sbr工艺设计计算p

合集下载

经典SBR设计计算(全)

经典SBR设计计算(全)

m(10)
N (10)
(
4 4 q
m b
v v
Q 2 Q g 1 4 )
2
/ 3
6、设计需氧量AOR=
碳化需氧量+硝化需
氧量-反硝化脱氮产
氧量
有机物氧化需氧系数
a'=
污泥需氧系数b'=
(1)碳化需氧量:AOR1 a'Q(S0 Se ) eb' XVf
0.04 0.027 0.067 d-1 0.16 mg/L
5、复核出水氨氮浓 度 微生物合成去除的氨 氮Nw=0.12ΔXV/Q
冬季微生物合成去除 的氨氮ΔNw(10)=
冬季出水氨氮为 Ne(10)=N0-ΔNW(10)=
夏季微生物合成去除 的氨氮ΔN(20)=
夏季出水氨氮为 Ne(20)=N0-ΔNW(20)= 复核结果表明无论冬 季或夏季,仅靠生物 合成不能使出水氨氮 低于设计标准。
fb
f
) C0 Ce 1000
(3)剩余污泥量ΔX
ΔX=ΔXV+ΔXs= T=10℃时剩余污泥 量ΔX=
358 kg/d 532 kg/d
1840 kg/d 2198 kg/d 2372 kg/d
0.5 m
设剩余污泥含水率按
T=10℃时设剩余污 泥含水率按 4、复核出水BOD5
K2=
Lch
24 S 0 24 K2 Xft an2
去除1kgBOD的需氧量 =
2574.88 kgO2/d=
4351.54 kgO2/d=
1.79
kgO2/kgB OD5
107.3
kgO2/ h
181.3
kgO2/ h
(6)标准需氧量

经典SBR设计计算(全)

经典SBR设计计算(全)

2433.71 m3/h=
最大空气用量Qmax=
(7)所需空气压力p
(相对压力)
供风管
h1:
道沿程
阻力
供风管
H2:
道局部
阻力
p=h1+h2+h3 +h4+Δh
4112.97 m3/h= 0.001 MPa
0.001 MPa
40.56 m3/mi n
68.5 m3/mi n
h3:
h4:
Δh: p= (8)曝气器数量计 算 A、按供氧能力计算
冬季硝化菌比增长速 度μN(10)=1/θc+bN =
出水氨氮为:Ne(10)
K N (10) N (10)
m(10)
N (10)
(
4 4 q
m b
v v
Q 2 Q g 1 4 )
2
/ 3
6、设计需氧量AOR=
碳化需氧量+硝化需
氧量-反硝化脱氮产
氧量
有机物氧化需氧系数
a'=
污泥需氧系数b'=
冬季μm(10)=μ m(15)e0.098(T-15)× DO/(K0+DO)×[10.833×(7.2-pH)]=
99.20%
计算,湿污 泥量为
99.20%
计算,湿污 泥量为
0.018 16.66 mg/L
274.7 m3/d 296.5 m3/d
7.98 mg/L 17.02 mg/L 1.72 mg/L 23.28 mg/L
0.5 d-1
2 mg/L 1.3 7.2
0.19
(2)标准水温(15 ℃)时硝化菌半速度 常数KN(15)=
冬季KN(10)=KN(15)× e0.118(T-15)=

SBR工艺计算

SBR工艺计算

SBR⼯艺计算⼀、灵捷微电解池采⽤4组并联运⾏,每个池进⽔30min,反应1h,出⽔30min。

1.池体⼤⼩污⽔流量Q=1000 m3/d=42 m3/h单组微电解池⽔量Q1=Q/4=14 m3/h每组微电解池停留时间为1h,则⽔量V1=14 m3取⽔料⽐为2:1,单组微电解池需要微电解材料量为V2= V1/2=7 m3单组微电解池有效容积为V’= V1+ V2=21 m3因体积过⼩,钢砼池体施⼯不便,采⽤Q235的反应罐,取反应罐有效⾼度为3⽶,则可得直径为3⽶。

灵捷微电解池为4组并联的?3*3.5m的罐体。

2、布⽓管道布置(1)管道选择因灵捷微电解池需要⽓量较⼩,根据以往⼯程经验,空⽓管道主管采⽤?63PVC管道,4根⽀管采⽤?32PVC管道,⽀管上均安装⼿动阀门和⽓动(电动)阀门,以达到接⼊⾃控系统⽬的。

(2)管道开孔为使布⽓均匀,罐内采⽤“⽇”字形布置,布⽓管道中⼼线为?1.5m的圆周,圆周上每隔300mm开两个45。

斜向下的?6圆孔,整个圆周均布;布⽓管道中间横管上每隔200mm开两个45。

斜向下的?6圆孔,详见图纸。

3、布⽔管道布置(1)管道选择灵捷微电解池进⽔采⽤⽔泵送⽔,⽔泵流量选⽤42m3/h(扬程根据现场具体情况⽽定),根据Q=πr2v/4,取流速为v= 2.5m3/h,则r=77,取进⽔管道DN80,PVC管道为?90。

主管与4根⽀管均采⽤?90PVC管道,⽀管上均安装⼿动阀门和⽓动(电动)阀门,以达到接⼊⾃控系统⽬的。

(2)管道开孔为使布⽔均匀,罐内采⽤环形布置,布⽓管道中⼼线在布⽓管道的外围,靠近罐体⼀侧,两管道中⼼线间隔150mm,环形管道上每隔100mm开两个45。

斜向下的?20圆孔,整个圆周均布。

⼆、SBR池的设计1、⽔质:2.参数选取2.1 运⾏参数⽣物池中活性污泥浓度:X VSS=2800mgMLVSS/l挥发性组分⽐例:f VSS=0.7 (⼀般0.7~0.8)2.2 碳氧化⼯艺污泥理论产泥系数:Y=0.6 mgVSS/mgBOD5 20℃时污泥⾃⾝氧化系数:K d(20)=0.06 1/d2.3 硝化⼯艺参数硝化菌在15℃时的最⼤⽐⽣长速率:µm(15) =0.47 1/d好氧池中溶解氧浓度:DO=2.0 mg/lNH4-N的饱和常数(T=T min=12℃):K N=10(0.051×T-1.158)=0.28 mg/l硝化菌的理论产率系数:Y N=0.15 mgVSS/mgNH4-N20℃时硝化菌⾃⾝氧化系数:K dN(20)=0.04 1/d安全系数:F S=2.5氧的饱和常数:K O=1.0 mg/l⼆. 好氧池⼯艺设计计算1、参数修正K d (T min)=K d(20)×1.05(Tmin-20)=0.041 1/dµm=µm(15)×e0.098(Tmin-15)×[1-0.833×(7.2-pH)]×[D O/(D O+K O)] =0.331 1/d K dN (T min)=K dN(20)×1.05(Tmin-20)=0.027 1/d2、计算设计泥龄最⼤基质利⽤率:k’=µm/Y N=2.21 mgBOD5/(mgVSS﹒d)最⼩硝化泥龄:tc min=1/(Y N×k’-K dN)=3.29 d设计泥龄:tc=Fs×tc min=14.8 d3、污泥负荷硝化污泥负荷:Un=(1/tc+K dN)/Y N=0.63 mgNH4-N/(mgVSS﹒d)出⽔氨氮浓度:由U N=k’×[N e/(K N+N e)]得N e=U N×K N/(k’-U N)=0.11mg/l碳氧化污泥负荷:U S=(1/tc+K d)/Y=0.18 mgBOD5/(mgVSS﹒d)4、好氧池容积计算BOD氧化要求⽔⼒停留时间:T b=(So-Se)/ (U S×X VSS)= 1.02d=24.5 hBOD5表观产率系数:Y obs=Y/(1+K d×tc)=0.37 mgVSS/mgBOD5硝化细菌在微⽣物中占的百分⽐:硝化的氨氮量N d=TN-0.122Y obs(So-Se)-Ne-0.016 Y obs K d tc(So-Se)=38.6mg/l硝化菌百分⽐fnfn=Yn*N d/ Y obs (So-Se) + Yn*Nd +0.016Y obs K d tc(So-Se)=0.11硝化⽔⼒停留时间TnTn = N d / ( Un*X VSS *fn )= 0.38 d = 9.18 hTb>Tn,取好氧池⽔⼒停留时间为Tb,即49h。

SBR工艺设计及计算

SBR工艺设计及计算

1、普通SBR
SBR工艺的优化
1.反应池数量与运行周期的优化 对反应池数量(原则上大于2座)、运行周期、排水比 进行核算
2.曝气系统的优化 控制各组反应池的曝气时间,尽可能实现交替曝气, 提高风机的利用率
3.出水的优化 控制出水时间和周期,实现均匀出水,提高后续设备 的利用率
1、普通SBR 主要设备
20实世纪80年代初在澳大利亚发展起来, 1976年建成第一座ICEAS污水处理厂
在反应器的进水端增加了一个预反应区,生物选择器 占整个池子10%左右 活性污泥:高负荷吸附阶段-------低负荷降解阶段
运行方式为连续进水(沉淀期、排水期仍连续进 水),间歇排水,无明显的反应阶段和闲置阶段
连续进水----大、中型污水处理厂中的运用 延时曝气污泥负荷低,0.04-0.05KgBOD/(KgMLSS.d)
1.曝气设备(水下曝气器、曝气头、膜片式微孔扩散器) 2.滗水器(旋摆式、浮筒式、虹吸式)
堰口负荷:
旋摆式滗水器
浮筒式滗水器 虹吸式滗水器
1、普通SBR
自控系统
1. 相对于其他活性污泥法,SBR对自控的程度和精度 要求较高,其系统能否稳定运行直接决定了污水的处 理效果
2.在运行过程中定期对在线监测仪表、自控设备和系 统进行检查
DAT-IAT (Demand Aeration Tank-Intermittent Tank) 连续和间歇曝气工艺
AICS 工艺(Alternated internal cyclic system) 交替式内循环活性污泥法
2、 常见SBR工艺的变种
2.1 ICEAS工艺-----间歇式循环延时曝气法
②由于工艺要求间隙式运行,所以正常运行时总有部分反应 池和设备处于待机状态,使反应池和设备利用率较低;

sbr工艺设计计算课件

sbr工艺设计计算课件
sbr工艺设计计算
计算机模拟水处理工艺
城建环工0302 魏海宁 阎小路
sbr工艺设计计算
相关内容
• 数据要求 • 条件要求 • 工艺选择 • 工艺操作过程 • 工艺流程图1 • 设计计算书
• 出水应用 • 污泥应用 • 相关图纸
sbr工艺设计计算
活性污泥法(Activated Sludge Process)首先 于20 世纪初在英国出现,迄今已有近百年历史,是 当前应用最广泛的污水处理技术之一,该方法自 1914年在英国曼切斯特市建成污水试验厂以来,已 有80多年的历史。目前,它已成为有机废水生物处 理的主体,但是仍存在一些不容忽视的缺点:对冲 击负荷适应能力差,易发生污泥膨胀,处理构筑物 占地面积大、基建投资和运行费用高、管理复杂等。 近几十年来,国内外学者准对以上这些问题进行了 不懈地探索和研究,在供氧方式、运转条件、反应 器形式等方面进行了革新、开发了多种活性污泥法 新工艺,使得活性污泥法朝着高效、节能的方面发 展。
项目 单位
BOD5 mg/l
COD mg/l
SS mg/l
进水水质 260
600
320
出水水质 ≤15
≤50
≤15
sbr工艺设计计算
条件要求
• 1 设计满足环境保护的各项规定,污水处理后达到中水水质量标准。
• 2 充分考虑二次污染的防治,设备噪声低,尽量减少对周围环境的 影响。污水处理设施的设计和建设必须结合小区的整体规划和建 筑特点,既外观设计上要与小区的建筑环境相协调,以求美观。
sbr工艺设计计算
CASS反应器由3个区域组成:生物选择 区、兼氧区和主反应器,每个区的容积比为 1:5:30。污水首先进入选择区,与来自主 反应器的混合液(20%~30%)混合,经过 厌氧反应后进入主反应区,如下图所示 。

SBR工艺污水处理厂设计计算

SBR工艺污水处理厂设计计算

SBR工艺污水处理厂设计计算设计一个SBR工艺污水处理厂需要进行详细的设计计算,包括处理工艺的选择、处理设备的选型和尺寸等方面。

首先,需要确定污水处理厂的设计流量。

设计流量是指污水处理厂每天处理的污水量。

根据当地的污水排放标准和实际需求,确定设计流量。

接下来,选择适合的工艺流程。

SBR(Sequencing Batch Reactor)工艺是一种将好氧生物法与消化池法相结合的处理工艺。

它包括进水、好氧反应、沉淀、排放等过程。

根据实际情况和处理要求,可以选择其他适合的工艺流程。

在工艺流程确定后,需要选择合适的处理设备。

根据设计流量和工艺要求,选型A/O反应器、混合器、沉淀池、曝气装置等设备。

设备的选型要满足处理效果要求,同时考虑经济性和可操作性。

在设备选型确定后,需要进行尺寸计算。

对于A/O反应器,阻力槽、沉淀池等设备,需要根据设计流量和处理要求计算其尺寸。

计算时需要考虑污泥产生量和停留时间等因素。

此外,还需要进行曝气量、污泥泵选型等计算。

曝气量的计算需要根据污水水质、氧化还原电位、总有机碳等因素确定。

污泥泵选型需要根据污泥产生量、泥浆浓度等因素确定。

最后,需要进行污泥处理的设计计算。

根据设计流量和污泥产生量,确定污泥浓度和污泥堆肥的处理能力。

总之,设计一个SBR工艺污水处理厂需要进行详细的设计计算,包括处理工艺的选择、处理设备的选型和尺寸、曝气量和污泥泵选型等方面的计算。

这些计算需要考虑处理要求、经济性和可操作性等因素,以确保污水处理厂的正常运行和处理效果。

设计计算的准确性对于污水处理厂的建设和运营至关重要,需要专业人士进行相关计算和验证。

经典SBR计算

经典SBR计算

一、经典SBR工艺设计计算(一)设计条件:污水厂海拔高度950m设计处理水量Q=12000m3/d=500.00m3/h=0.14m3/s 总变化系数Kz= 1.57进水水质:出水水质:进水COD Cr=450mg/L COD Cr=60mg/L BOD5=S0=250mg/L BOD5=S z=20mg/L TN=45mg/L TN=20mg/L NH4+-N=35mg/L NH4+-N=15mg/L TP0=6mg/L Tp e=0.5mg/L 碱度S ALK=280mg/L pH=7.2SS=300mg/L SS=C e=20mg/L VSS=210mg/Lf b=VSS/SS=0.7曝气池出水溶解氧2mg/L夏季平均温度T1=25℃硝化反应安全系数3冬季平均温度T2=10℃活性污泥自身氧化系数K d(20)=0.06污泥龄θc=25d 活性污泥产率系数Y=0.6混合液浓度MLSS,X=4000mgMLSS/L出水VSS/SS=f=0.7520℃时反硝化速率常数q dn,20=0.12kgNO3--N/kgMLVSS若生物污泥中约含12.40%的氮用于细胞合成(二)设计计算1、运行周期反应器个数n1=4,周期时间t=6h,周期数n2=4每周期处理水量:750m3每周期分进水、曝气、沉淀、排水4个阶段进水时间t e=24/n1n2= 1.5h根据滗水顺设备性能,排水时间t d=0.5h污泥界面沉降速度u=46000X -1.26= 1.33m曝气池滗水高度h 1= 1.2m安全水深ε=0.5m沉淀时间t s =(h 1+ε)/u=1.3h 曝气时间t a =t-t e -t s -t d =2.7h 反应时间比e=t a /t=0.452、曝气池体积V计算(1)估算出水溶解性BOD 5(Se)13.6mg/L(2)曝气池体积V12502m 3(3)复核滗水高度h1:有效水深H=5m h 1=HQ/(n 2V)=1.2m(4)复核污泥负荷0.13kgBOD 5/kgM LSS3、剩余污泥量(1)生物污泥产量T=10℃时0.04d -1681kg/d T=10℃时,ΔX V(10)=1012kg/d(2)剩余非生物污泥量ΔX S1596kg/d(3)剩余污泥量ΔX ΔX=ΔX V +ΔX s =2277kg/d T=10℃时剩余污泥量ΔX=2608kg/d=-=e d z e fC K S S 1.7=+-=)1()(0c d e c K eXf S S Q Y V θθ==eXV QS N s 0=--=∆100010000VfXeK S S YQX d e V ==-)20()20()10(04.1T d d K K =-⨯-=∆1000)1(0eb s C C f f Q X设剩余污泥含水率按99.20%计算,湿污泥量为284.6m 3/d T=10℃时设剩余污泥含水率按99.20%计算,湿污泥量为326.0m 3/d4、复核出水BOD 5K 2=0.0189.80mg/L5、复核出水氨氮浓度微生物合成去除的氨氮N w =0.12ΔX V /Q 冬季微生物合成去除的氨氮ΔN w(10)=10.12mg/L 冬季出水氨氮为N e(10)=N 0-ΔN W(10)=24.88mg/L 夏季微生物合成去除的氨氮ΔN (20)= 3.27mg/L 夏季出水氨氮为N e(20)=N 0-ΔN W(20)=31.73mg/L复核结果表明无论冬季或夏季,仅靠生物合成不能使出水氨氮低于设计标准。

SBR工艺污水处理厂设计计算.

SBR工艺污水处理厂设计计算.

课程设计题目33000m³/d生活污水处理厂设计学院资源与环境工程学院专业环境工程班级环工2012姓名覃练指导教师方继敏、李柏林2015 年 6 月21 日课程设计任务书(环境工程1202班,学号10)设计(论文)题目:33000m3/d生活污水处理厂工艺设计设计(论文)主要内容及技术参数1.污水类别为城市污水,设计流量33000m3/d;2.要求完成污水处理厂主要工艺设计与计算说明书的编写;3.绘制两张单元构筑物的图纸。

要求完成的主要任务及达到的技术经济指标1.按照指导书的深度进行设计与计算说明书的编写;2.绘制两个单元构筑物的图纸(两张1号)3.个人加上自己的进水和出水水质工作进度要求课程设计为期一周,时间安排如下:1.课程设计的讲授1天,设计准备(设计资料、手册、绘图工具准备)1天2.课程设计的计算部分3天3.课程设计的图纸绘制部分2天指导教师(签名)____________系(教研室)主任(签名)____________年月日课程设计指导教师意见书评定成绩_____________ 指导教师(签名)______________年月日摘要:本设计是33000m³/d城市污水处理厂工艺设计,处理工艺采用了SBR工艺。

SBR是一种按间歇曝气方式来运行的活性污泥污水处理技术,又称序批式活性污泥法。

本工艺的主要构筑物包括格栅、污水泵房、沉淀池、SBR、接触消毒池、浓缩池、污泥脱水机房等。

污水进入污水处理厂经过粗格栅后经污水泵房进入到细格栅,再进入平流沉砂池沉砂,再进入SBR池反应,然后进入接触消毒池消毒,污水达到水质要求,经过计量槽后排出污水。

SBR的剩余污泥含水量减少再进入贮泥池,随后进入污泥脱水车间进行脱水,脱水后的污泥外运。

SBR的主要工艺特征是在运行商的有序和间歇操作,SBR工艺的核心是SBR 反应池,该池集均化、初沉、生物降解、二沉等功能与一池,无污泥回流系统。

经过该废水处理工艺的废水可达到设计要求,可以直接排放。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
SBR 在沉淀时属于理想的静止沉淀,固液分离 效果好, 容易获得澄清的出水。剩余污泥含水率 低, 这为后续污泥的处置提供了良好的条件。
LOGO
3、运行操作灵活,效果稳定; SBR 在运行操作过程中, 可以根据废水水量水质的变化、出水水
质的要求调整一个运行周期中各个工序的运行时间、反应器内混合 液容积的变化和运行状态。 4、脱氮除磷效果好;
CASS工艺以推流方式运行,而各反应区则以完全 混合的方式运行以实现同步碳化、硝化和反硝化功能 。
(a)进水、曝气阶段开始; (b)曝气阶段结束;(c )沉淀阶段开始; (d)沉淀阶段结束,撇水阶段开 始;(e)撇水阶段及排泥结束; (f)进水、闲LO置GO 阶
设计任务: 1000m3/d污水处理设计
LOGO
1、流程简单, 运行费用低; SBR法的工艺简单, 便于自动控制,其主要设备
就是一个具有曝气和沉淀功能的反应器, 无需连 续流活性污泥法的二沉池和污泥回流装置, 在大 多数情况下可以省去调节池和初沉池, 系统构筑 物小, 流程简单, 占地面积小、管理方便, 投资 省, 运行费用低。 2、固液分离效果好,出水水质好;
MSBR工艺
LOGO
CASS(CAST/CASP)工艺
(Cyclic Activated
Sludge System /Technology/Process)
该工艺又称为循环式活性污泥法,是由美国Goronszy教授在ICEAS 工艺的基础上研究开发的,它是利用不同微生物在不同的负荷条件下 生长速率差异和污水生物除磷脱氮机理,将生物选择器与传统SBR反 应器相结合的产物。CASS工艺为间歇式生物反应器,在此反应器中进 行交替的曝气-非曝气过程的不断重复,将生物反应过程和泥水分离 过程结合在一个池子中完成。
LOGO
CASS工艺的主要优点 :
可变容器的运行提高了对水质、水量 波动的适应性和 运行操作的灵活性;
良好的沉淀性能; 良好的脱氮除磷效果; CASS工艺入口处设一生物选择器,并进行污泥回流
,保证了活性污泥不断的在选择器中经历了一个高絮 体负荷阶段,从而有利于絮凝性细菌的生长并提高污 泥的活性,使其快速的去除废水中的溶解性易降解基 质,进一步有效的抑制丝状菌的生长和繁殖 ; 工艺流程简单,土建和投资低,自动化程度高。
展。
LOGO
工艺选择
活性污泥法新工艺 氧化沟 SBR工艺--------CASS工艺 AB法
LOGO
1、SBR工艺的工作原理
SBR是活性污泥法的一种变形,它的反应机理和污染物去除机制和 传统活性污泥法相同,只是在运行操作不同。SBR是在单一的反应器内 , 在时间上进行各种目的的不同操作, 故称之为时间序列上的废水处 理工艺,它集调节池、曝气池、沉淀池为一体, 不需设污泥回流系统 。
池内有滞留的处理水,对污水有稀释、缓冲作用,有效抵抗水量和 有机污物的冲击。
LOGO
传统的SBR在应用中有一定的局限 性,如在进水流量较大时,对反应系统 需调节,会增大投资。为了进一步提高 出水水质,出现了许多SBR演变工艺。
CASS 工艺
ICEAS工艺
IDEA工艺
DAT-IAT工艺
UNITANK工艺
项目
BOD5
COD
单位
mg/l
mg/l
进水水质 260
600
出水水质 ≤15
≤50
SS mg/l 320 ≤15
LOGO
条件要求
1 设计满足环境保护的各项规定,污水处理后达到中水水质量标 准。
2 充分考虑二次污染的防治,设备噪声低,尽量减少对周围环境 的影响。污水处理设施的设计和建设必须结合小区的整体规划和 建筑特点,既外观设计上要与小区的建筑环境相协调,以求美观 。
3 在高程布局上要尽量采用立体布局,充分利用地下空间;平面 布局要紧凑,以节省用地。
LOGO
CASS反应器由3个区域组成:生物选择 区、兼氧区和主反应器,每个区的容积比为 1:5:30。污水首先进入选择区,与来自主 反应器的混合液(20%~30%)混合,经过 厌氧反应后进入主反应区,如下图所示 。
CASS反应器构造图
1 生物选择区 2 缺氧区 3 主反应区
LOGO
CASS工艺操作过程
LOGO
城建环工0302 魏海宁 阎小路
LOGO
相关内容
数据要求 条件要求 工艺选择 工艺操作过程 工艺流程图1 设计计算书
出水应用 污泥应Sludge Process)首先 于20 世纪初在英国出现,迄今已有近百年历史,是 当前应用最广泛的污水处理技术之一,该方法自 1914年在英国曼切斯特市建成污水试验厂以来,已 有80多年的历史。目前,它已成为有机废水生物处 理的主体,但是仍存在一些不容忽视的缺点:对冲 击负荷适应能力差,易发生污泥膨胀,处理构筑物 占地面积大、基建投资和运行费用高、管理复杂等。 近几十年来,国内外学者准对以上这些问题进行了 不懈地探索和研究,在供氧方式、运转条件、反应 器形式等方面进行了革新、开发了多种活性污泥法 新工艺,使得活性污泥法朝着高效、节能的方面发
LOGO
SBR工艺的一个完整操作周期有五个阶段 : 进水期(fill)、反应期(react)、沉淀期 (settle)、排水期(draw) 和闲置期(idle)
进水
反应 沉淀 排水 SBR 运行工序图
闲置
LOGO
2、SBR工艺的特点
SBR法最显著的一个特点是将反应和沉淀两道工序放在同一反应器 中进行,扩大了反应器的功能,SBR 是一个间歇运行的污水处理工艺 , 运行时期的有序性, 使它具有不同于传统连续流活性污泥法的一些 特性。
SBR 工艺在时间序列上提供了缺氧、厌氧和好氧的环境条件, 使缺 氧条件下实现反硝化, 厌氧条件下实现磷的释放和好氧条件下的硝 化及磷的过量摄取, 从而有效的脱氮除磷。
LOGO
5、有效防止污泥膨胀; 由于SBR具有理想推流式特点,有机物浓度存在较大的浓度梯度,有
利于菌胶团细菌的繁殖,抑制丝状菌的生长,另外,反应器内缺氧好氧 的变化以及较短的污泥龄也是抑制丝状菌的生长的因素,从而有效地防 止污泥膨胀。 6、耐冲击负荷 ;
相关文档
最新文档