第九章 电磁感应-电磁场(二)作业答案

合集下载

第九章 电磁感应参考答案

第九章 电磁感应参考答案

第九章 电磁感应参考答案学 生 用 书§9.1 电磁感应电流条件 楞次定律【典型例题】[例1]1.根据感应电流的产生条件可知,BC 有感应电流,AD没有感应电流.[例2]磁铁向下运动时,穿过线圈的磁通量增加;根据楞次定律可知,线圈中产生感应电流的磁场方向与原磁场方向相反(向上),与原磁场相互排斥;再由安培定则可判定感应电流的方向(即图中箭头方向相同),故本题应选B .[例3]BC (要产生B 环中所示的电流,感应磁场方向为垂直纸面向外,由楞次定律知A 环内的磁场应向里增强或向外减弱,由安培定则可知BC 正确.)[例4]D (金属线框进入磁场时,由于穿过线框的磁通量增加,产生感应电流,根据楞次定律判断电流的方向为a b c d a →→→→.金属线框离开磁场时,由于穿过线框的磁通量减小,产生感应电流,根据楞次定律判断电流的方向为a d c b a →→→→.根据能量转化和守恒定律可知,金属线框的机械能将逐渐减小,转化为电能,如此往复摆动,最终金属线框在匀强磁场内摆动,由于d 0 L ,满足单摆运动的条件,所以,最终为往复运动.) 【当堂反馈】1.当滑动变阻器滑动触头左右滑动时,通电线圈在铁芯内部产生磁场的磁通量发生变化,故a 、b 两环中有感应电流,而穿过c 环的合磁通总为零,故c 环中无感应电流,本题选A .2.AD (据楞次定律,当S 闭合时,穿过B 线圈的磁场方向向上且在增大,B 线圈中的感应电流产生的磁场方向与之相反,进而判断出通过电流表的电流方向自左向右,根据楞次定律用同样方法可判断D 正确. )3.电键S 从位置1拨到位置2的过程中,通过左边线圈的电流先减小到零、再增加到原来值,穿过右边线圈向右的磁通量先增大后减小,由楞次定律和安培定则可得电流计中的电流方向.故本题选C .§9.2 法拉第电磁感应定律【典型例题】[例1]A (螺旋桨叶片在磁场中垂直旋转切割产生的感应电动势===ω221Bl v Bl E πfl 2B ,再由右手定则可知a 点电势低于b 点电势.)[例2]A (设开始时导轨d 与Ob 的距离为x 1,导轨c 与Oa 的距离为x 2,由法拉第电磁感应定律知,移动c 或d 时产生的感应电动势E==,通过导体R 的电量为Q=IΔt=Δt=.由上式可知,通过导体R 的电量与导轨d 或c 移动的速度无关,由于B 与R 是定值,其电量取决于所围面积的变化.由于ΔS 1=ΔS 2=ΔS 3=ΔS 4,则通过电阻R 的电量是相等的,即Q 1=Q 2=Q 3=Q 4.[例3](1)感应电动势E=ΔΦ/Δt =SΔB/Δt =k L1L2感应电流I=E/R=kL 1L 2/R ,方向从f 到e(2)因棒处于平衡,外力与安培力大小相等,方向水平向右, RL kL kt B BIL F 22101)(+==(3)为使棒中无感应电流,就要保持穿过abef 闭合回路的磁通量不变.即Φ=BS=BL1(L2+vt )=B0L1L2 得022B vtL L B +=,即B随t 按此规律减小.【当堂反馈】1.C (导体棒切割磁感线运动产生感应电动势BLv E =,R 1、R 2为相互并联的外电路,再由欧姆定律可得出本题应选C .)2.B (U =BLv )3.A (导体棒ab 在框架上向右匀速滑动切割磁感线,产生的感应电动势E =BLv 不变,而I =E /R 总,则回路中产生的感应电流逐渐减小.由t I Q =可知Q 1>Q 2.)4.A (由i=E/R=S B R t∆∆·∝Bt ∆∆=k 可知,在0—4T和2T—34T时间内i 的大小相等.在0—4T和2T—34T时磁场分别是垂直纸面向里减小和向外减小,现由楞次定律和安培定则可知其方向分别为顺时针和逆时针.)§9.3 互感和自感 电磁感应中的电路问题【典型例题】[例1]AD [(1)在图(a )中,设开关S 闭合时,上、下两支路电流分别为I 1、I 2,依题意知:I 1<I 2.在开关S 断开时,通过电阻R 的电流I 2立即消失;但由于线圈中产生自感现象,通过线圈电流不能突变,其大小只从I 1开始逐渐减小.因此开关断开前,通过灯泡的电流为I 1,断开后灯泡电流从I 1开始逐渐减小,所以灯泡D 在断开开关后逐渐变暗.(2)在图(b )中,设开关闭合时,上、下两支电路的电流分别为I 1′、I 2′,依题意知,I 1′>I 2′.当开关S 断开后,通过灯泡原电流I 2′立即消失;但线圈中产生自感现象,线圈中电流大小、方向不发生突变,在L 、R 、D 回路中,电流均从线圈中原电流I 1′开始逐渐减小.因此,开关闭合时,灯泡电流为I 2′;断开后,灯泡中电流突然增加为I 1′,并从I 1′开始逐渐减小,故开关断开时灯泡先闪亮,后逐渐变暗.][例2]只有左边有匀强磁场,金属板在穿越磁场边界时(无论是进入还是穿出),由于磁通量发生变化,板内产生涡流.根据楞次定律,涡流将会阻碍相对运动,所以摆动会很快停下来,这就是电磁阻尼现象.还可以用能量守恒来解释:有电流产生,就一定有机械能向电能转化,摆的机械能将不断减小.若空间都有匀强磁场,穿过金属板的磁通量不变化,无感应电流,不会阻碍相对运动,摆动就不会很快停下来.[例3]MN 滑过的距离为l /3时,它与bc 的接触点为P ,如图所示.由几何关系可知MP 长度为l /3,MP 中的感应电动势E =31Blv ,MP 段的电阻r =31R ,MacP 和MbP 两电路的并联电阻为r 并=32313231+⨯R =92R .由欧姆定律,PM 中的电流I =并r r E +,ac 中的电流I ac =32I ,解得I ac =RBlv 52.根据右手定则,MP 中的感应电流的方向由P 流向M ,所以电流I 的方向由a 流向c .R R 2【当堂反馈】 1.AC2.C3.D (导体棒转至竖直位置时,感应电动势E=B·2a·v/2=Bav 电路中总电阻R 总=+=R ,总电流I==,AB 两端的电压U=E-I·=Bav .)4.BCD (合上S 时,电感线圈产生自感电动势阻碍通过其电流的增加,电流只能逐渐增大,故A 、B 同时亮,以后A 灯逐渐变亮、B 灯逐渐变暗,由于线圈直流电阻为零,电路稳定时B 熄灭;断开S 时,A 灯电流为零立即熄灭,线圈产生自感电动势阻碍通过其电流的减小,与B 灯形成闭合电路,B 灯先闪亮、后熄灭.)§9.4 电磁感应中的力学问题【典型例题】[例1]A (给ef 一个向右的初速度,则ef 产生感应电动势,回路中产生感应电流.由楞次定律可以判断,ef 受到一个向左的安培力的作用而减速,随着ef 的速度减小,ef 产生的感应电动势减小,回路的感应电流减小,安培力减小,因此可以判断ef 是做加速度逐渐减小的减速运动.)[例2](1)受到竖直向下的重力,垂直斜面向上的支持力,和平行于斜面向上的安培力. (2)当ab 杆速度为v 时,感应电动势E =BL v ,此时电路中的电流I =E /R =BL v /R ,而ab 杆受到的安培力F =BIL =B 2L 2v /R .由牛顿第二定律,有mg sin θ-F =ma ,即a =g sin θ-B 2L 2v /mR .(3)当mg sin θ=B 2L 2v m /R 时,ab 杆达到最大速度v m ,则v m =mgR sin θ /B 2L 2. [例3](1)感应电动势E =Blv ,E I R= 所以 I =0时,v =0则: 22vx a==1m(2)最大电流 0m Blv I R= 022m I Blv I R'==安培力 2202B l v f I Bl R'===0.02N向右运动时 F +f =maF =ma -f =0.18N 方向与x 正向相反 向左运动时 F -f =maF =ma +f =0.22N 方向与x 正向相反 (3)开始时 v =v 0, 22m B l v f I B l R==F f m a += 22B l v F m a f m a R=-=-当v 0<22m aR B l =10m/s 时,F >0 方向与x 正向相反 当v 0>22m aRB l=10m/s 时,F <0 方向与x 正向相同[例4](1)在金属棒棒未进磁场,电路中总电阻:R 总=R L +R/2=4+ 2/2 = 5Ω线框中感应电动势:V V t BS t E 5.025.0241=⨯⨯=∆∆=∆∆=φ 灯泡中的电流强度 :A A R EI L 1.055.0===总(2)因灯泡中亮度不变,故在4秒末金属棒棒刚好进入磁场,且作匀速直线运动,此时金属棒棒中的电流强度:0.14(0.1)0.32L LL R L I R I I I I A A R⨯=+=+=+=恒力F 的大小:F = F A = BId= 2×0.3×0.5 N = 0.3 N(3)金属棒产生感应电动势:V V RR RR R I E L L 1)42422(3.0)(2=+⨯+⨯=++=金属棒在磁场中的速度:s m s m BdE v /1/5.0212=⨯==金属棒的加速度:2/41s m t v a ==据牛顿第二定律,金属棒的质量:kg kg a F m 2.125.03.0===【当堂反馈】1.BC (当金属杆所受合力为零时速度最大,则有22sin /m m g B L v R α=,22sin m m gR v B Lα=.)2.D (由楞次定律可知G 中电流向下,导体棒在外力和安培力作用下作加速度减小的加速运动,穿过左边回路的磁通量增加越来越慢,最后CD 匀速运动时,G 中无感应电流.) 3.D (在II 位置,没有磁通量变化,所以没有感应电流,也不存在安培力,线框只受重力,所以加速度为g .在I 位置和III 位置有磁通量变化,有感应电流,也就存在安培力.在位置III 时速度大,所以在位置III 的安培力大,合力小了,所以加速度小了.即a 3<a 1.)4.(1)金属棒开始下滑的初速度为零,根据牛顿第二定律mg sin θ-μmg cos θ=ma ①由①式解得: a =4m/s 2 ②(2)设金属棒运动达到稳定时,速度为v ,所受安培力为F ,棒在沿导轨方向受力平衡 mg sin θ-μmg cos θ-F =0 ③此时金属棒克服安培力做功的功率等于电路中电阻R 消耗的电功率 Fv =P ④由③④两式解得 10P v F==m/s ⑤(3)设电路中电流为I ,两导轨间金属棒长为l ,磁场的磁感应强度为B B l v I R=⑥P =I 2R ⑦由⑥⑦两式解得 0.4B vl==T ,磁场方向垂直导轨平面向上.§9.5 电磁感应中的能量转化和图象问题【典型例题】[例1]ABD (2EQ R=,而E t∆φ∆=,随交变电流的电压、频率的增大而增大.)[例2]B [由(甲)图可知在0—1 s 内磁感应强度均匀增大,产生恒定的感应电流,根据楞次定律可判断感应电流的方向为逆时针,导体棒受到的安培力的方向是水平向左,棒静止不动,摩擦力方向水平向右,为正方向.同理,分析以后几秒内摩擦力的方向,从而得出f —t 图象为B 图.][例3](1)由右手定则可知:棒切割磁感线运动产生感应电流I 感方向由a→b ,棒受力的右侧视图如图示.当棒速稳定时棒受力平衡.设此时棒速为v .则有: P=Fv ① 由平衡条件得到:F=mgsinθ+F 安 ② F 安=BIL ③ I= E/R ④ E=BLv ⑤由①—⑤得到:v 2+v-6=0 v=2 m/s(负值舍去) (2)由动能定理得:W F -W 安-mgh=mv 2 ⑥W F =Pt ⑦ h=Ssin30°=2.8sin30° m=1.4 m ⑧ 联立得到:t=代入数据得t=1.5 s【当堂反馈】1.AD (剪断细线后,弹簧的作用使两棒分离,穿过回路的磁通量增大,回路中产生感应电流,但两棒运动方向相反,安培力的方向也相反,由于有感应电流的产生,系统的机械能减小,向电能转化.)2.C (通电螺线管内部产生的是匀强磁场,外部的磁场和条形磁铁的磁场相似,故B 从O 点进入螺线管时通过B 的磁通量是增加的;进入螺线管内部后,由于是匀强磁场,通过B 的磁通量不再变化,因而B 中没有感应电流;当B 从螺线管内部出来的过程,通过B 的磁通量则是减小的,所以在B 中会产生一个和进入时方向相反的感应电流.)3.(1)ab 边产生的感应电动势为E =BLv ① 线框中的感应电流为I =E /R ②ab 边所受的安培力F =BIL ③ 由①、②、③式代入数据解得 F =5×10-2N (2)线框中产生感应电流的时间 t =2s /v ④整个过程中线框所产生的焦耳热Q =I 2Rt ⑤由②、④、⑤式代入数据解得 Q =0.01J(3)在0~5×10-2s 时间内,ab 两端的电势差为15.0431=⋅=R I U V在5×10-2s ~1×10-1s 时间内,ab 两端的电势差为 U 2=E =0.2V在1×10-1s ~1.5×10-1s 时间内,ab 两端的电势差为05.0411=⋅=R I UVU ab /V t/s0.050.10 0.15 0.20 0.05 0.10 0.200.15电势差U随时间t变化的图线如图所示ab作业本§9.1 电磁感应电流条件楞次定律1.D2.B3.C(AB不动而CD右滑时,I≠0,但方向是逆时针,故A错.AB向左、CD向右滑动时,回路磁通量增加,I≠0,故B错.AB、CD向右等速滑动时,回路磁通量不变,I=0,故C对.AB、CD都向右滑但AB速度大于CD速度时,回路磁通量变化,I≠0,但方向是顺时针,故D错.)4.D(根据楞次定律的“阻碍”思想,安培力与重力总是相反的,所以D正确.)5.B(线圈C向右摆动,由楞次定律可知,线圈中电流产生的磁场减小,故导线ab应减速切割磁感线运动.)6.B(穿过回路的磁通量先增大后减小,由楞次定律可知,感应电流方向先是b→a,后变为a→b;再由左手定则可得,所受磁场力方向与ab垂直,开始为图中箭头所示反方向,后来变为箭头所示方向.)7.D(由楞次定律的推广含义判断.)8.B(线框中的合磁通量先是向纸外减小,后是向纸内增大,由楞次定律可得线框中感应电流的方向始终沿dcbad方向.)9.BC(若是匀强磁场,,则不产生感应电流,机械能守恒;若是非匀强磁场,则产生感应电流,由能量守恒定律可知,机械能能转化为电能.)10.D(由楞次定律可确定在t1—t2时间内A中电流为逆时针(此时B中电流为顺时针),异向电流相斥. )11.BC[a盘在外力作用下逆时针转动,其半径切割磁感线产生感应电动势,两圆盘中心与边缘通过导线构成闭合回路有感应电流.a盘受安培力为阻力,b盘中受安培力为动力,由右手定则得出电流流向,由左手定则判定b盘中安培力的方向,故B选项正确.b盘被动转动,其角速度一定小于a盘的角速度(若相等则无电流,b不会受安培力.]12.BC(本题可采用逆向推导,由果寻因,由左手定则、安培定则可得铁芯中感应电流的磁场方向向上,再由楞次定律和安培定则进行分析判断.)13.BD(认为超导体不消耗电能,由状态分析受力情况,从而确定磁极与电流的方向关系. )14.(1)如图所示(2)相反(3)相同§9.2 法拉第电磁感应定律1.D2.D (将磁铁缓慢或迅速插到闭合线圈的同一位置,磁通量的变化率不同,感应电流I= =N ,感应电流的大小不同,流过线圈横截面的电荷量q=I·Δt=N ·Δt=N,两次磁通量的变化量相同,电阻不变,所以q 与磁铁插入线圈的快慢无关.)3.D (横杆匀速滑动时,由于E =BLv 不变,故I 2=0,I 1≠0.加速滑动时,由于E =BIv 逐渐增大,电容器不断充电,故I 2≠0,I 1≠0.)4.D (电压表为理想电压表,故V 表读数为M 金属杆转动切割磁感线时产生的感应电动势的大小. U 0=B 0ω0r 2,mU 0=nB 0ω′r 2(r 为M 的长度),则ω′=ω0. )5.ABD (由E N B Lv =,04LN R S ρ=,2EP R=分析得出.)6.32Bd v /(3R ),自上向下7.E =N ΔΦ/t =10⨯0.2sin ︒30⨯0.2⨯0.2/0.1=0.4(V)8.线框受竖直向下的重力和安培力及竖直向上的拉力作用,由平衡条件,有2mg =mg +BIL ,由法拉第电磁感应定律,得感应电动势E =Δφ /Δt =ΔB /Δt ·S =kL 2/2,有闭合电路欧姆定律,得I =E /R ,据题意有B =kt .联立以上各式,有t =322Lk mgR .9.(1)E =BLv =0.1v (2) =-=m Rv l B F a /)(22 4.5 m/s2(3) 达到的最大速度时合力为零,022=-Rv l B F m,代入数据解得v m =10 m/s .10.(1)不管粒子带何种电荷,匀速运动必有Eq qB v =0 ①,即MN 板带正电,棒AB 向左运动,设AB 棒以速度v 向左运动,产生感应电动势为E vlB = ②,∴ q lvlB qB v =0 ③得 v =v 0(2)当AB 棒停止运动后,两扳通过AB 放电板间电场消失,仅受磁场力作圆周运动,位移为R qB mv =/0时转过圆心角60o.∴qBm T t 36π==④11.本题在流量计中产生的感应电动势可等效为长为c 的导体以流体速度v 切割磁感线产生的电动势,故E =Bcv ,所以I =Rr E +,r =ρabc ,而流量Q =vS =vbc ,联立以上各式解得Q =BI (bR +ρac ).§9.3 互感和自感 电磁感应中的电路问题1.A (由右手定则可得感应电流的方向,而122B lv U IR R vB l R==⋅=.)2.BC (在断开电键时,L 中原电流减小,由于自感作用,产生与原电流方向相同的自感电流流经灯泡,故灯不会立即熄灭,A 错;自感现象中阻碍L 中电流的减小,但阻止不了电流的减小,该减小是在原电流大小基础上减小的.原来L 中电流大于灯中电流,故自感电流通过灯泡的初始阶段,灯中的电流大于原来的电流,故灯应比原来更亮一下最后熄灭,B 正确;当用电阻代替L 时,断开K 不存在自感,A 应立即熄灭,则C 对,D 错.)3.B 4.B (在四个图中,产生的电动势大小均相等(E ),回路电阻均为4r ,则电路中电流亦相等(I ).B 图中,ab 为电源,U ab =I ·3r =3E /4,其他情况下,U ab =I ·r =E /4.)5.A (油滴恰好处于静止状态时 /mg qU d =,而22E n U t ∆φ∆==,解得t∆φ∆=2mgd /(nq ).) 6.BC (电路接通时,两个支路中的电流都要增大,自感线圈要产生自感电动势,左正右负,阻碍电流的增大;而电阻没有这样的性质,因此B 对,但阻碍并不阻止,电流还是增大了,因此最后两灯一样亮.在开关断开时,两个支路中的电流都要减小,L 中产生的自感电动势左负右正,阻碍电流的减小,两个支路形成了闭合回路,线圈中的能量通过闭合回路使A 、B 灯亮一会儿才熄灭.)7.C (导体圆环受到向上的磁场作用力,说明穿过它的磁通量减小.)8.D9.对油滴,qE =mg ,电场力向上.又因为油滴带负电,故场强向下,电容器上极板带正电,下极板带负电,线圈N 感应电动势正极在上端,负极在下端.由楞次定律知ab 向右减速运动或向左加速运动.10.(1)a 、b 杆上产生的感应电动势为E =BLv =0.50 V .根据闭合电路欧姆定律,通过R 0的电流I =RR E +0=0.25 A.(2)由于ab 杆做匀速运动,拉力和磁场对电流的安培力F 大小相等,即 F 拉=F =BIL =0.025 N.(3)根据欧姆定律,ab 杆两端的电势差U ab =0R R ER+=R R BLvR+=0.375 V .11.(1)0043BLv R RBLv IR U adcb adcb AB ====;(2)Rv L B v L R I Q 03202=⋅=12.(1)粒子带负电. AB 棒向右运动,由右手定则可知,棒内产生的感应电流方向由B 到A ,所以金属板的a 板电势高,板间有由a 指向b 的匀强电场.由于粒子所受的重力mg 和电场力qE 都是恒力,所以必有重力和电场力相平衡,而洛伦兹力提供向心力,即电场力必为竖直向上,故粒子必带负电.(2)AB 棒中的感应电动势为:E =BLv电容器极板a 、b 上的电压就是电阻R 0上的电压U =重力和电场力平衡,有:mg=q粒子在极板间做匀速圆周运动,洛伦兹力提供向心力,有:qvB =m粒子的轨道半径满足:R≤,解得:v ≤1.0 m/s§9.4 电磁感应中的力学问题1.ABD (由于电磁感应现象总是起到阻碍作用,安培力的大小与运动速度有关F=B 2L 2v/R ,根据牛顿第二定律可知,线圈可能做匀速运动、加速度减小的加速或减减速运动.)2.AC (此过程中回路产生的感应电流不变,导体棒受到的安培力先沿斜面向上逐渐减小到零后反向增大,由平衡方程可知本题有两种可能.)3.A (杆在重力和安培力作用下运动,若安培力大于重力的两倍,则加速度大于重力加速度;由二力平衡可得,杆最终匀速运动的速度相同;杆整个运动过程能量守恒.) 4.A (根据E=BLv ,E=IR ,R=ρL/S ,m=DSL ,F 安=BIL ,a=(mg-F 安)/m ,推出2B va g Dρ=-,可见加速度与导线的粗线无关.)5.AD (ab 棒切割磁感线产生感应电动势,cd 棒不切割磁感线,整个回路中的感应电动势 E 感=BL ab v 1=BLv 1,回路中感应电流 I=,选项 C 错误.ab 棒受到的安培力为 F 安=BIL=B=,ab 棒沿导轨匀速运动,受力平衡.ab 棒受到的拉力为 F=F 摩+F 安=μmg+,选项 A 正确.cd 棒所受摩擦力为 f=μF 安=μ,选项 B 错误.cd 棒也匀速直线运动,受力平衡,mg=f ,mg=μ,μ=,选项 D 正确.)6.设杆2的运动速度为v ,由于两杆运动时,两杆间和导轨构成的回路中的磁通量发生变化,产生感应电动势 E =B l (v 0-v )感应电流 21R R E I +=杆2作匀速运动,它受到的安培力等于它受到的摩擦力, B l I =μm 2g导体杆2克服摩擦力做功的功率: P =μm 2gv 解得:⎥⎦⎤⎢⎣⎡+-=)(2122202R R lB gm v g m P μμ7.(1)感应电动势2Eklt∆Φ==∆,感应电流2E kl Irr==,方向为逆时针方向a d e b a →→→→ (2)t =t 1(s )时,B =B 0+kt 1,F =BIl 所以301()kl FB kt r=+(3)要棒中不产生感应电流,则总磁通量不变20()Bl l vt B l+=,所以0B l Bl vt=+8.(1)刚进入磁场时,线框的速度v =12gh =10 m/s ,产生的感应电动势E =Bd v ,受到的安培力F =BId =B 2d 2v /R ,有线框匀速运动,得mg =F ,解得B =0.4 T .(2)线框匀速下落l 用时t 1=l /v =0.05 s ,剩下的时间t 2=Δt -t 1=0.1 s 内做初速度为v ,加速度为g 的匀加速运动,运动的位移s =v t 2+21gt 22=1.05 m ,则磁场区域的高度h 2=s +l =1.55 m .9.杆ef 受重力mg 、拉力F 、安培力f 做匀加速运动,有 F -mg -f =ma其中安培力222B d v f R=它的运动速度v =at ,拉力F 的功率P 随时间变化2222()2B d a t P Fv m g a at R==++杆bc 受两根平行导轨的拉力F 杆(方向向上)和重力及安培力(方向向上),处于静止. 拉力:222222B d v B d at F m g m g RR=-=-杆.开始时,安培力较小,拉力F 杆>0,方向向上;某时刻(222mgR tB d a=),F 杆=0,随时间推移,安培力增大,F 杆<0,方向变为向下.10.以a 表示金属杆运动的加速度,在t 时刻,金属杆与初始位置的距离221at L =,此时杆的速度at v =,这时,杆与导轨构成的回路的面积S =Ll ,回路中的感应电动势 Blv tBS E +∆∆= 而:B =kt ,()B k t t ktk tt∆+∆-==∆∆回路的总电阻R =2Lr 0,回路中的感应电流RE i =作用于杆的安培力Bli F = 解得 t r l k F 022123=,代入数据为N F 31044.1-⨯=§9.5 电磁感应中的能量转化和图象问题1.D (匀速即拉力等于安培力,拉力所做的功大小等于安培力所做的功的大小.根据公式E=BLV ,E=IR ,F=BIL ,W=FS ,可以推出W 2=2W 1,电流做功都用来发热,所以Q 2=2Q 1.)2.A (线圈在进入和转出磁场的过程中磁通量才发生变化,故在这样的两个过程中才有感应电流.进入磁场的过程是磁通量增加,由楞次定律可知电流的方向为逆时针,符合题目要求.由于线框是扇形的且匀速转动,可知磁通量的变化是均匀的,故得到的感应电流是稳定的,所以选项A 是正确. )3.BCD (导体棒ab 充当电源,由闭合电路欧姆定律和功、功率的的公式可解得本题答案) 4.AD (t 1时刻Q 的磁场增强,通过P 的Φ增加,P 有向下运动的趋势,故F N >G .而t 2、t 4时刻Q 的磁场不变,P 中无感应电流,故Q 对P 无磁场力作用,有F N =G.t 3时刻P 中虽有感应电流,但Q 中电流为零,P 、Q 无相互作用力,故t 3时刻F N =G .)5.A (由图象可知,在0到1秒的时间内,磁感应强度均匀增大,那么感应电流的方向为逆时针方向,与图示电流方向相反,为负值,排除B 、C 选项.根据法拉第电磁感应定律,其大小tS B t∆∙∆=∆∆Φ=ε,Rt S B RE I ∙∆∙∆==为一定值,在2到3秒和4到5秒内,磁感应强度不变,磁通量不变,无感应电流生成,D 错误,所以A 选项感应强度不变,磁通量不变,无感应电流生成,D 错误.)6.(1) cd 棒静止时 θsin g m BIL cd = cd 棒两端电压为 Ir U =代入数据解得:1=U V(2)ab 棒向上匀速运动时θsin g m BIL F ab +=回路中电流为rBL I 2υ=则:)/(10sin 222s m LB gr m cd ==θυ代入数据解拉力功率 )(15W F P ==υ7.(1)在从图甲位置开始(t =0)转过60o 的过程中,经t ∆,转角t ∆=∆ωθ,回路的磁通量为:B l 221θ∆=∆Φ;由法拉第电磁感应定律,感应电动势为:tE ∆∆Φ=因匀速转动,这就是最大的感应电动势,由闭合欧姆定律可求得:2021Bl RI ω=,前半圈和后半圈I (t )相同,故感应电流频率等于旋转频率的2倍: ωπ=f ;(2)图线如图丙所示:8.(1)加速度越来越小的加速直线运动; (2)感应电动势 E =Blv ,感应电流 E I R=安培力 22m B L v F B IL R==由图线可知金属杆受拉力、安培力和阻力作用,匀速时,合力为零,22B L v F f R=+ ∴ 2222R Rf v F B LB L=-由图线可以得到直线的斜率 k =2,而 22R k B L=,即:1B ==T(3)由图线的直线方程:2222R Rf v F B LB L=-可知直线的截距为 224Rf B L-=-m/s∴ 可以求出金属杆所受到的阻力f ,代入数据可得:f =2N9.(1)线框在下落阶段匀速进入磁场的瞬间222B a v m g f R=+解得: 222()m g f R v B a-=(2)线框从离开磁场至上升到最高点的过程211()2m g f h m v +=线框从最高点回落至进入磁场瞬间221()2m g f h m v -=解得:1222)R v B a==(3)线框在向上通过磁场过程中220111()()22m v m v Q m g f a b -=+++v 0=2v 1所以: 222443[()]()()2RQ m m g f m g f a b B a=--++10.(1)由图可知,在t =1.0s 后,导体杆做匀速运动,且运动速度大小为:s m ts v /2=∆∆=此时,对导体AC 和物体D 受力分析,有:F T T +'=,Mg T ='; 对电动机,由能量关系,有:rI Tv IU 2+=由以上三式,可得:N T 5.3=,NF 5.0=再由BILF=、RE I=及BLvE=,得:m vFR BL 0.11==(或由REr I Mgv UI 22++=及BLvE=求解)(2)对于导体AC 从静止到开始匀速运动这一阶段,由能量守恒关系对整个系统,有:FW rt I v m M Mgh UIt ++++=22)(21则FW Q==3.8J单元测试卷第九章测试题 电磁感应一、 单选题1.C (导体棒AB 运动的加速度mRv L B F a /22-=,故开始阶段作加速度减小的的加速运动,而v RBLv I ∝=.)2.ABC (将图中铜盘A 所在的一组装置作为发电机模型,铜盘B 所在的一组装置作为电动机模型,这样就可以简单地把铜盘等效为由圆心到圆周的一系列“辐条”,处在磁场中的每一根“辐条”都在做切割磁感线运动,产生感应电动势,进而分析可得.)3.A (当导线中的电流突然增大时,可判断线框整体向外的磁通量增大,由楞次定律可判断线框中将产生顺时针方向的电流,根据左手定则可判断cd 边和ab 受到导线的安培力向右,而ad 、bc 两边整体所受安培力为零,因此,整个线框所受安培力向右,即x 轴正向.)4.A (磁性小球通过塑料管时不产生感应电流,做自由落体运动;但通过金属管时将产生感应电流,受到安培力作用,阻碍其相对运动.)5.D (电子将向M 板偏转,上部线圈中应产生上正下负的感应电动势,再对由楞次定律判断.) 6.B (图a 中,ab 棒以v 0向右运动的过程中,电容器开始充电,充电后ab 棒就减速,ab 棒上的感应电动势减小,当ab 棒上的感应电动势与电容器两端电压相等时,ab 棒上无电流,从而做匀速运动;图b 中,由于R 消耗能量,所以ab 棒做减速运动,直至停止;图c 中,当ab 棒向右运动时,产生的感应电动势与原电动势同向,因此作用在ab 棒上的安培力使ab 棒做减速运动,速度减为零后,在安培力作用下向左加速运动,向左加速过程中,ab 棒产生的感应电动势与原电动势反向,当ab 棒产生的感应电动势与原电动势大小相等时,ab 棒上无电流,从而向左匀速运动,所以B 正确.) 二、 多选题7.A D (由动能定理可得A 选项正确、BC 选项错误;由于各力做总功为零,则恒力F 与重力的合力所做的功等于等于克服安培力做的功,即等于电阻R 上发出的焦耳热.)8.CD (从能量的角度考虑,导轨光滑时,金属棒的动能全部转化为电能,最终以焦耳热的形式释放出来;导轨粗糙时,金属棒的动能一部分转化为电能,另一部分通过摩擦转化为热能,而安培力做功可以用机械能与电能之间的转化来量度,因此产生的电能不相同,所以A 错;电流做功可产生焦耳热,因此可以比较电流做功不同,B 错;但两个过程中,机械能都全部转化为热量,所以C 对;两个过程中,第二种种情况运动时间较小.)9.BD (产生感应电流后,两导体滑杆中的电流相等,受到磁场的作用力大小相等,感应电流的磁场阻碍原磁通量的增大,故两杆同时向右加速运动,因F 为恒力,磁场对杆的作用力为变力,随速度的增大而增大,因而开始时两杆做变加速运动(ab 加速度减小,cd 加速度增大),当两杆具有相同加速度时,它们以共同的加速度运动.)10.BCD (电流I 增大的过程中,穿过金属环C 的磁通量增大,环中出现逆时针的感应电流,可以将环等效成一个正方形线框,利用“同向电流相互吸引,异向电流相互排斥”得出环将受到向下的斥力且无转动,所以悬挂金属环C 的竖直拉力变大,环仍能保持静止状态.) 11.BD (等离子气流由左方连续以v 0射入两板间的匀强磁场中,正电荷向上偏转、负电荷向下偏转,通过ab 直导线的电流向下,由楞次定律可分时间段判断cd 导线中的电流方向,再由同向电流相互吸引、反向电流相互排斥分析得出.) 三、 填空题12.由题意可知,A 环的面积是B 环的4倍,所以A 环产生的感应电动势是B 环的4倍,A 环的电阻是B 环的2倍.磁场只穿过A 环时,A 环视为电源,B 环为外电路,此时有BA A R R E +RB =U ;磁场只穿过B环时,B 环是电源,A 环为外电路,此时有BA B R R E +R A =U ′.由以上关系可求得U ′=U /2.13.(1)S 闭合时:A 灯的电流从0一直增大到0.15A ;B 灯的电流从0到0.2A 然后到0.15A ,(2)S 断开时;A 灯的电流从0.15A 瞬间变为0,B 灯的电流从0.15A 慢慢得变到0.14.根据U=Bdv 得v = 流量Q=πd 2v =.四、 论述与计算题15.推导证明略16.该同学的结论是正确的.设转轮的角速度、转速分别为ω和n ,轮子转过θ角所需时间为⊿t ,通过线圈的磁通量的变化量为。

大学物理(少学时)第9章电磁感应与电磁场课后习题答案

大学物理(少学时)第9章电磁感应与电磁场课后习题答案

9-1两个半径分别为R 和r 的同轴圆形线圈相距x ,且R >>r ,x >>R .若大线圈通有电流I 而小线圈沿x 轴方向以速率v 运动,试求小线圈回路中产生的感应电动势的大小. 解:在轴线上的磁场()()22003322222IR IR B x R x R xμμ=≈>>+32202xr IR BS πμφ==v xr IR dt dx x r IR dt d 422042202332πμπμφε=--=-=9-2如图所示,有一弯成θ 角的金属架COD 放在磁场中,磁感强度B ϖ的方向垂直于金属架COD 所在平面.一导体杆MN 垂直于OD 边,并在金属架上以恒定速度v ϖ向右滑动,v ϖ与MN 垂直.设t =0时,x = 0.求当磁场分布均匀,且B ϖ不随时间改变,框架内的感应电动势i ε.解:12m B S B xy Φ=⋅=⋅,θtg x y ⋅=,vt x =22212/()/i d dt d Bv t tg dt Bv t tg εϕθθ=-=-=⋅,电动势方向:由M 指向N9-3 真空中,一无限长直导线,通有电流I ,一个与之共面的直角三角形线圈ABC 放置在此长直导线右侧。

已知AC 边长为b ,且与长直导线平行,BC 边长为a ,如图所示。

若线圈以垂直于导线方向的速度v 向右平移,当B 点与直导线的距离为d 时,求线圈ABC 内的感应电动势的大小和方向。

解:当线圈ABC 向右平移时,AB 和AC 边中会产生动生电动势。

当C 点与长直导线的距离为d 时,AC 边所在位置磁感应强度大小为:02()IB a d μπ=+AC 中产生的动生电动势大小为:xr IRx vC DOxMθBϖv ϖ02()AC AC IbvBl v a d μεπ==+,方向沿CA 方向如图所示,在AB 边上取微分元dl ,微分元dl 中的动生电动势为,()AB d v B dl ε=⨯⋅v v v其方向沿BA 方向。

大学物理(少学时)第9章电磁感应与电磁场课后习题答案

大学物理(少学时)第9章电磁感应与电磁场课后习题答案

大学物理(少学时)第9章电磁感应与电磁场课后习题答案9-1两个半径分别为R 和r 的同轴圆形线圈相距x ,且R >>r ,x >>R .若大线圈通有电流I 而小线圈沿x 轴方向以速率v 运动,试求小线圈回路中产生的感应电动势的大小.解:在轴线上的磁场()()22003322222IR IR B x R x R xμμ=≈>>+32202xr IR BS πμφ==v xr IR dt dx x r IR dt d 422042202332πμπμφε=--=-=9-2如图所示,有一弯成θ 角的金属架COD 放在磁场中,磁感强度B ?的方向垂直于金属架COD 所在平面.一导体杆MN 垂直于OD 边,并在金属架上以恒定速度v ?向右滑动,v ?与MN 垂直.设t =0时,x = 0.求当磁场分布均匀,且B ?不随时间改变,框架内的感应电动势i ε.解:12m B S B xy Φ=?=?,θtg x y ?=,vt x =22212/()/i d dt d Bv t tg dt Bv t tg ε?θθ=-=-=?,电动势方向:由M 指向N9-3 真空中,一无限长直导线,通有电流I ,一个与之共面的直角三角形线圈ABC 放置在此长直导线右侧。

已知AC 边长为b ,且与长直导线平行,BC 边长为a ,如图所示。

若线圈以垂直于导线方向的速度v 向右平移,当B 点与直导线的距离为d 时,求线圈ABC 内的感应电动势的大小和方向。

解:当线圈ABC 向右平移时,AB 和AC 边中会产生动生电动势。

当C 点与长直导线的距离为d 时,AC 边所在位置磁感应强度大小为:02()IB a d μπ=+AC 中产生的动生电动势大小为:xr IRx vC DOxMθBv ?02()AC AC IbvBl v a d μεπ==+,方向沿CA 方向如图所示,在AB 边上取微分元dl ,微分元dl 中的动生电动势为,()AB d v B dl ε=??v v v其方向沿BA 方向。

大学物理课后习题答案第九章

大学物理课后习题答案第九章

第9章 电稳感应和电磁场 习题及答案1. 通过某回路的磁场与线圈平面垂直指向纸面内,磁通量按以下关系变化:23(65)10t t Wb -Φ=++⨯。

求2t s =时,回路中感应电动势的大小和方向。

解:310)62(-⨯+-=Φ-=t dtd ε 当s t 2=时,V 01.0-=ε由楞次定律知,感应电动势方向为逆时针方向2. 长度为l 的金属杆ab 以速率υ在导电轨道abcd 上平行移动。

已知导轨处于均匀磁场B ϖ中,B ϖ的方向与回路的法线成60°角,如图所示,B ϖ的大小为B =kt (k 为正常数)。

设0=t 时杆位于cd 处,求:任一时刻t 导线回路中感应电动势的大小和方向。

解:任意时刻通过通过回路面积的磁通量为202160cos t kl t Bl S d B m υυ==⋅=Φρρ导线回路中感应电动势为 t kl tmυε-=Φ-=d d 方向沿abcda 方向。

3. 如图所示,一边长为a ,总电阻为R 的正方形导体框固定于一空间非均匀磁场中,磁场方向垂直于纸面向外,其大小沿x 方向变化,且)1(x k B +=,0>k 。

求: (1)穿过正方形线框的磁通量;(2)当k 随时间t 按t k t k 0)(=(0k 为正值常量)变化时,线框中感生电流的大小和方向。

解:(1)通过正方形线框的磁通量为⎰⎰=⋅=Φa S Badx S d B 0ρρ⎰+=a dx x ak 0)1()211(2a k a +=(2)当t k k 0=时,通过正方形线框的磁通量为)211(02a t k a +=Φ 正方形线框中感应电动势的大小为dt d Φ=ε)211(02a k a += 正方形线框线框中电流大小为)211(02a R k a R I +==ε,方向:顺时针方向4.如图所示,一矩形线圈与载有电流t I I ωcos 0=长直导线共面。

设线圈的长为b ,宽为a ;0=t 时,线圈的AD 边与长直导线重合;线圈以匀速度υρ垂直离开导线。

大学物理第九章习题答案

大学物理第九章习题答案



B
A
O
C O
B
(A)A 点比 B 点电势高。 (B)A 点与 B 点电势相等。 (C)A 点比 B 点电势低。 (D)有稳恒电流从 A 点流向 B 点。 3、一根长为 L 的铜棒,在均匀磁场 B 中以匀角速度 旋转着, B 的方向垂直铜棒转动的 平面,如图。设 t 0 时,铜棒与 Ob 成 角,则在任一时刻 t 这根铜棒两端之间的感应电动势是:[ (A) L B cos(t ) (B)
0 I I b ldx 0 In 2 x 2 a
0 I 2 x
2、如图所示,矩形导体框架置于通有电流 I 的长直导线旁,且两者共面, ad 边与长直导 线平行, dc 段可沿框架移平动。设导体框架的总电阻 R 始终保持不变,现 dc 以速度 v 沿 ,穿过 abcd 回路 框架向下作匀速运动,试求(1)当 dc 段运动到图示位置(与 ab 相距 x ) 的磁通量; (2)回路中的感应电流 I i ;
B a b
2
大学物理习题集
10、在无限长的载流直导线附近放置一矩形闭合线圈,开始时线圈与导线在同一平面内, 且线圈中两条边与导线平行, 当线圈以相同的速率作如图所示的三种不同方向的平动时, 线圈中的感应电流:[ B ]




是由通有电流 I 的线圈所产生,且 B KI ( K 为常量) ,则旋转线圈相对于产生磁场的线 圈最大互感系数为 6、 。
无限长密绕直螺线管通以电流 I 、内部充满均匀、各向同性的磁介质,磁导率为 。 , 磁能密度 。
设管内部的磁感应强度大小为 B ,则内部的磁场强度为 为 。 设螺线管体积为 V, 则存储在螺线管内部的总磁能为

ch9+电磁感应和电磁场+习题及答案Word版

ch9+电磁感应和电磁场+习题及答案Word版

第9章 电稳感应和电磁场 习题及答案1. 通过某回路的磁场与线圈平面垂直指向纸面内,磁通量按以下关系变化:23(65)10t t Wb -Φ=++⨯。

求2t s =时,回路中感应电动势的大小和方向。

解:310)62(-⨯+-=Φ-=t dtd ε当s t 2=时,V 01.0-=ε由楞次定律知,感应电动势方向为逆时针方向2. 长度为l 的金属杆ab 以速率υ在导电轨道abcd 上平行移动。

已知导轨处于均匀磁场B中,B 的方向与回路的法线成60°角,如图所示,B的大小为B =kt (k 为正常数)。

设0=t 时杆位于cd 处,求:任一时刻t 导线回路中感应电动势的大小和方向。

解:任意时刻通过通过回路面积的磁通量为202160cos t kl t Bl S d B m υυ==⋅=Φ导线回路中感应电动势为 t kl tmυε-=Φ-=d d 方向沿abcda 方向。

3. 如图所示,一边长为a ,总电阻为R 的正方形导体框固定于一空间非均匀磁场中,磁场方向垂直于纸面向外,其大小沿x 方向变化,且)1(x k B +=,0>k 。

求: (1)穿过正方形线框的磁通量;(2)当k 随时间t 按t k t k 0)(=(0k 为正值常量)变化时,线框中感生电流的大小和方向。

解:(1)通过正方形线框的磁通量为⎰⎰=⋅=Φa S Badx S d B 0 ⎰+=a dx x ak 0)1()211(2a k a +=(2)当t k k 0=时,通过正方形线框的磁通量为)211(02a t k a +=Φ 正方形线框中感应电动势的大小为dt d Φ=ε)211(02a k a += 正方形线框线框中电流大小为)211(02a R k a R I +==ε,方向:顺时针方向4.如图所示,一矩形线圈与载有电流t I I ωcos 0=长直导线共面。

设线圈的长为b ,宽为a ;0=t 时,线圈的AD 边与长直导线重合;线圈以匀速度υ垂直离开导线。

大学物理第9章 电磁感应和电磁场 课后习题及答案

大学物理第9章 电磁感应和电磁场 课后习题及答案

第9章 电稳感应和电磁场 习题及答案1. 通过某回路的磁场与线圈平面垂直指向纸面内,磁通量按以下关系变化:23(65)10t t Wb -Φ=++⨯。

求2t s =时,回路中感应电动势的大小和方向。

解:310)62(-⨯+-=Φ-=t dtd ε当s t 2=时,V 01.0-=ε由楞次定律知,感应电动势方向为逆时针方向2. 长度为l 的金属杆ab 以速率υ在导电轨道abcd 上平行移动。

已知导轨处于均匀磁场B中,B 的方向与回路的法线成60°角,如图所示,B 的大小为B =kt (k 为正常数)。

设0=t 时杆位于cd 处,求:任一时刻t 导线回路中感应电动势的大小和方向。

解:任意时刻通过通过回路面积的磁通量为202160cos t kl t Bl S d B m υυ==⋅=Φ导线回路中感应电动势为 t kl tmυε-=Φ-=d d 方向沿abcda 方向。

3. 如图所示,一边长为a ,总电阻为R 的正方形导体框固定于一空间非均匀磁场中,磁场方向垂直于纸面向外,其大小沿x 方向变化,且)1(x k B +=,0>k 。

求: (1)穿过正方形线框的磁通量;(2)当k 随时间t 按t k t k 0)(=(0k 为正值常量)变化时,线框中感生电流的大小和方向。

解:(1)通过正方形线框的磁通量为⎰⎰=⋅=Φa S Badx S d B 0 ⎰+=a dx x ak 0)1()211(2a k a +=(2)当t k k 0=时,通过正方形线框的磁通量为)211(02a t k a +=Φ 正方形线框中感应电动势的大小为dt d Φ=ε)211(02a k a += 正方形线框线框中电流大小为)211(02a R k a R I +==ε,方向:顺时针方向4.如图所示,一矩形线圈与载有电流t I I ωcos 0=长直导线共面。

设线圈的长为b ,宽为a ;0=t 时,线圈的AD 边与长直导线重合;线圈以匀速度υ垂直离开导线。

第九章 磁 场带答案完整版

第九章  磁     场带答案完整版

第九章 磁 场一、.磁感线⑴用来形象地描述磁场中各点的磁场方向和强弱的曲线。

磁感线上每一点的切线方向就是该点的磁场方向,也就是在该点小磁针静止时N 极的指向。

磁感线的疏密表示磁场的强弱。

⑵磁感线是封闭曲线(和静电场的电场线不同)。

⑶要熟记常见的几种磁场的磁感线:二、磁感应强度ILF B (条件是匀强磁场中,或ΔL 很小,并且L ⊥B )。

磁感应强度是矢量。

单位是特斯拉,符号为T 。

三、磁通量:Φ=BS ⊥可以认为穿过某个面的磁感线条数就是磁通量。

四、安培力 (磁场对电流的作用力)F=BIL (L ⊥B )。

9-1.如图所示,可以自由移动的竖直导线中通有向下的电流,不计通电导线的重力,仅在磁场力作用下,导线将如何移动?9-2. 条形磁铁放在粗糙水平面上,正中的正上方有一导线,通有图示方向的电流后,磁铁对水平面的压力将会___(增大、减小还是不变?)。

水平面对磁铁的摩擦力大小为___。

9-3. 如图所示,光滑导轨与水平面成α角,导轨宽L。

匀强磁场磁感应强度为B。

金属杆长也为L,质量为m,水平放在导轨上。

当回路总电流为I1时,金属杆正好能静止。

求:⑴B至少多大?这时B的方向如何?⑵若保持B的大小不变而将B的方向改为竖直向上,应把回路总电流I2调到多大才能使金属杆保持静止?9-4.如图所示,质量为m的铜棒搭在U形导线框右端,棒长和框宽均为L,磁感应强度为B的匀强磁场方向竖直向下。

电键闭合后,在磁场力作用下铜棒被平抛出去,下落h后的水平位移为s。

求闭合电键后通过铜棒的电荷量Q。

hs αα洛伦兹力 带电粒子在磁场中的运动一、洛伦兹力:F=qvB 。

条件是v 与B 垂直。

当v 与B 成θ角时,F=qvB sin θ。

2.洛伦兹力方向的判定:在用左手定则时,四指必须指电流方向(不是速度方向)。

9-5.磁流体发电机原理图如右。

等离子体高速从左向右喷射,两极板间有如图方向的匀强磁场。

该发电机哪个极板为正极?两板间最大电压为多少?二、带电粒子在匀强磁场中的运动 洛伦兹力充当向心力,推得:Bq m T Bq mv r π2,== 1、带电粒子在半无界磁场中的运动9-6.如图直线MN 上方有磁感应强度为B 的匀强磁场。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一. 选择题
[A] 1 (基础训练4)、两根很长的平行直导线,其间距离为a ,与电源
组成闭合回路,如图12-4. 已知导线上的电流为I ,在保持I 不变的情况下,若将导线间的距离增大,则空间的
(A) 总磁能将增大.
(B) 总磁能将减少.
(C) 总磁能将保持不变.
(D) 总磁能的变化不能确定
[D] 2(基础训练7)、如图12-17所示.一电荷为
q 的点电荷,以匀角速度ω作圆周运动,
圆周的半径为R .设t = 0 时q 所在点的坐标为x 0 = R ,y 0 = 0 ,以i 、j
分别表示x 轴和y 轴上的单位矢量,则圆心处O 点的位移电流密度为: (A)
i t R q ωω
sin 42
π (B) j t R
q ωω
cos 42
π (C) k R
q 2
4πω (D) )cos (sin 42
j t i t R
q ωωω

[C] 3 (基础训练8)、 如图12-18,平板电容器(忽略边缘效应)
充电时,沿环路L 1的磁场强度H 的环流与沿环路L 2的磁场强度H
的环流两者,必有:
(A) >
'⎰⋅1
d L l H
⎰⋅'2
d L l H . (B) =
'⎰⋅1
d L l H ⎰⋅'2
d L l H .
(C) <
'⎰⋅1d L l H
⎰⋅'2d L l H
. (D)
0d 1
='⎰⋅L l H
.
【参考答案】
全电流是连续的,即位移电流和传导电流大小相等、方向相同。

另,在忽略边界效应的情况下,位移电流均匀分布在电容器两极板间,而环路L1所包围的面积小于电容器极板面积,故选(C )。

图12-14
图12-17
图12-18
[B] 4 (自测提高6)、如图12-27所示,空气中有一无限长金属薄壁圆筒,在表面上沿圆周方向均匀地流着一层随时间变化的面电流i (t ),则 (A) 圆筒内均匀地分布着变化磁场和变化电场. (B) 任意时刻通过圆筒内假想的任一球面的磁通量和电通量均为零. (C) 沿圆筒外任意闭合环路上磁感强度的环流不为零.
(D) 沿圆筒内任意闭合环路上电场强度的环流为零.
二. 填空题
5 (第十一章:基础训练10)、 一个绕有500匝导线的平均周长50 cm 的细环,载有 0.3 A 电流时,铁芯的相对磁导率为600.(1) 铁芯中的磁感强度B 为_____0.226T_____. (2) 铁芯中的磁场强度H 为_____300A/m_________.
【参考答案】
n=500/0.5 T nI B r 226.0102.73.0106001042370=⨯=⨯⨯⨯⨯==--ππμμ。

0/300/r H B A m μμ==
6 (基础训练13)、 13、平行板电容器的电容C 为20.0 μF ,两板上的电压变化率为d U /d t
5-1,则该平行板电容器中的位移电流为__3A____.
7 (第十一章: 自测提高15)、 如图11-54所示为三种不同的
磁介质的B ~H 关系曲线,其中虚线表示的是B = μ0H 的关系.说明a 、b 、c 各代表哪一类磁介质的B ~H 关系曲线:
a 代表_____铁磁质 __________的B ~H 关系曲线.
b 代表______顺磁质__________的B ~H 关系曲线.
c 代表______抗磁质__________的B ~H 关系曲线.
图11-54
8(自测提高11)、 图示12-30为一圆柱体的横截面,圆柱体内有
一均匀电场E ,其方向垂直纸面向内,E
的大小随时间t 线性增加,P
为柱体内与轴线相距为r 的一点则
(1)P 点的位移电流密度的方向为_垂直纸面向内里__. (2) P 点感生磁场的方向为__竖直向下___.
【参考答案】
(1)由于d /d 0d J E t ε=> ,故d J
与E 同向, 垂直纸面向里。

(2)由安培环路定理
知:d J
与H 的关系与f J 与H 的关系一样,成右手螺旋关系,故P 点感生磁场的方向
竖直向下。

9(自测提高12)、半径为r 的两块圆板组成的平行板电容器充了电,在放电时两板间的
电场强度的大小为E = E 0e -t /RC ,式中E 0、R 、C 均为常数,则两板间的位移电流的大小为
2
00t RC
E r e
RC
επ-
-
,其方向与场强方向_相反 .
二. 计算题
10 (自测提高19)、平行板空气电容器接在电源两端,电压为
U ,如图12-37所示,回路电阻忽略不计.今将电容器的两极板以速率v 匀速拉开,当两极板间距为x 时,求电容器内位移电流密度.
11(自测提高20)、设一电缆,由两个无限长的同轴圆筒状导体所组成,内圆筒和外圆
筒上的电流方向相反而强度I 相等,设内、外圆筒横截面的半径分别为R 1
和R 2,如图12-38所示。

试计算长为l 的一段电缆内的磁场所储藏的能量。

()d f d l s
H dl J J s
⋅=+⎰⎰⎰
图12-30
图12-38
r
μ。

相关文档
最新文档