的考点。

本文将对物理高考热学知识点进行总结,帮助你更好地复习和应对考试。

一、热的传递方式热的传递方式主要有三种:传导、传热和辐射。

传导是指热量通过物体内部的分子传递,主要取决于物体的导热性能和温度差。

传热是指热量通过气体或液体的流动传递,主要取决于物体的换热面积和温度差。

辐射是指物体通过发射和吸收电磁波而传递热量,不需要介质的存在。

二、热力学基本定律1. 热力学第一定律:热量是一种能量,它可以从一个物体传递到另一个物体或转化为其他形式的能量,但总能量保持不变。

2. 热力学第二定律:热量不可能自行从低温物体传递到高温物体。

热力学第二定律主要包括热力学效率、卡诺循环等内容。

三、热力学量1. 温度:温度是物体分子热运动的强弱程度的度量,可以用摄氏度、华氏度或开尔文度表示。

2. 内能:内能是物体分子热运动的总能量,包括物体的微观动能和势能。

3. 热容:热容是物体单位质量或单位摩尔的物质温度升高1摄氏度所需的热量。

常见的热容有定压热容和定容热容。

四、热传导定律热传导定律描述了热量在物体内部传导时的规律。

常见的热传导定律有傅里叶定律和牛顿冷却定律。

1. 傅里叶定律:傅里叶定律描述了热量通过固体的传导过程,可以使用下式表示:$$\frac{\partial q}{\partial t} = -kA\frac{\partial T}{\partial x}$$其中,$\frac{\partial q}{\partial t}$是单位时间内通过截面的热量,$A$是截面面积,$k$是导热系数,$\frac{\partial T}{\partial x}$是温度的梯度。

2. 牛顿冷却定律:牛顿冷却定律描述了物体在流体中冷却的过程,可以使用下式表示:$$\frac{\partial q}{\partial t} = hA(T-T_0)$$其中,$\frac{\partial q}{\partial t}$是单位时间内流失的热量,$h$是对流换热系数,$A$是物体表面积,$T$是物体的温度,$T_0$是流体的温度。

高考物理热学知识点总结

高考物理热学知识点总结

高考物理热学知识点总结
以下是高考物理热学知识点的总结:
1. 温度和热量:
- 温度是物体分子热运动的程度,通常用摄氏度(℃)或开尔文(K)表示。

- 热量是物体之间传递的热能,通常用焦耳(J)表示。

2. 热平衡和热传递:
- 热平衡指两个物体之间没有温度差异,不再有热量传递。

- 热传递可以通过传导、对流和辐射三种方式进行。

3. 内能和热容:
- 内能是物体分子的总动能和势能之和。

- 热容指物体单位质量或单位摩尔的物质吸收或释放的热量与温度变化之间的关系,通常用单位质量的比热容(J/(kg·℃))或单位摩尔的摩尔热容(J/(mol·℃))表示。

4. 热力学第一定律:
- 热力学第一定律(能量守恒定律)指在热平衡状态下,系统的内能变化等于系统所吸收或释放的热量与系统所做的功的代数和。

5. 热膨胀:
- 热膨胀指物体随温度的升高而体积增大的现象。

- 线膨胀指物体长度随温度的升高而增加。

- 面膨胀指物体面积随温度的升高而增加。

- 体膨胀指物体体积随温度的升高而增加。

6. 理想气体的状态方程和热力学过程:
- 理想气体的状态方程为PV=nRT,其中P为气体压强,V为气体体积,n为气体的摩尔数,R为气体常数,T为气体的绝对温度。

- 热力学过程包括等压过程、等体过程、等温过程和绝热过程。

7. 相变:
- 相变指物质由一种物态转变为另一种物态的过程,包括固态、液态和气态之间的转变。

- 相变潜热是指物质在相变过程中吸收或释放的热量。

以上是高考物理热学知识点的总结,希望对你有帮助!。

物理热学高考知识点汇总

物理热学高考知识点汇总

物理热学高考知识点汇总在物理学中,热学是一个重要的分支,涉及到能量传递、热力学定律以及热传导等内容。

在高考物理考试中,热学是一个重点考察的内容。

下面我们来汇总一些物理热学的高考知识点。

一、热力学定律1. 热力学第一定律:能量守恒定律根据热力学第一定律,能量不会凭空产生或消失,只能在物体间传递和转化。

公式表达式为:ΔU = Q - W,其中ΔU表示内能的变化,Q表示吸热,W表示做功。

2. 热力学第二定律:熵增定律热力学第二定律表明,自然界中任何一个孤立系统的熵都不会减少,而是不断增加。

熵是系统的无序程度,熵的增加意味着系统的无序程度增加,即趋向于热平衡。

二、热传导1. 热传导的基本规律热传导是指热量从高温区传向低温区的过程。

热传导的速率取决于物体的导热性能以及温差。

热传导速率公式为:Q = k * A * ΔT / d,其中Q表示传导热量,k 表示导热系数,A表示面积,ΔT表示温差,d表示距离。

2. 热传导的应用热传导的应用广泛,例如电器的散热设计、建筑物的保温设计、隧道的通风降温等。

对于电器来说,良好的散热设计能够保证电器的正常运行,防止过热造成损坏。

在建筑物保温设计中,热传导的减少能够降低能量损失,提高能源利用效率。

三、热容和热量计算1. 热容的概念热容是指物体吸热量与温度变化之间的比例关系。

热容的计算公式为:C = Q / ΔT,其中C表示热容,Q表示吸热量,ΔT表示温度变化。

2. 热量计算热量是物体吸收或释放的能量,可以通过热容计算得出。

热量计算公式为:Q = mcΔT,其中Q表示热量,m表示物体的质量,c表示物体的比热容,ΔT表示温度变化。

四、理想气体1. 理想气体状态方程理想气体状态方程描述了理想气体的基本关系:PV = nRT,其中P表示压强,V表示体积,n表示物质的量,R表示气体常数,T表示温度。

2. 等温过程、绝热过程和绝热指数等温过程指气体温度保持不变的过程,绝热过程指气体在隔热条件下进行的过程。

高中物理热学必背知识点

高中物理热学必背知识点

高中物理热学必背知识点
热学是高中物理中的重要内容,是物理学中的一个重要分支。

掌握热学的必背知识点对于高中生来说是非常重要的。

下面是高中物理热学必背知识点:
1. 温度和热量的概念:温度是反映物体热状况的物理量,是物体分子平均动能的度量;热量是能量的一种形式,是热传递的基本形式。

2. 热传递的三种方式:传导、对流和辐射。

传导是指热量通过物质内部的传递;对流是指热量通过气体或液体的运动传递;辐射是指热量通过空气中的辐射传递。

3. 热平衡和热传导:热平衡是指物体内部各部分温度相等的状态;热传导是指热量从高温处传导到低温处的过程。

4. 热容和比热容:热容是物体吸热量与温度升降之积;比热容是单位质量物体升高1℃所需要的热量。

5. 热力学第一定律:能量守恒定律,能量可以从一种形式转化为另一种形式,但总能量守恒。

6. 热力学第二定律:熵增定律,热量不能自发地从低温物体传递给高温物体,熵永远增加。

7. 理想气体状态方程:PV=nRT,P是气体压强,V是气体体积,n 是气体的物质量,R是气体常数,T是气体的绝对温度。

8. 热功转化关系:热功是热能转化为功的过程,热力建立在热量传导的基础之上。

以上就是高中物理热学的必背知识点,掌握这些知识点对于高中物理学习及考试备考都有很大帮助。

希望同学们认真学习,加深理解,提高掌握水平,取得优异成绩。

高中物理“热学”知识点总结

高中物理“热学”知识点总结

⼀、分⼦运动论1.物质是由⼤量分⼦组成的2.分⼦永不停息地做⽆规则热运动(1)分⼦永不停息做⽆规则热运动的实验事实:扩散现象和布郎运动。

(2)布朗运动布朗运动是悬浮在液体(或⽓体)中的固体微粒的⽆规则运动。

布朗运动不是分⼦本⾝的运动,但它间接地反映了液体(⽓体)分⼦的⽆规则运动。

(3)实验中画出的布朗运动路线的折线,不是微粒运动的真实轨迹。

因为图中的每⼀段折线,是每隔30s时间观察到的微粒位置的连线,就是在这短短的30s内,⼩颗粒的运动也是极不规则的。

(4)布朗运动产⽣的原因⼤量液体分⼦(或⽓体)永不停息地做⽆规则运动时,对悬浮在其中的微粒撞击作⽤的不平衡性是产⽣布朗运动的原因。

简⾔之:液体(或⽓体)分⼦永不停息的⽆规则运动是产⽣布朗运动的原因。

(5)影响布朗运动激烈程度的因素固体微粒越⼩,温度越⾼,固体微粒周围的液体分⼦运动越不规则,对微粒碰撞的不平衡性越强,布朗运动越激烈。

(6)能在液体(或⽓体)中做布朗运动的微粒都是很⼩的,⼀般数量级在,这种微粒⾁眼是看不到的,必须借助于显微镜。

3.分⼦间存在着相互作⽤⼒(1)分⼦间的引⼒和斥⼒同时存在,实际表现出来的分⼦⼒是分⼦引⼒和斥⼒的合⼒。

分⼦间的引⼒和斥⼒只与分⼦间距离(相对位置)有关,与分⼦的运动状态⽆关。

(2)分⼦间的引⼒和斥⼒都随分⼦间的距离r的增⼤⽽减⼩,随分⼦间的距离r的减⼩⽽增⼤,但斥⼒的变化⽐引⼒的变化快。

(3)分⼦⼒F和距离r的关系如下图4.物体的内能(1)做热运动的分⼦具有的动能叫分⼦动能。

温度是物体分⼦热运动的平均动能的标志。

(2)由分⼦间相对位置决定的势能叫分⼦势能。

分⼦⼒做正功时分⼦势能减⼩;分⼦⼒作负功时分⼦势能增⼤。

当r=r0即分⼦处于平衡位置时分⼦势能最⼩。

不论r从r0增⼤还是减⼩,分⼦势能都将增⼤。

如果以分⼦间距离为⽆穷远时分⼦势能为零,则分⼦势能随分⼦间距离⽽变的图象如上图。

(3)物体中所有分⼦做热运动的动能和分⼦势能的总和叫做物体的内能。

物理热学知识点高考版

物理热学知识点高考版

物理热学知识点高考版高考版物理热学知识点一、热学基础知识热学是物理学的一个重要分支,研究物质的热力学性质和热现象的物理规律。

在高考中,热学是物理考试中的重点内容之一。

1. 温度和热量温度是物体冷热程度的度量,用摄氏度(℃)表示。

热量是物体之间传递的能量,单位是焦耳(J)。

2. 内能内能是物质微观粒子的热运动和相互作用所具有的能量,是物体温度的函数。

3. 热传递热传递包括传导、辐射和对流。

传导是指物质中热分子通过直接碰撞传递能量的过程。

辐射是指热能以电磁波的形式传播。

对流是指热能通过流体的流动传递。

二、热力学定律和热力学循环热力学定律是热学研究的基础,研究了热力学系统在热平衡状态下的性质。

1. 热力学第一定律热力学第一定律,也称为能量守恒定律,表明能量可以从一种形式转化为另一种形式,但总能量守恒。

2. 热力学第二定律热力学第二定律描述了自发过程的方向性,也称为热力学箭头。

它阐明了热量自然地从高温物体传递到低温物体的方向。

3. 热力学循环热力学循环是指在一定条件下,系统经历一系列反复的热力学过程。

常见的热力学循环包括卡诺循环和斯特林循环。

三、热力学性质热力学性质是指物质在热学条件下的特性和行为,包括热容、相变和热膨胀等。

1. 热容热容是物质温度变化与吸收或放出的热量之间的比例关系。

常见的热容包括定压热容和定容热容。

2. 相变相变是物质在一定温度和压力下,由一个相态转变为另一个相态的过程。

常见的相变包括汽化、凝固、升华和凝华等。

3. 热膨胀物体受热时,由于热运动增加,分子间的距离扩大,从而导致物体体积增大的现象。

热膨胀的原理被广泛应用于机械工程和建筑设计中。

四、热力学的应用热力学在各个领域有着广泛的应用,尤其是在能源利用和环境保护方面。

1. 热机热机是将热能转化为机械能的设备,是现代社会能源利用的重要手段。

常见的热机有蒸汽机、内燃机和涡轮机等。

2. 制冷和空调制冷和空调是将热能从低温区域传递到高温区域的过程,常常利用制冷剂的相变性质来实现。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《热学》一、知识网络分子直径数量级物质是由大量分子组成的 阿伏加德罗常数油膜法测分子直径分子动理论 分子永不停息地做无规则运动 扩散现象 布朗运动 分子间存在相互作用力,分子力的F -r 曲线 分子的动能;与物体动能的区别 物体的内能 分子的势能;分子力做功与分子势能变化的关系;E P -r 曲线物体的内能;影响因素;与机械能的区别 单晶体——各向异性(热、光、电等)晶体 多晶体——各向同性(热、光、电等) 有固定的熔、沸点非晶体——各向同性(热、光、电等)没有固定的熔、沸点 浸润与不浸润现象——毛细现象——举例 饱和汽与饱和汽压 液晶体积V 气体体积与气体分子体积的关系温度T (或t ) 热力学温标 分子平均动能的标志 压强的微观解释压强P 影响压强的因素 求气体压强的方法 改变内能的物理过程 做功 ——内能与其他形式能的相互转化热传递——物体间(物体各部分间)内能的转移热力学第一定律能量转化与守恒 能量守恒定律热力学第二定律(两种表述)——熵——熵增加原理能源与环境 常规能源.煤、石油、天然气 新能源.风能、水能、太阳能、核能、地热能、海洋能等二、考点解析考点64 物体是由大量分子组成的 阿伏罗德罗常数 要求:Ⅰ阿伏加德罗常数(N A =6.02×1023mol -1)是联系微观量与宏观量的桥梁。

设分子体积V 0、分子直径d 、分子质量m ;宏观量为.物质体积V 、摩尔体积V 1、物质质量M 、摩尔质量μ、物质密度ρ。

分 子 动 理 论热力学 固体 热力学定律 液体 气体(1)分子质量:A A ==N V N m ρμ (2)分子体积:A A 10PN N V V μ== (对气体,V 0应为气体分子占据的空间大小)(3)分子直径:○1球体模型.V d N =)2(343A π 303A 6=6=ππV N V d (固体、液体一般用此模型)○2立方体模型.30=V d (气体一般用此模型)(对气体,d 应理解为相邻分子间的平均距离)(4)分子的数量:A 1A 1A A ====N V V N V M N V N Mn ρμρμ固体、液体分子可估算分子质量、大小(认为分子一个挨一个紧密排列);气体分子不可估算大小,只能估算气体分子所占空间、分子质量。

考点65 用油膜法估测分子的大小(实验、探究) 要求:Ⅰ在“用油膜法估测分子的大小”的实验中,有下列操作步骤,请补充实验步骤C 的内容及实验步骤E 中的计算式:A .用滴管将浓度为0.05%的油酸酒精溶液逐滴滴入量筒中,记下滴入1mL 的油酸酒精溶液的滴数N ;B .将痱子粉末均匀地撒在浅盘内的水面上,用滴管吸取浓度为0.05%的油酸酒精溶液,逐滴向水面上滴入,直到油酸薄膜表面足够大,且不与器壁接触为止,记下滴入的滴数n ;C .________________________________________________________________________D .将画有油酸薄膜轮廓的玻璃板放在坐标纸上,以坐标纸上边长1cm 的正方形为单位,计算出轮廓内正方形的个数m (超过半格算一格,小于半格不算)E .用上述测量的物理量可以估算出单个油酸分子的直径 d = _______________ cm .考点66 分子热运动 布朗运动 要求:Ⅰ1)扩散现象:不同物质彼此进入对方(分子热运动)。

温度越高,扩散越快。

扩散现象说明:组成物体的分子总是不停地做无规则运动,温度越高分子运动越剧烈;分子间有间隙2)布朗运动:悬浮在液体中的固体微粒的无规则运动,不是液体分子的无规则运动!布朗运动发生的原因是受到包围微粒的液体分子无规则运动地撞击的不平衡性造成的.因而布朗运动说明了分子在永不停息地做无规则运动.(1)布朗运动不是固体微粒中分子的无规则运动.(2)布朗运动不是液体分子的运动.(3)课本中所示的布朗运动路线,不是固体微粒运动的轨迹.(4)微粒越小,温度越高,布朗运动越明显.3)扩散现象是分子运动的直接证明;布朗运动间接证明了液体分子的无规则运动考点67 分子间的作用力 要求:Ⅰ1)分子间引力和斥力一定同时存在,且都随分子间距离的增大而减小,随分子间距离的减小而增大,但斥力变化快。

2)实际表现出来的分子力是分子引力和斥力的合力。

随分子间距离的增大,分子力先变小后变大再变小。

(注意:这是指 r 从小于r 0开始到增大到无穷大)。

3)分子力的表现及变化,对于曲线注意两个距离,即r 0(10-10m )与10r 0。

①当分子间距离为r 0(约为10-10m )时,分子力为零,分子势能最小;②当分子间距离r >r 0时,分子力表现为引力。

当分子间距离由r 0增大时,分子力先增大后减小;③当分子间距离r <r 0时,分子力表现为斥力。

当分子间距离由r 0减小时,分子力不断增大 考点68 温度和内能 要求:Ⅰ温度和温标:1)温度:反映物体冷热程度的物理量(是一个宏观统计概念),是物体分子平均动能大小的标志。

任何同温度的物体,其分子平均动能相同。

2)热力学温度(T)与摄氏温度(t)的关系为:T =t+273.15(K )说明:①两种温度数值不同,但改变1 K 和1℃的温度差相同。

②0K 是低温的极限,只能无限接近,但不可能达到。

③这两种温度每一单位大小相同,只是计算的起点不同。

摄氏温度把1大气压下冰水混合物的温度规定为0℃,热力学温度把1大气压下冰水混合物的温度规定为273K (即把-273℃规定为0K )。

. 内能:1)内能是物体内所有分子无规则运动的动能和分子势能的总和,是状态量.改变内能的方法有做功和热传递,它们是等效的.三者的关系可由热力学第一定律得到 ΔU =W+Q .2)决定分子势能的因素:宏观)分势能跟物体的体积有关。

微观)子势能跟分子间距离r 有关。

3)固体、液体的内能与物体所含物质的多少(分子数)、物体的温度(平均动能)和物体的体积(分子势能)都有关气体:一般情况下,气体分子间距离较大,不考虑气体分子势能的变化(即不考虑分子间的相互作用力)4)一个具有机械能的物体,同时也具有内能;一个具有内能的物体不一定具有机械能。

5)理想气体的内能:理想气体是一种理想化模型,理想气体分子间距很大,不存在分子势能,所以理想气体的内能只与温度有关。

温度越高,内能越大。

(1)理想气体与外界做功与否,看体积,体积增大,对外做了功(外界是真空则气体对外不做功),体积减小,则外界对气体做了功。

(2)理想气体内能变化情况看温度。

(3)理想气体吸不吸热,则由做功情况和内能变化情况共同判断。

(即从热力学第一定律判断)6)关于分子平均动能和分子势能理解时要注意.(1)温度是分子平均动能大小的标志,温度相同时任何物体的分 子平均动能相等,但平均速率一般不等(分子质量不同).(2)分子力做正功分子势能减少,分子力做负功分子势能增加。

(3)分子势能为零一共有两处,一处在无穷远处,另一处小于r 0 分子力为零时分子势能最小,而不是零。

(4)理想气体分子间作用力为零,分子势能为零,只有分子动能。

考点69 晶体和非晶体 晶体的微观结构 要求:Ⅰ考点70 液体的表面张力现象 要求:Ⅰ1)表面张力:表面层分子比较稀疏,r >r 0在液体内部分子间的距离在r 0左右,分子力几乎为零。

液体的表面层由于与空气接触,所以表面层里分子的分布比较稀疏、分子间呈引力作用,在这个力作用下,液体表面有收缩到最小的趋势,这个力就是表面张力。

2)浸润和不浸润现象:3)毛细现象:浸润液体在细管中上升的现象,以及不浸润液体在细管中下降的现象,称为毛细现象。

考点71 液晶要求:Ⅰ 1)液晶具有流动性、光学性质各向异性.2)不是所有物质都具有液晶态,通常棒状分子、碟状分子和平板状分子的物质容易具有液晶态。

天然存固体多晶体 如金属 1、有确定几何形状 2、制作晶体管、集成电路 3、各向异性 晶体 1、无确定几何形状 2、各向同性有确定熔点 熔解和凝固时放出的热量相等非晶体 单晶体 12、无确定熔点 3、各向同性在的液晶不多,多数液晶为人工合成.3)向液晶参入少量多色性染料,染料分子会和液晶分子结合而定向排列,从而表现出光学各向异性。

当液晶中电场强度不同时,它对不同颜色的光的吸收强度也不一样,这样就能显示各种颜色.4)在多种人体结构中都发现了液晶结构.考点72 气体实验定律 理想气体 要求:Ⅰ1)探究一定质量理想气体压强p 、体积V 、温度T 之间关系,采用的是控制变量法2)三种变化: 玻意耳定律:PV =C查理定律: P / T =C 盖—吕萨克定律:V/ T =C等温变化图线 等容变化图线等压变化图线提示:①等温变化中的图线为双曲线的一支,等容(压)变化中的图线均为过原点的直线(之所以原点附近为虚线,表示温度太低了,规律不再满足);②图中双线表示同一气体不同状态下的图线,虚线表示判断状态关系的两种方法;③对等容(压)变化,如果横轴物理量是摄氏温度t ,则交点坐标为-273.153)理想气体状态方程:理想气体,由于不考虑分子间相互作用力,理想气体的内能仅由温度和分子总数决定 ,与气体的体积无关。

对一定质量的理想气体,有112212p V p V T T =(或恒定=Tpv ) 4)气体压强微观解释:由大量气体分子频繁撞击器壁而产生的,与温度和体积有关。

(1)气体分子的平均动能,从宏观上看由气体的温度决定(2)单位体积内的分子数(分子密集程度),从宏观上看由气体的体积决定考点73 饱和汽和饱和汽压 要求:Ⅰ说明:相对湿度的计算不做要求1)汽化⎩⎨⎧→→发生的剧烈的汽化现象在液体表面和内部同时沸腾的汽化现象在任何温度下都能发生只在液体表面进行并且蒸发 沸腾只在一定温度下才会发生,液体沸腾时的温度叫做沸点,沸点与温度有关,大气压增大时沸点升高 2)饱和汽与饱和汽压在密闭容器中的液面上同时进行着两种相反的过程:一方面分子从液面飞出来;另一方面由于液面上的汽分子不停地做无规则的热运动,有的汽分子撞到液面上又会回到液体中去。

随着液体的不断蒸发,液面上汽的密度不断增大,回到液体中的分子数也逐渐增多。

最后,当汽的密度增大到一定程度时,就会达到这样的状态:在单位时间内回到液体中的分子数等于从液面飞出去的分子数,这时汽的密度不再增大,液体也不再减少,液体和汽之间达到了平衡状态,这种平衡叫做动态平衡。

我们把跟液体处于动态平衡的汽叫做饱和汽,把没有达到饱和状态的汽叫做未饱和汽。

在一定温度下,饱和汽的压强一定,叫做饱和汽压。

未饱和汽的压强小于饱和汽压。

饱和汽压:(1)饱和汽压只是指空气中这种液体蒸汽的分气压,与其他气体的压强无关。

(2)饱和汽压与温度和物质种类有关。

在同一温度下,不同液体的饱和气压一般不同,挥发性大的液体饱和气压大;同一种液体的饱和气压随温度的升高而迅速增大。

相关文档
最新文档