sbr工艺设计计算p

合集下载

经典SBR设计计算(全)

经典SBR设计计算(全)

2433.71 m3/h=
最大空气用量Qmax=
(7)所需空气压力p
(相对压力)
供风管
h1:
道沿程
阻力
供风管
H2:
道局部
阻力
p=h1+h2+h3 +h4+Δh
4112.97 m3/h= 0.001 MPa
0.001 MPa
40.56 m3/mi n
68.5 m3/mi n
h3:
h4:
Δh: p= (8)曝气器数量计 算 A、按供氧能力计算
冬季硝化菌比增长速 度μN(10)=1/θc+bN =
出水氨氮为:Ne(10)
K N (10) N (10)
m(10)
N (10)
(
4 4 q
m b
v v
Q 2 Q g 1 4 )
2
/ 3
6、设计需氧量AOR=
碳化需氧量+硝化需
氧量-反硝化脱氮产
氧量
有机物氧化需氧系数
a'=
污泥需氧系数b'=
冬季μm(10)=μ m(15)e0.098(T-15)× DO/(K0+DO)×[10.833×(7.2-pH)]=
99.20%
计算,湿污 泥量为
99.20%
计算,湿污 泥量为
0.018 16.66 mg/L
274.7 m3/d 296.5 m3/d
7.98 mg/L 17.02 mg/L 1.72 mg/L 23.28 mg/L
0.5 d-1
2 mg/L 1.3 7.2
0.19
(2)标准水温(15 ℃)时硝化菌半速度 常数KN(15)=
冬季KN(10)=KN(15)× e0.118(T-15)=

SBR工艺计算

SBR工艺计算

SBR⼯艺计算⼀、灵捷微电解池采⽤4组并联运⾏,每个池进⽔30min,反应1h,出⽔30min。

1.池体⼤⼩污⽔流量Q=1000 m3/d=42 m3/h单组微电解池⽔量Q1=Q/4=14 m3/h每组微电解池停留时间为1h,则⽔量V1=14 m3取⽔料⽐为2:1,单组微电解池需要微电解材料量为V2= V1/2=7 m3单组微电解池有效容积为V’= V1+ V2=21 m3因体积过⼩,钢砼池体施⼯不便,采⽤Q235的反应罐,取反应罐有效⾼度为3⽶,则可得直径为3⽶。

灵捷微电解池为4组并联的?3*3.5m的罐体。

2、布⽓管道布置(1)管道选择因灵捷微电解池需要⽓量较⼩,根据以往⼯程经验,空⽓管道主管采⽤?63PVC管道,4根⽀管采⽤?32PVC管道,⽀管上均安装⼿动阀门和⽓动(电动)阀门,以达到接⼊⾃控系统⽬的。

(2)管道开孔为使布⽓均匀,罐内采⽤“⽇”字形布置,布⽓管道中⼼线为?1.5m的圆周,圆周上每隔300mm开两个45。

斜向下的?6圆孔,整个圆周均布;布⽓管道中间横管上每隔200mm开两个45。

斜向下的?6圆孔,详见图纸。

3、布⽔管道布置(1)管道选择灵捷微电解池进⽔采⽤⽔泵送⽔,⽔泵流量选⽤42m3/h(扬程根据现场具体情况⽽定),根据Q=πr2v/4,取流速为v= 2.5m3/h,则r=77,取进⽔管道DN80,PVC管道为?90。

主管与4根⽀管均采⽤?90PVC管道,⽀管上均安装⼿动阀门和⽓动(电动)阀门,以达到接⼊⾃控系统⽬的。

(2)管道开孔为使布⽔均匀,罐内采⽤环形布置,布⽓管道中⼼线在布⽓管道的外围,靠近罐体⼀侧,两管道中⼼线间隔150mm,环形管道上每隔100mm开两个45。

斜向下的?20圆孔,整个圆周均布。

⼆、SBR池的设计1、⽔质:2.参数选取2.1 运⾏参数⽣物池中活性污泥浓度:X VSS=2800mgMLVSS/l挥发性组分⽐例:f VSS=0.7 (⼀般0.7~0.8)2.2 碳氧化⼯艺污泥理论产泥系数:Y=0.6 mgVSS/mgBOD5 20℃时污泥⾃⾝氧化系数:K d(20)=0.06 1/d2.3 硝化⼯艺参数硝化菌在15℃时的最⼤⽐⽣长速率:µm(15) =0.47 1/d好氧池中溶解氧浓度:DO=2.0 mg/lNH4-N的饱和常数(T=T min=12℃):K N=10(0.051×T-1.158)=0.28 mg/l硝化菌的理论产率系数:Y N=0.15 mgVSS/mgNH4-N20℃时硝化菌⾃⾝氧化系数:K dN(20)=0.04 1/d安全系数:F S=2.5氧的饱和常数:K O=1.0 mg/l⼆. 好氧池⼯艺设计计算1、参数修正K d (T min)=K d(20)×1.05(Tmin-20)=0.041 1/dµm=µm(15)×e0.098(Tmin-15)×[1-0.833×(7.2-pH)]×[D O/(D O+K O)] =0.331 1/d K dN (T min)=K dN(20)×1.05(Tmin-20)=0.027 1/d2、计算设计泥龄最⼤基质利⽤率:k’=µm/Y N=2.21 mgBOD5/(mgVSS﹒d)最⼩硝化泥龄:tc min=1/(Y N×k’-K dN)=3.29 d设计泥龄:tc=Fs×tc min=14.8 d3、污泥负荷硝化污泥负荷:Un=(1/tc+K dN)/Y N=0.63 mgNH4-N/(mgVSS﹒d)出⽔氨氮浓度:由U N=k’×[N e/(K N+N e)]得N e=U N×K N/(k’-U N)=0.11mg/l碳氧化污泥负荷:U S=(1/tc+K d)/Y=0.18 mgBOD5/(mgVSS﹒d)4、好氧池容积计算BOD氧化要求⽔⼒停留时间:T b=(So-Se)/ (U S×X VSS)= 1.02d=24.5 hBOD5表观产率系数:Y obs=Y/(1+K d×tc)=0.37 mgVSS/mgBOD5硝化细菌在微⽣物中占的百分⽐:硝化的氨氮量N d=TN-0.122Y obs(So-Se)-Ne-0.016 Y obs K d tc(So-Se)=38.6mg/l硝化菌百分⽐fnfn=Yn*N d/ Y obs (So-Se) + Yn*Nd +0.016Y obs K d tc(So-Se)=0.11硝化⽔⼒停留时间TnTn = N d / ( Un*X VSS *fn )= 0.38 d = 9.18 hTb>Tn,取好氧池⽔⼒停留时间为Tb,即49h。

SBR工艺污水处理厂设计计算

SBR工艺污水处理厂设计计算

SBR工艺污水处理厂设计计算设计一个SBR工艺污水处理厂需要进行详细的设计计算,包括处理工艺的选择、处理设备的选型和尺寸等方面。

首先,需要确定污水处理厂的设计流量。

设计流量是指污水处理厂每天处理的污水量。

根据当地的污水排放标准和实际需求,确定设计流量。

接下来,选择适合的工艺流程。

SBR(Sequencing Batch Reactor)工艺是一种将好氧生物法与消化池法相结合的处理工艺。

它包括进水、好氧反应、沉淀、排放等过程。

根据实际情况和处理要求,可以选择其他适合的工艺流程。

在工艺流程确定后,需要选择合适的处理设备。

根据设计流量和工艺要求,选型A/O反应器、混合器、沉淀池、曝气装置等设备。

设备的选型要满足处理效果要求,同时考虑经济性和可操作性。

在设备选型确定后,需要进行尺寸计算。

对于A/O反应器,阻力槽、沉淀池等设备,需要根据设计流量和处理要求计算其尺寸。

计算时需要考虑污泥产生量和停留时间等因素。

此外,还需要进行曝气量、污泥泵选型等计算。

曝气量的计算需要根据污水水质、氧化还原电位、总有机碳等因素确定。

污泥泵选型需要根据污泥产生量、泥浆浓度等因素确定。

最后,需要进行污泥处理的设计计算。

根据设计流量和污泥产生量,确定污泥浓度和污泥堆肥的处理能力。

总之,设计一个SBR工艺污水处理厂需要进行详细的设计计算,包括处理工艺的选择、处理设备的选型和尺寸、曝气量和污泥泵选型等方面的计算。

这些计算需要考虑处理要求、经济性和可操作性等因素,以确保污水处理厂的正常运行和处理效果。

设计计算的准确性对于污水处理厂的建设和运营至关重要,需要专业人士进行相关计算和验证。

SBR设计计算表

SBR设计计算表

u=7.4*104*MLSS-1.7
当MLSS>3000mg/L时,
u=4.6*104*MLSS-1.26
曝气池滗水高度h1
沉淀时间ts= 取值
4 周期时间t=
6
m3
1.5 h
0.5 h
4000 mg/L 1.33 m/h
1.2 m
1.278195489 h 1.3 h
安全水深 ε
2)曝气池 体积V
取值
0.041 d-1
Kd(25)=Kd(20)*1.04T-20
0.072999174 0.073 d-1
冬季剩余生
物污泥量为
ΔXv(10) YQ(S0 Se) eKdVf X
1000
1000
ΔXv(10)=
1004.18472 Kg/d
夏季剩余生
物污泥量为
ΔXv(25)=
459.54216 Kg/d
SBR计算
一、设计条 件
设计处理水量Q= 总变化系数Kz=
进水水质:
进水CODCr= BOD5=S0= TN= NH4+-N= TP0= 碱度SALK= TSS=Co= VSS=
fb=VSS/SS=
夏季平均温度T1=
冬季平均温度T2=
12000 m3/d= 1.57
450 mg/L 250 mg/L 45 mg/L 35 mg/L
剩余污泥含水率
99.20%
夏季湿污泥量为
256.94277 Kg/d
6)复核污
泥龄 冬季污泥龄
θC(10) fXV总n2ta 241000ΔXv(10)
16.94915254 d-1
夏季污泥龄 θC(25)
fXVn2ta

sbr计算参数

sbr计算参数

θCF
d
θCD
d
θC
d
11.0 3.6
16.5
Y kgSS/kgBOD5
1.148
ST
kg
144133.5
Qh
m3/h
T's
h
2880 1.83
10.0
10.1 2.1
15.1 0.945 28246
556 1.83
10.0
10.1 2.1
15.1 0.945 28246
556 1.83
4.3 反应池池容(间歇进水)
15
1.12 设计最低水温
T

10
12
12
1.13 污泥指数
SVI
mL/g
150
160
160
2 选定参数
2.1 周期时长 2.2 周期数
TC
h
6
6
6
N
次/天
4
4
4
2.3 反应时间 2.4 沉淀时间
TF
h
4
4
4
Ts
h
1
1
1
2.5 滗水时间 2.6 池水深度
Tch

H
m
1
1
1
5
4.5
4.5
2.7 安全高度 2.8 保护层水深 3 计算污泥量
8.20 8.21 8.22 8.23
回流泵配电机额定功率 剩余污泥与排出 污泥增值系数 污泥自身氧化率 每天污泥净产量 去除每千克BOD产泥量 剩余污泥排出浓度 每天排剩余污泥体积 单池周期排泥体积 每次排泥时间 剩余污泥泵设计流量 剩余污泥泵设计扬程 剩余污泥泵选用台数 单台泵设计流量 剩余污泥泵有效功率 剩余污泥泵综合效率 剩余泵需配电机功率 剩余泵配电机额定功率 耗氧量计算 每天去除BOD的量 碳的氧当量 每天去除总氮的量 活性污泥含氮量 氨氮的氧当量 细菌细胞的氧当量 反消化回收氧系数 反消化氨氮量 每天排出的活性污泥量 设计需氧量 去除每千克BOD耗氧量 折算为20℃标准供气量 曝气器氧转移效率 气泡离开水面的氧百分 比 曝气器的安装高度 当地大气压 曝气器的绝对压力 设计最低水温下氧饱和 度 氧的平均浓度 20℃下的氧平均浓度 表面活性剂的影响系数 含盐量的影响系数 当地大气压的影响系数 污水实际溶解氧浓度

SBR工艺工程设计计算书(包含碳泥龄和污泥指数取值)

SBR工艺工程设计计算书(包含碳泥龄和污泥指数取值)

3.3'反应泥龄试算值θ'CF d10.011.0 4.6甲乙丙丁戊己1进水2进水3进水4进水5进水6进水7进水进水8进水进水9进水进水10进水进水11进水进水曝气12进水进水曝气13进水进水曝气14进水进水曝气15进水进水沉淀论文例子:6池运行状态排布图16进水进水滗水17进水进水曝气18进水进水曝气19进水进水曝气20进水进水曝气21进水进水沉淀22进水进水滗水23进水进水曝气24进水进水曝气次1进水进水曝气次2进水进水曝气次3进水进水沉淀次4进水进水滗水次5进水进水曝气次6进水进水曝气次7进水进水曝气次8进水进水曝气次9进水进水沉淀次10进水进水滗水甲乙丙1进水2进水3进水4进水5进水曝气6进水曝气7进水曝气8进水曝气9进水沉淀3池运行状态排布图10进水滗水11进水曝气12进水曝气13进水曝气14进水曝气15进水沉淀16进水滗水17进水曝气18进水曝气19进水曝气20进水曝气21进水沉淀22进水滗水23进水曝气24进水曝气曝气曝气沉淀滗水。

SBR工艺污水处理厂设计计算.

SBR工艺污水处理厂设计计算.

课程设计题目33000m³/d生活污水处理厂设计学院资源与环境工程学院专业环境工程班级环工2012姓名覃练指导教师方继敏、李柏林2015 年 6 月21 日课程设计任务书(环境工程1202班,学号10)设计(论文)题目:33000m3/d生活污水处理厂工艺设计设计(论文)主要内容及技术参数1.污水类别为城市污水,设计流量33000m3/d;2.要求完成污水处理厂主要工艺设计与计算说明书的编写;3.绘制两张单元构筑物的图纸。

要求完成的主要任务及达到的技术经济指标1.按照指导书的深度进行设计与计算说明书的编写;2.绘制两个单元构筑物的图纸(两张1号)3.个人加上自己的进水和出水水质工作进度要求课程设计为期一周,时间安排如下:1.课程设计的讲授1天,设计准备(设计资料、手册、绘图工具准备)1天2.课程设计的计算部分3天3.课程设计的图纸绘制部分2天指导教师(签名)____________系(教研室)主任(签名)____________年月日课程设计指导教师意见书评定成绩_____________ 指导教师(签名)______________年月日摘要:本设计是33000m³/d城市污水处理厂工艺设计,处理工艺采用了SBR工艺。

SBR是一种按间歇曝气方式来运行的活性污泥污水处理技术,又称序批式活性污泥法。

本工艺的主要构筑物包括格栅、污水泵房、沉淀池、SBR、接触消毒池、浓缩池、污泥脱水机房等。

污水进入污水处理厂经过粗格栅后经污水泵房进入到细格栅,再进入平流沉砂池沉砂,再进入SBR池反应,然后进入接触消毒池消毒,污水达到水质要求,经过计量槽后排出污水。

SBR的剩余污泥含水量减少再进入贮泥池,随后进入污泥脱水车间进行脱水,脱水后的污泥外运。

SBR的主要工艺特征是在运行商的有序和间歇操作,SBR工艺的核心是SBR 反应池,该池集均化、初沉、生物降解、二沉等功能与一池,无污泥回流系统。

经过该废水处理工艺的废水可达到设计要求,可以直接排放。

SBR工艺设计及计算

SBR工艺设计及计算

1、普通SBR
SBR工艺的优化
1.反应池数量与运行周期的优化 对反应池数量(原则上大于2座)、运行周期、排水比 进行核算
2.曝气系统的优化 控制各组反应池的曝气时间,尽可能实现交替曝气, 提高风机的利用率
3.出水的优化 控制出水时间和周期,实现均匀出水,提高后续设备 的利用率
1、普通SBR 主要设备
组合式构造方法,利于废水处理厂的扩建和改造 处理后出水水质好
良好的自控系统,良好的脱氮除磷效果
1、序列间歇式活性污泥法(Sequencing Batch Reactor Activated Sludge Process, SBR)
局限性:
①由于工艺过程对自控系统要求较高,所以自控仪表、元件 质量的好坏直接影响到工艺的正常运行,并对操作和维护人 员的技术水平要求很高;
SBR工艺设计及计算
目录
一、SBR工艺介绍 二、预处理段设计 三、生化阶段设计
一、 SBR工艺介绍
1、序列间歇式活性污泥法(Sequencing Batch Reactor Activated Sludge Process, SBR)
1.1 概述
1914年,由英国学者Ardern和Locket发明。是一种 比较成熟的污水处理工艺。
2、 常见SBR工艺的变种
2.4 DAT—IAT工艺------连续和间歇曝气工艺
200-400%
3h
连续
连续 溶氧1.5-2.5mg/L
间歇
2、 常见SBR工艺的变种
2.5AICS工艺------交替式内循环活性污泥法
沉淀区负荷宜在1.52.5m3/(m2.h)
2、 常见SBR工艺的变种
沉淀区负荷宜在1.02.0m3/(m2.h)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
城建环工0302 魏海宁 阎小路
相关内容
数据要求 条件要求 工艺选择 工艺操作过程 工艺流程图1 设计计算书
出水应用 污泥应用 相关图纸
活性污泥法(Activated Sludge Process)首先 于20 世纪初在英国出现,迄今已有近百年历史,是 当前应用最广泛的污水处理技术之一,该方法自 1914年在英国曼切斯特市建成污水试验厂以来,已 有80多年的历史。目前,它已成为有机废水生物处 理的主体,但是仍存在一些不容忽视的缺点:对冲 击负荷适应能力差,易发生污泥膨胀,处理构筑物 占地面积大、基建投资和运行费用高、管理复杂等。 近几十年来,国内外学者准对以上这些问题进行了 不懈地探索和研究,在供氧方式、运转条件、反应 器形式等方面进行了革新、开发了多种活性污泥法 新工艺,使得活性污泥法朝着高效、节能的方面发
展。
工艺选择
活性污泥法新工艺
氧化沟 SBR工艺--------CASS工艺 AB法
1、SBR工艺的工作原理
SBR是活性污泥法的一种变形,它的反 应机理和污染物去除机制和传统活性污泥法 相同,只是在运行操作不同。SBR是在单一 的反应器内, 在时间上进行各种目的的不同 操作, 故称之为时间序列上的废水处理工艺, 它集调节池、曝气池、沉淀池为一体, 不需 设污泥回流系统。
SBR 在沉淀时属于理想的静止沉淀,固液分 离效果好, 容易获得澄清的出水。剩余污泥含水 率低, 这为后续污泥的处置提供了良好的条件。
3、运行操作灵活,效果稳定;
SBR 在运行操作过程中, 可以根据废 水水量水质的变化、出水水质的要求调整 一个运行周期中各个工序的运行时间、反 应器内混合液容积的变化和运行状态。
CASS工艺的主要优点 :
可变容器的运行提高了对水质、水量 波动的适应性和 运行操作的灵活性; 良好的沉淀性能; 良好的脱氮除磷效果; CASS工艺入口处设一生物选择器,并进行污泥回流, 保证了活性污泥不断的在选择器中经历了一个高絮体 负荷阶段,从而有利于絮凝性细菌的生长并提高污泥 的活性,使其快速的去除废水中的溶解性易降解基质, 进一步有效的抑制丝状菌的生长和繁殖 ; 工艺流程简单,土建和投资低,自动化程度高。
SBR工艺的一个完整操作周期有五个阶段: 进水期(fill)、反应期(react)、沉淀期 (settle)、排水期(draw) 和闲置期(idle)
进水
反应
沉淀 排水


SBR 运行工序图
2、SBR工艺的特点
SBR法最显著的一个特点是将反应和 沉淀两道工序放在同一反应器中进行, 扩大了反应器的功能,SBR 是一个间歇 运行的污水处理工艺, 运行时期的有序 性, 使它具有不同于传统连续流活性污 泥法的一些特性。
1、流程简单, 运行费用低;
SBR法的工艺简单, 便于自动控制,其主要设备 就是一个具有曝气和沉淀功能的反应器, 无需连 续流活性污泥法的二沉池和污泥回流装置, 在大 多数情况下可以省去调节池和初沉池, 系统构筑 物小, 流程简单, 占地面积小、管理方便, 投资 省, 运行费用低。
2、固液分离效果好,出水水质好;
≤50
≤15
条件要求
1 设计满足环境保护的各项规定,污水处理后达到中水水质量标 准。
2 充分考虑二次污染的防治,设备噪声低,尽量减少对周围环境 的影响。污水处理设施的设计和建设必须结合小区的整体规划和 建筑特点,既外观设计上要与小区的建筑环境相协调,以求美观。
3 在高程布局上要尽量采用立体布局,充分利用地下空间;平面 布局要紧凑,以节省用地。
4、脱氮除磷效果好;
SBR 工艺在时间序列上提供了缺氧、厌 氧和好氧的环境条件, 使缺氧条件下实现 反硝化, 厌氧条件下实现磷的释放和好氧 条件下的硝化及磷的过量摄取, 从而有效 的脱氮除磷。
5、有效防止污泥膨胀;
由于SBR具有理想推流式特点,有机物浓 度存在较大的浓度梯度,有利于菌胶团细菌 的繁殖,抑制丝状菌的生长,另外,反应器 内缺氧好氧的变化以及较短的污泥龄也是抑 制丝状菌的生长的因素,从而有效地防止污 泥膨胀。
4 污水处理系统维护管理方便,工程施工周期短,使用寿命长。 污水处理系统能自动运行,经常运行费用低,总投资少。
5 系统处理程度高,污泥产量少,并尽可能采用节能技术。处理 构筑物对水力负荷和有机物负荷的适应范围较大,使系统有较好 的经手冲击负荷能力。
6、耐冲击负荷 ;
池内有滞留的处理水,对污水有稀释、 缓冲作用,有效抵抗水量和有机污物的冲击。
传统的SBR在应用中有一定的局限性, 如在进水流量较大时,对反应系统需调 节,会增大投资。为了进一步提高出水 水质,出现了许多SBR演变工艺。
CASS 工艺 ICEAS工艺 IDEA工艺 DAT-IAT工艺 UNITANK工艺 MSBR工艺
(a)进水、曝气阶段开始; (b)曝气阶段结束;(c) 沉淀阶段开始; (d)沉淀阶段结束,撇水阶段开始; (e)撇水阶段及排泥结束; (f)进水、闲置阶段
设计任务: 1000m3/d污水处理设计
项目 单位
BOD5 mg/l
COD mg/l
SS mg/l
进水水质 260
600
320
出水水质 ≤15
CASS反应器由3个区域组成:生物选择 区、兼氧区和主反应器,每个区的容积比为 1:5:30。污水首先进入选择区,与来自主 反应器的混合液(20%~30%)混合,经过 厌氧反应后进入主反应区,如下图2 缺氧区 3 主反应区
CASS工艺操作过程
CASS工艺以推流方式运行,而各反应区则以完全 混合的方式运行以实现同步碳化、硝化和反硝化功能。
CASS(CAST/CASP)工艺
(Cyclic Activated Sludge System
/Technology/Process)
该工艺又称为循环式活性污泥法,是由 美国Goronszy教授在ICEAS工艺的基础上研 究开发的,它是利用不同微生物在不同的负 荷条件下生长速率差异和污水生物除磷脱氮 机理,将生物选择器与传统SBR反应器相结 合的产物。CASS工艺为间歇式生物反应器, 在此反应器中进行交替的曝气-非曝气过程 的不断重复,将生物反应过程和泥水分离过 程结合在一个池子中完成。
相关文档
最新文档