2020年密云高三二模数学试题及答案
密云区2019-2020学年第二学期高三第二次阶段性测试20200602

密云区2019-2020学年第二学期高三第二次阶段性测试数学试卷 2020.6一、选择题:本大题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. 1.已知集合{|0}M x x =∈R ≥,N M ⊆,则在下列集合中符合条件的集合N 可能是 A. {0,1} B. 2{|1}x x = C. 2{|0}x x > D. R2.在下列函数中,定义域为实数集的偶函数为A.sin y x =B.cos y x =C.||y x x =D. ln ||y x = 3. 已知x y >,则下列各不等式中一定成立的是 A .22x y >B .11x y>C .11()()33x y >D .332x y -+>4.已知函数()y f x =满足(1)2()f x f x +=,且(5)3(3)4f f =+,则(4)f = A .16 B .8C .4D . 25.已知双曲线221(0)x y a a-=>的一条渐近线方程为20x y +=,则其离心率为C.D. 6.已知平面向量和a b ,则“||||=-b a b ”是“1()02-=g b a a ”的 A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件7.已知圆22:(1)2C x y +-=,若点P 在圆C 上,并且点P 到直线y x =的距离为2,则满足条件的点P 的个数为A .1B .2C .3D .48.设函数1()sin()2f x x ωϕ=+,x ∈R ,其中0ω>,||ϕ<π.若51()82f π=,()08f 11π=,且()f x 的最小正周期大于2π,则A .13ω=,24ϕ11π=-B .23ω=,12ϕπ= C .13ω=,24ϕ7π= D .23ω=,12ϕ11π=-9. 某三棱锥的三视图如图所示,则该三棱锥中最长的棱长为 AB .2C. D.10. 已知函数()f x 的定义域为 ,且满足下列三个条件:①对任意的 ,且 ,都有 ;② ;③是偶函数;若,,(2020)c f =,则 ,, 的大小关系正确的是 A .a b c << B .C .D .第9题图11主视图1俯视图2二、填空题:本大题共5小题,每小题5分,共25分.11.抛物线2()y mx m =为常数过点(1,1)-,则抛物线的焦点坐标为_______.12.在61()x x+的展开式中,常数项为_______.(用数字作答).13. 已知n S 是数列{n a }的前n 项和,且211(*)n S n n n =-∈N ,则1a =_________,n S 的最小值为_______. 14. 在ABC V 中,三边长分别为4a =,5b =,6c =,则ABC V 的最大内角的余弦值为_________,ABC V 的面积为_______.15. 已知集合22{,,A a a x y x y ==-∈∈Z Z}.给出如下四个结论: ①2A ∉,且3A ∈;②如果{|21,}B b b m m ==-∈N*,那么B A ⊆;③如果{|22,}C c c n n ==+∈N*,那么对于c C ∀∈,则有c A ∈;④如果1a A ∈,2a A ∈,那么12a a A ∈. 其中,正确结论的序号是__________.三、解答题: 本大题共6小题,共85分.解答应写出文字说明, 演算步骤或证明过程. 16.(本小题满分14分)如图,直三棱柱111ABC A B C -中,112AC BC AA ==,D 是棱1AA 的中点,1DC BD ⊥. (Ⅰ)证明:1DC BC ⊥;(Ⅱ)求二面角11A BD C --的大小.17.(本小题满分15分) 已知函数 .(Ⅰ)求函数的单调递增区间和最小正周期;(Ⅱ)若当π[0,]2x ∈时,关于x 的不等式()f x m ≥_______,求实数的取值范围.请选择①和②中的一个条件,补全问题(Ⅱ),并求解.其中,①有解;②恒成立. 注意:如果选择①和②两个条件解答,以解答过程中书写在前面的情况计分.18.(本小题满分14分)某健身机构统计了去年该机构所有消费者的消费金额(单位:元),如图所示:(Ⅰ)将去年的消费金额超过3200元的消费者称为“健身达人”,现从所有“健身达人”中随机抽取2人,求至少有1位消费者,其去年的消费金额超过4000元的概率;(Ⅱ)针对这些消费者,该健身机构今年欲实施入会制.规定:消费金额为2000元、2700元和3200元的消费者分别为普通会员、银卡会员和金卡会员.预计去年消费金额在(0,1600]、(1600,3200]、(3200,4800]内的消费者今年都将会分别申请办理普通会员、银卡会员和金卡会员.消费者在申请办理会员时,需一次性预先缴清相应等级的消费金额.该健身机构在今年年底将针对这些消费者举办消费返利活动,预设有如下两种方案:方案 按分层抽样从普通会员,银卡会员,金卡会员中总共抽取25位“幸运之星”给予奖励.其中,普通会员、银C 1 ABC A 1B 1第16题图D(800,1600] (1600,2400] (2400,3200] (4000,4800] (3200,4000] 消费金额/元 人数卡会员和金卡会员中的“幸运之星”每人分别奖励500元、600元和元.方案2 每位会员均可参加摸奖游戏,游戏规则如下:从一个装有3个白球、2个红球(球只有颜色不同)的箱子中,有放回地摸三次球,每次只能摸一个球.若摸到红球的总数为2,则可获得200元奖励金;若摸到红球的总数为3,则可获得300元奖励金;其他情况不给予奖励.如果每位普通会员均可参加1次摸奖游戏;每位银卡会员均可参加2次摸奖游戏;每位金卡会员均可参加3次摸奖游戏(每次摸奖的结果相互独立). 以方案的奖励金的数学期望为依据,请你预测哪一种方案投资较少?并说明理由.19.(本小题满分14分)已知椭圆:过点(1,2P ,设它的左、右焦点分别为,,左顶点为,上顶点为,.(Ⅰ)求椭圆C 的标准方程和离心率;(Ⅱ)过点6(,0)5Q -作不与轴垂直的直线交椭圆于,(异于点)两点,试判断的大小是否为定值,并说明理由.20.(本小题满分14分)已知函数()ln ,f x x a x a =-∈R .(Ⅰ)当1a =时,求曲线()f x 在1x =处的切线方程;(Ⅱ)设函数1()()ah x f x x+=+,试判断函数()h x 是否存在最小值,若存在,求出最小值,若不存在,请说明理由. (Ⅲ)当0x >时,写出ln x x 与2x x -的大小关系.21.(本小题满分14分)设n 为正整数,集合A =12{|(,,,),{0,1},1,2,,}n k t t t t k n αα=∈=L L .对于集合A 中的任意元素12(,,,)n x x x α=L 和12(,,,)n y y y β=L ,记111122221(,)[(||)(||)(||)]2n n n n M x y x y x y x y x y x y αβ=+-++-+++-+++L .(Ⅰ)当n =3时,若(0,1,1)α=,(0,0,1)β=,求(,)M αα和(,)M αβ的值; (Ⅱ)当4n =时,对于A 中的任意两个不同的元素,αβ,证明:(,)(,)(,)M M M αβααββ+≤.(Ⅲ)给定不小于2的正整数n ,设B 是A 的子集,且满足:对于B 中的任意两个不同元素α,β,(,)(,)(,)M M M αβααββ=+.写出一个集合B ,使其元素个数最多,并说明理由.。
密云区2019-2020学年第二学期高三第二次阶段性测试

密云区2019-2020学年第二学期高三第二次阶段性测试数学试卷一、选择题:本大题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{|0}M x x =∈R ≥,N M ⊆,则在下列集合中符合条件的集合N 可能是( ) A. {0,1}B. 2{|1}x x =C. 2{|0}x x >D. R2.在下列函数中,定义域为实数集的偶函数为( ) A. sin y x =B. cos y x =C. ||y x x =D.ln ||y x =3.已知x y >,则下列各不等式中一定成立的是( ) A. 22x y >B.11x y> C. 11()()33x y>D.332x y -+>4.已知函数()y f x =满足(1)2()f x f x +=,且(5)3(3)4f f =+,则(4)f =( ) A. 16B. 8C. 4D. 25.已知双曲线221(0)x y a a-=>的一条渐近线方程为20x y +=,则其离心率为( )A.B.C.D.6.已知平面向量a r 和b r ,则“||||b a b =-r rr ”是“1()02b a a -⋅=r r r ”的( )A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件7.已知圆22:(1)2C x y +-=,若点P 在圆C 上,并且点P 到直线y x =的距离为2,则满足条件的点P 的个数为( )A. 1B. 2C. 3D. 48.设函数1()sin()2f x x ωϕ=+,x ∈R ,其中0>ω,||ϕπ<.若5182f π⎛⎫= ⎪⎝⎭,08f 11π⎛⎫= ⎪⎝⎭,且()f x 的最小正周期大于2π,则( )A. 13ω=,24ϕ11π=-B. 23ω=,12πϕ= C. 13ω=,724πϕ=D. 23ω=,12ϕ11π=-9.某三棱锥的三视图如图所示,则该三棱锥中最长的棱长为( )B. 2C.D. 10.已知函数()f x 的定义域为 R ,且满足下列三个条件: ①对任意的[]12,4,8x x ∈ ,且 12x x ≠,都有()1212()0f x f x x x ->- ;②(8)()f x f x += ; ③(4)y f x =+ 是偶函数;若(7),(11)a f b f =-=,(2020)c f =,则,,a b c 的大小关系正确的是( ) A. a b c <<B. b a c <<C. b c a <<D.c b a <<二、填空题:本大题共5小题,每小题5分,共25分.11.抛物线2(y mx m =为常数)过点(1,1)-,则抛物线的焦点坐标为_______.12.在61()x x+展开式中,常数项为________.(用数字作答)13.已知n S 是数列{}n a 的前n 项和,且()211n S n n n *=-∈N ,则1a=_________,n S 的最小值为_______.14.在ABC V 中,三边长分别为4a =,5b =,6c =,则ABC V 的最大内角的余弦值为_________,ABC V 的面积为_______.15.已知集合{}22,,A a a x y x Z y Z ==-∈∈.给出如下四个结论: ①2A ∉,且3A ∈;②如果{|21,}B b b m m ==-∈N*,那么B A ⊆;③如果{|22,}C c c n n ==+∈N*,那么对于c C ∀∈,则有c A Î; ④如果1a A ∈,2a A ∈,那么12a a A ∈. 其中,正确结论的序号是__________.三、解答题: 本大题共6小题,共85分.解答应写出文字说明, 演算步骤或证明过程.16.如图,直三棱柱111ABC A B C -中,112AC BC AA ==,D 是棱1AA 的中点,1DC BD ⊥.(1)证明:1DC BC ⊥; (2)求二面角11A BD C --的大小.17.已知函数2()cos cos )sin f x x x x x =+- . (Ⅰ)求函数()f x 的单调递增区间和最小正周期;(Ⅱ)若当[0,]2x π∈时,关于x 的不等式()f x m ≥,求实数M 的取值范围. 18.某健身机构统计了去年该机构所有消费者消费金额(单位:元),如下图所示:(1)将去年的消费金额超过3200 元的消费者称为“健身达人”,现从所有“健身达人”中随机抽取2 人,求至少有1 位消费者,其去年的消费金额超过4000 元的概率;(2)针对这些消费者,该健身机构今年欲实施入会制,详情如下表:0,1600内的消费者今年都将会申请办理普通会员,消费金额在预计去年消费金额在(](]3200,4800内的消费者1600,3200内的消费者都将会申请办理银卡会员,消费金额在(]都将会申请办理金卡会员. 消费者在申请办理会员时,需-次性缴清相应等级的消费金额.该健身机构在今年底将针对这些消费者举办消费返利活动,现有如下两种预设方案:方案1:按分层抽样从普通会员,银卡会员,金卡会员中总共抽取25 位“幸运之星”给予奖励: 普通会员中的“幸运之星”每人奖励500 元;银卡会员中的“幸运之星”每人奖励600 元;金卡会员中的“幸运之星”每人奖励800 元.方案2:每位会员均可参加摸奖游戏,游戏规则如下:从-个装有3 个白球、2 个红球(球只有颜色不同)的箱子中,有放回地摸三次球,每次只能摸-个球.若摸到红球的总数消费金额/元为2,则可获得200 元奖励金;若摸到红球的总数为3,则可获得300 元奖励金;其他情况不给予奖励. 规定每位普通会员均可参加1 次摸奖游戏;每位银卡会员均可参加2 次摸奖游戏;每位金卡会员均可参加3 次摸奖游戏(每次摸奖的结果相互独立) .以方案 2 的奖励金的数学期望为依据,请你预测哪-种方案投资较少?并说明理由.19.已知椭圆()2222:10x y C a b a b +=>>过点1,2P ⎛ ⎝⎭,设它的左、右焦点分别为1F 、2F ,左顶点为A ,上顶点为B,且满足12AB F =. (Ⅰ)求椭圆C 标准方程和离心率;(Ⅰ)过点6,05Q ⎛⎫-⎪⎝⎭作不与y 轴垂直直线交椭圆C 于M 、N (异于点A )两点,试判断MAN ∠的大小是否为定值,并说明理由. 20.已知函数()ln f x x a x =-,a R ∈.(Ⅰ)当1a =时,求曲线()f x 在1x =处的切线方程; (Ⅱ)设函数1()()ah x f x x+=+,试判断函数()h x 是否存在最小值,若存在,求出最小值,若不存在,请说明理由.(Ⅲ)当0x >时,写出ln x x 与2x x -的大小关系.21.设n 为正整数,集合A =12{|(,,,)n t t t αα=L ,{0,1}k t ∈,1k =,2,L ,}n .对于集合A 中任意元素12(,,,)n x x x α=L 和12(,,,)n y y y β=L ,记111122221(,)[(||)(||)(||)]2n n n n M x y x y x y x y x y x y αβ=+-++-+++-+++L .(Ⅰ)当n =3时,若(0,1,1)α=,(0,0,1)β=,求(,)M αα和(,)M αβ的值; (Ⅱ)当4n =时,对于A 中的任意两个不同的元素α,β,证明:(,)(,)(,)M M M αβααββ+≤.(Ⅲ)给定不小于2的正整数n ,设B 是A 的子集,且满足:对于B 中的任意两个不同元素α,β,(,)(,)(,)M M M αβααββ=+.写出一个集合B ,使其元素个数最多,并说明由.的的的。
2020年北京各区高三二模数学分类汇编---圆锥曲线

2020年北京各区高三二模数学分类汇编----圆锥曲线一、选填问题:1.(2020海淀二模)若抛物线212y x =的焦点为F ,点P 在此抛物线上且横坐标为3,则||PF 等于 (A )4 (B )6(C )8(D )10答案 B2.(2020海淀二模)已知双曲线E 的一条渐近线方程为y x =,且焦距大于4,则双曲线E 的标准方程可以为_______.(写出一个即可)答案22144x y -=3.(2020密云二模).已知双曲线221(0)x y a a-=>的一条渐近线方程为20x y +=,则其离心率为A.2 B.4 C.2 D.4答案A4.(2020密云二模)已知圆22:(1)2C x y +-=,若点P 在圆C 上,并且点P 到直线y x =的距离为2,则满足条件的点P 的个数为A .1B .2C .3D .4 答案C5.(2020东城二模)双曲线222:1y C x b-=的渐近线与直线1x =交于,A B 两点,且4AB =,那么双曲线C 的离心率为(A) (B) (C)2 答案B6.(2020顺义二模)抛物线2=4y x 上的点与其焦点的最短距离为 (A )4(B )2(C )1(D )12答案 C7. (2020顺义二模)若直线:l y x a =+将圆22:1C x y +=的圆周分成长度之比为1:3的两段弧,则实数a 的所有可能取值是____________. 答案 1a =±8. (2020顺义二模)曲线C 是平面内到定点3(0)2F ,和定直线3:2l x =-的距离之和等于5的点的轨迹,给出下列三个结论:①曲线C 关于y 轴对称;②若点(,)P x y 在曲线C 上,则y 满足4y ≤; ③若点(,)P x y 在曲线C 上,则15PF ≤≤; 其中,正确结论的序号是_____________. 答案 ②③9.(2020丰台二模)已知抛物线M :)0(22>=p py x 的焦点与双曲线13:22=-x y N 的一个焦点重合,则=p(A (B )2(C )(D )4答案D10.(2020西城二模).焦点在x 轴的正半轴上,且焦点到准线的距离为4的抛物线的标准方程是( A) 24x y = ( B) 24y x = ( C) 28x y = ( D) 28y x =答案D11.(2020西城二模)圆224210x y x y ++-+= 截x 轴所得弦的长度等于( A)2 ( B) ( C) ( D)4 答案 B12.(2020西城二模).能说明“若m ( n +2)≠0,则方程2212x y m n +=+表示的曲线为椭圆或双曲线”是错误的一组m , n 的值是 .答案答案不唯一. 如3m =,1n =13.(2020昌平二模)已知点P 是双曲线22:14y C x -=的一条渐近线(0)y kx k =>上一点,F 是双曲线C 的右焦点,若△OPF 的面积为5,则点P 的横.坐标为(A ) (B (C )± (D )答案 A14.(2020昌平二模)已知点M 在抛物线24y x =上,若以点M 为圆心的圆与x 轴和其准线l 都相切,则点M 到其顶点O 的距离为__ .15.(2020丰台二模)双曲线)0,0(1:2222>>=-b a by a x M 的离心率为3,则其渐近线方程为 .答案y =16. (2020丰台二模)若双曲线22221x y a b-=(0,0)a b >>的一条渐近线经过点,则该双曲线的离心率为(A (B(C )2(D 答案C17. (2020朝阳二模)圆心在直线0-=x y 上且与y 轴相切于点(0,1)的圆的方程是(A )22(1)(1)1-+-=x y (B )22(1)(1)1+++=x y (C )22(1)(1)2-+-=x y (D )22(1)(1)2+++=x y答案A18. (2002朝阳二模)直线l 过抛物线22=y x 的焦点F ,且l 与该抛物线交于不同的两点11(,)A x y ,22(,)B x y .若123+=x x ,则弦AB 的长是(A )4 (B )5(C )6(D )8 答案A19. (2020朝阳二模)已知双曲线C 的焦点为1(0,2)F ,2(0,2)F -,实轴长为2,则双曲线C 的离心率是________;若点Q 是双曲线C 的渐近线上一点,且12FQ F Q ⊥,则12QF F △的面积为________.答案2;20. (2020房山二模)若直线3x =与圆2220x y x a +--=相切,则a = . 答案 321.(2020房山二模)已知抛物线C :22y x =的焦点为F ,点M 在抛物线C 上,||1MF =,则点M 的横坐标是,△MOF (O 为坐标原点)的面积为 . 答案12;14二、解答题部分:22.(2020海淀二模)已知椭圆2222:1x y W a b+=(0)a b >>过(0,1),(0,1)A B -.(Ⅰ)求椭圆W 的方程;(Ⅱ)过点A 的直线l 与椭圆W 的另一个交点为C ,直线l 交直线2y =于点M ,记直线BC ,BM 的斜率分别为1k ,2k ,求12k k 的值.答案解:(Ⅰ)由题意,2221.b ca abc =⎧⎪⎪=⎨⎪⎪=+⎩,解得2,1.a b =⎧⎨=⎩所以椭圆W 的方程为2214x y +=.(Ⅱ)由题意,直线l 不与坐标轴垂直.设直线l 的方程为:1y kx =+(0k ≠). 由221,4 4.y kx x y =+⎧⎨+=⎩得22(41)80k x kx ++=. 设11(,)C x y ,因为10x ≠,所以12841kx k -=+. 得21122814114141k k y kx k k k --=+=⋅+=++.即222814(,)4141k k C k k --++. 又因为(0,1)B -,所以22121411418441k k k k k k -++==--+.由1,2.y kxy=+⎧⎨=⎩得1,2.xky⎧=⎪⎨⎪=⎩所以点M的坐标为1(,2)k.所以22131k kk+==.所以1213344k k kk⋅=-⋅=-.23.(2020西城二模)答案解:(Ⅰ)由题意,得1b=,3ca=. ………………2分又因为222a b c=+,………………3分所以2a=,3c=.故椭圆E的方程为2214xy+=. ………………5分(Ⅱ)(2,0)A-,(2,0)B.设0000(,)(0)D x y x y≠,则2214xy+=. ………………6分所以直线CD的方程为011yy xx-=+,………………7分令0y=,得点P的坐标为0(,0)1xy-. ………………8分设(,)Q QQ x y,由4OP OQ⋅=u u u r u u u r,得04(1)Qyxx-=(显然2Qx≠).……9分直线AD的方程为0(2)2yy xx=++,………………10分将Q x代入,得00000(442)(2)Qy y xyx x-+=+,即00000004(1)(442)(,)(2)y y y xQx x x--++.………………11分故直线BQ 的斜率存在,且000000(442)2(2)(442)Q BQ Q y y y x k x x y x -+==-+-- …… 12分200002000022424y y x y x x y y -+=--- 20000200002214242y y x y y x y y -+==---. ………… 13分 又因为直线BC 的斜率12BC k =-,所以BC BQ k k =,即,,C B Q 三点共线. ……………… 14分24.(2020昌平二模)(本小题15分)已知椭圆:M 22221(0)x y a b a b+=>>,椭圆M 与y 轴交于,A B 两点(A 在下方),且||4AB =.过点(0,1)G 的直线l 与椭圆M 交于,C D 两点(不与A 重合). (Ⅰ)求椭圆M 的方程;(Ⅱ)证明:直线AC 的斜率与直线AD 的斜率乘积为定值. 答案解:(Ⅰ)由题意得222524,,c a b a b c ⎧=⎪⎪⎪=⎨⎪=+⎪⎪⎩解得2,1.a b c ⎧=⎪=⎨⎪=⎩ …………….3分即椭圆的方程为22154x y +=. …………….5分 (Ⅱ)法一由题意,直线l 的斜率存在. 当0k =时,直线l 的方程为1y =.代入椭圆方程有2x =±.则(22C D -.所以22AC AD k k ====所以12.5AC AD k k ⋅==- …………….8分当0k ≠时,则直线l 的方程为1y kx =+.由221,154y kx x y =+⎧⎪⎨+=⎪⎩,得22(45)10150k x kx ++-=. …………….9分设11(,)C x y ,22(,)D x y , 则1212221015,4545k x x x x k k +=-=-++. …………10分 又(0,2)A -, 所以112AC y k x +=,222AD y k x +=. …………….11分 因为1212121222(3)(3)AC AD y y kx kx k k x x x x ++++⋅==g 21212123()9k x x k x x x x +++=212123()9k x x k x x ++=+222222103()93036451245.1515545kk k k k k k k -+-+++=+=+=---+即直线AC 的斜率与直线AD 的斜率乘积为定值. …………….15分 法二设直线l 的斜率为k ,则直线l 的方程为1y kx =+. …………….6分由221,154y kx x y =+⎧⎪⎨+=⎪⎩,得22(45)10150k x kx ++-=. …………….7分设11(,)C x y ,22(,)D x y , 则1212221015,4545k x x x x k k+=-=-++. …………….9分 又(0,2)A -, 所以112AC y k x +=,222AD y k x +=. …………….11分因为1212121222(3)(3)AC AD y y kx kx k k x x x x ++++⋅==g 21212123()9k x x k x x x x +++=212123()9k x x k x x ++=+222222103()93036451245.1515545kk k k k k k k -+-+++=+=+=---+即直线AC 的斜率与直线AD 的斜率乘积为定值. …………….15分25.(2020东城二模)已知椭圆2222:1(0)x y C a b a b +=>>的一个顶点坐标为(0,1)A -,离心率为23.(Ⅰ)求椭圆C 的方程;(Ⅱ)若直线(1)(0)y k x k =-≠与椭圆C 交于不同的两点P ,Q ,线段PQ 的中点为M ,点(1,0)B ,求证:点M 不在以AB 为直径的圆上. 答案(Ⅰ)解:由题意可知⎪⎪⎩⎪⎪⎨⎧===+,1,23,222b a ca c b解得⎪⎩⎪⎨⎧===,3,1,2c b a所以椭圆C 的方程为1422=+y x .………………………………4分 (Ⅱ)证明:设11(,)P x y ,22(,)Q x y ,),(00y x M .由221,4(1),x y y k x ⎧+=⎪⎨⎪=-⎩得2222(4+1)8440k x k x k -+-= , 所以22222(8)4(41)(44)4816k k k k ∆=--⨯+-=+. 所以当k 为任何实数时,都有0∆>.所以2122841k x x k +=+,2122444+1k x x k -=. 因为线段PQ 的中点为M ,所以212024241x x k x k +==+,002(1)41-=-=+k y k x k , 因为(1,0)B ,所以00(,1)AM x y =+uuu r ,00(1,)BM x y =-uuu r.所以2200000000(1)(1)=AM BM x x y y x x y y ⋅=-++-++uuu r uuu r 2222222244=()()41414141k k k k k k k k ---++++++ 322243=41k k k k ---+() 222(431)=41k k k k -+++()22237[4()]816=41k k k -+++().又因为0k ≠,2374()0816k ++>,所以0AM BM ⋅≠uuu r uuu r,所以点M 不在以AB 为直径的圆上.………………………………14分 26.(2020密云二模)已知椭圆:过点(1,2P ,设它的左、右焦点分别为,,左顶点为,上顶点为.(Ⅰ)求椭圆C 的标准方程和离心率;(Ⅱ)过点6(,0)5Q -作不与轴垂直的直线交椭圆于,(异于点)两点,试判断的大小是否为定值,并说明理由. 答案(Ⅰ)解:根据题意得22222131,42,6.a b c a b c ⎧+=⎪⎪=⨯⎪=+⎪⎩解得2,1,a b c ⎧=⎪=⎨⎪=⎩所以椭圆C 的方程为2214x y +=,离心率е=(Ⅱ)解:方法一因为直线不与轴垂直,所以直线的斜率不为设直线的方程为:65x ty =-,联立方程226,51.4x ty x y ⎧=-⎪⎪⎨⎪+=⎪⎩化简得221264(4)0525t y ty +--=.显然点6(,0)5Q -在椭圆C 的内部,所以0∆>.设11(,)M x y ,22(,)N x y ,则122125(4)t y y t +=+,1226425(4)y y t =-+. 又因为(2,0)A -,所以11(2,)AM x y =+u u u u r ,22(2,)AN x y =+u u u r.所以1212(2)(2)AM AN x x y y =+++u u u u r u u u rg12122121222266(2)(2)55416(1)()5256441216(1)()25(4)55(4)25ty tx y y t y y t y y t t t t t =-+-++=++++=+⨯-+⨯+++=0 所以AM AN ⊥u u u u r u u u r ,即o90MAN ∠=是定值.方法二(1)当直线垂直于x 轴时 解得M 与N 的坐标为64(,)55-±.由点(2,0)A -,易证o90MAN ∠=. (2)当直线斜率存在时设直线的方程为:6(),0.5y k x k =+≠,联立方程226(),51.4y k x x y ⎧=+⎪⎪⎨⎪+=⎪⎩化简得2222484(3625)(14)0525k k x k x -+++=. 显然点6(,0)5Q -在椭圆C 的内部,所以0∆>.设11(,)M x y ,22(,)N x y ,则2122485(14)k x x k +=-+,21224(3625)25(14)k x x k -=+.又因为(2,0)A -,所以11(2,)AM x y =+u u u u r ,22(2,)AN x y =+u u u r.所以1212(2)(2)AM AN x x y y =+++u u u u r u u u rg12122221212222222266(2)(2)()()55636(1)(2)()45254(3625)64836(1)(2)425(14)55(14)25x x k x k x k k x x k x x k k k k k k k =+++++=++++++--=+⨯++⨯++++ =0 所以AM AN ⊥u u u u r u u u r ,即o 90MAN ∠=是定值.27.(2020丰台二模)已知椭圆2222:1(0)x y C a b a b +=>>经过(10)A ,,(0)B b ,两点.O 为坐标原点,且△AOB 的面积为4. 过点(01)P ,且斜率为(0)k k >的直线l 与椭圆C 有两个不同的交点M N ,,且直线AM ,AN 分别与y 轴交于点S ,T .(Ⅰ)求椭圆C 的方程;(Ⅱ)求直线l 的斜率k 的取值范围;(Ⅲ)设PS PO PT PO λμ==u u r u u u r u u u r u u u r ,,求λμ+的取值范围.答案解:(Ⅰ)因为椭圆2222:1x y C a b +=经过点(10)A ,,所以21a =解得1a =.由△AOB4可知,124ab =,解得2b =,所以椭圆C 的方程为2221x y +=. ………3分(Ⅱ) 设直线l 的方程为1y kx =+,1122()()M x y N x y ,,,.联立22211x y y kx +==+⎧⎨⎩,消y 整理可得:22(21)410k x kx +++=. 因为直线与椭圆有两个不同的交点,所以22164(21)0k k ∆=-+>,解得212k >.因为0k >,所以k的取值范围是)2+∞. ………7分(Ⅲ)因为(10)(01)A P ,,,1122()()M x y N x y ,,,, 所以直线AM 的方程是:11(1)1y y x x =--.令0x =,解得111y y x -=-.所以点S 的坐标为11(0)1y x --,.同理可得:点T 的坐标为22(0)1y x --,. 所以11(01)1y PS x -=--u u r ,,22(01)1y PT x -=--u u u r ,,(01)PO =-u u u r,. 由,,μλ== 可得:12121111y y x x λμ---=--=---,, 所以111111111y kx x x λ+=+=+--. 同理22111kx x μ+=+-.由(Ⅱ)得121222412121kx x x x k k +=-=++,, 所以 121211211kx kx x x λμ+++=++--()121212122(1)()221kx x k x x x x x x +-+-=+-++22222222142(1)()22121214()121212442(21)21421(1) 2(1)121k k k k k k k k k k k k k k k k k ⋅+---++=+--+++-+-+=++++-+=++=-++g所以λμ+的范围是2). ………14分28. (2020朝阳二模)已知椭圆C :22221(0)+=>>x y a b a b的离心率为2,且椭圆C经过点. (Ⅰ)求椭圆C 的方程;(Ⅱ)已知过点(4,0)P 的直线l 与椭圆C 交于不同的两点A ,B ,与直线1=x 交于点Q ,设λ=u u u r u u u r AP PB ,μ=u u u r u u u r AQ QB (λ,)μ∈R ,求证:λμ+为定值.答案解:(Ⅰ)由题意可知222222,121,⎧=+⎪⎪⎪+=⎨⎪⎪=⎪⎩a b c ab c a 得22=b ,24=a . 所以椭圆C 的方程为22142+=x y .……………5分 (Ⅱ)由题意可知,直线l 的斜率存在,设直线l 的方程为(4)=-y k x .由(4),10=-⎧⎨-=⎩y k x x 得1,3.=⎧⎨=-⎩x y k 所以(1,3)-Q k . 由22(4),24=-⎧⎨+=⎩y k x x y 得222(4)4+-=x kx k . 整理得2222(12)16(324)0+-+-=k x k x k .由2222(16)4(12)(324)0∆=--+->k k k,得<<k 设直线l 与椭圆C 的交点11(,)A x y ,22(,)B x y , 则21221612+=+k x x k ,212232412-=+k x x k .因为λ=u u u r u u u r AP PB ,μ=u u u r u u u r AQ QB 且11(4,)=--u u u r AP x y ,22(4,)=-u u u r PB x y ,11(1,3)=---u u u r AQ x k y ,22(1,3)=-+u u u r QB x y k , 所以111212222241(4)(1)(1)(4)41(4)(1)λμ----+--+=+=----x x x x x x x x x x 1212225()28(4)(1)+--=--x x x x x x . 因为22121222163245()285281212-+--=⨯-⨯-++k k x x x x k k 22228064881612-+--=+k k k k 0=, 所以0λμ+=.……………14分29(2020顺义二模)(本小题14分) 已知椭圆2222:1(0)+=>>x y C a b a b的焦距和长半轴长都为2.过椭圆C 的右焦点F 作斜率为(0)k k ≠的直线l 与椭圆C 相交于,P Q 两点.(I )求椭圆C 的方程;(II )设点A 是椭圆C 的左顶点,直线,AP AQ 分别与直线4x =相交于点,M N .求证:以MN 为直径的圆恒过点F .解:(I )由题意得222222c a a b c =⎧⎪=⎨⎪=+⎩解得2,1a b c === ---------------------3分故椭圆C 的方程为22143x y +=. -------------------5分 (II )(1,0)F ,(2,0)A -,直线l 的方程为(1)y k x =-. ------------------6分由22(1)3412y k x x y =-⎧⎨+=⎩ 得2222(34)84120k x k x k +-+-=. 直线l 过椭圆C 的焦点,显然直线l 椭圆C 相交.设11(,)P x y ,22(,)Q x y ,则2122834k x x k +=+,212241234k x x k -⋅=+ --------------8分 直线AP 的方程为11(2)2y y x x =++,令4x =,得1162M y y x =+; 即116(4,)2y M x + 同理:226(4,)2y N x + --------------10分 ∴116(3,)2y FM x =+u u u u r ,226(3,)2y FN x =+u u u r 又1212369(2)(2)y y FM FN x x ⋅=+++u u u u r u u u r -------------------11分=121236(1)(1)9(2)(2)k x k x x x -⋅-+++=[]21212121236()192()4k x x x x x x x x -++++++ =222222222412836(1)343494121643434k k k k k k k k k --++++-++++ =22229363493634k k k k -⋅+++ =990-=∴以MN 为直径的圆恒过点F . ----------------14分30. (2020房山二模)已知椭圆C 的两个顶点分别为(2,0)A -,(2,0)B ,焦点在x 轴上,离心率为12. (Ⅰ)求椭圆C 的方程; (Ⅱ)设O 为原点,点P 在椭圆C 上,点Q 和点P 关于x 轴对称,直线AP 与直线BQ 交于点M ,求证:P ,M 两点的横坐标之积等于4,并求OM 的取值范围.答案(Ⅰ)设椭圆C 的方程为22221(0)x y a b a b +=>>.依题意,2a =,12c a =. 得1c =,2223b a c =-=.所以,椭圆C 的方程为22143x y +=. (Ⅱ)依题意,可设(,)P m n (22m -<<且0m ≠),则(,)Q m n -.点P 在椭圆C 上,则22143m n +=, AP 的斜率为12n k m =+,直线AP 方程为(2)2n y x m =++, BQ 的斜率为12n k m -=-,直线BQ 的方程为(2)2n y x m -=--. 设(,)M x y ,由(2)2(2)2n y x m n y x m ⎧=+⎪⎪+⎨-⎪=-⎪-⎩得42x m n y m ⎧=⎪⎪⎨⎪=⎪⎩,所以M 的坐标为42(,)n m m . 所以P ,M 的横坐标之积等于44m m ⋅=. OM ==== 由204m <<, 所以,OM 的取值范围是()2,+∞.。
2020届北京各区高三二模数学分类汇编—直线、圆与圆锥曲线(含答案)

2020北京各区高三二模数学分类汇编—直线、圆与圆锥曲线1.(2020▪海淀二模)若抛物线212y x =的焦点为F ,点P 在此抛物线上且横坐标为3,则||PF 等于(A )4(B )6(C )8(D )102.(2020▪西城高三二模)抛物线24x y =的准线方程为(A )1x =(B )1x =-(C )1y =(D )1y =-3.(2020▪西城高三二模)若圆22420x y x y a +-++=与x 轴,y 轴均有公共点,则实数a 的取值范围是(A )(,1]-∞(B )(,0]-∞(C )[0,)+∞(D )[5,)+∞4.(2020▪东城高三二模)双曲线222:1y C x b-=的渐近线与直线1x =交于,A B 两点,且4AB =,那么双曲线C的离心率为(C) 2 5.(2020▪朝阳高三二模)圆心在直线0x y -=上且与y 轴相切于点()0,1的圆的方程是(A )22(1)1y +-=(x-1) (B )22(1)1y ++=(x+1) (C )22(1)2y +-=(x-1) (D )22(1)2y ++=(x+1) 6.(2020▪朝阳高三二模)直线l 过抛物线22x y=的焦点F ,且l 与该抛物线交于不同的两点1122(,),(,).A x yB x y 若123x x +=,则弦AB 的长是 (A )4(B )5(C )6 (D )87. (2020▪西城高三(下)6月模拟)焦点在x 轴的正半轴上,且焦点到准线的距离为4的抛物线的标准方程是(A)24x y =(B)24y x =(C)28x y =(D)28y x =8. (2020▪西城高三(下)6月模拟)圆224210x y x y ++-+=截x 轴所得弦的长度等于(A)2(B)(C)(D)49.(2020▪昌平高三二模)已知点是双曲线的一条渐近线上一点,是双曲线的右焦点,若△的面积为,则点的横.坐标为(A ) (B ) (C ) (D )10.(2020▪丰台高三二模)已知抛物线M :)0(22>=p py x 的焦点与双曲线13:22=-x y N 的一个焦点重合,则=p(A )2(B )2(C )22(D )411.(2020▪房山高三二模)若双曲线22221x y a b-=(0,0)a b >>的一条渐近线经过点(1,3),则该双曲线的离心率为 (A )2 (B )3 (C )2(D )512.(2020▪密云高三二模)已知双曲线的一条渐近线方程为,则其离心率为A. B. C. D.13.(2020▪密云高三二模)已知圆,若点P 在圆上,并且点P 到直线的距离为,则满足条件的点P 的个数为A .1B .2C .3D .414.(2020▪海淀二模)已知双曲线E 的一条渐近线方程为y x =,且焦距大于4,则双曲线E 的标准方程可以为_______.(写出一个即可)15. (2020▪丰台高三二模)双曲线)0,0(1:2222>>=-b a by a x M 的离心率为3,则其渐近线方程为_______.16.(2020▪丰台高三二模)已知集合{}22()|(cos )(sin )40P x y x y θθθ=-+-=≤≤π,,.由集合P 中所有的点组成的图形如图中阴影部分所示,中间白色部分形如美丽的“水滴”.给出下列结论: ① “水滴”图形与y 轴相交,最高点记为A ,则点A 的坐标为(0,1); ②在集合P 中任取一点M ,则M 到原点的距离的最大值为3;③阴影部分与y 轴相交,最高点和最低点分别记为C ,D ,则33CD =+;④白色“水滴”图形的面积是116π其中正确的有__________.17.(2020▪西城高三二模)若双曲线2221(0)16x y a a -=>经过点(2,0),则该双曲线渐近线的方程为____.18.(2020▪朝阳高三二模)已知双曲线C 的焦点为12(0,2),(0,2),F F -实轴长为2,则双曲线C 的离心率是;若点Q 是双曲线C 的渐近线上一点,且12,FQ F Q ⊥则12QF F V 的面积为19. (2020▪西城高三(下)6月模拟)能说明“若()20m n +≠,则方程2212mn yx+=+表示的曲线为椭圆或双曲线”是错误的一组,m n 的值是_______ 20.(2020▪昌平高三二模)已知点在抛物线上,若以点为圆心的圆与轴和其准线都相切,则点到其顶点的距离为_______ .21.(2020▪昌平高三二模)曲线C :,点在曲线上.给出下列三个结论:①曲线关于轴对称;②曲线上的点的横坐标的取值范围是;③若,,则存在点,使△的面积大于.其中,所有正确结论的序号是________.22.(2020▪房山高三二模)若直线3x =与圆2220x y x a +--=相切,则a = .23.(2020▪房山高三二模)已知抛物线C :22y x =的焦点为F ,点M 在抛物线C 上,||1MF =,则点M 的横坐标是_______,△MOF (O 为坐标原点)的面积为 . 24.(2020▪密云高三二模)抛物线过点,则抛物线的焦点坐标为_______.25.(2020▪海淀二模)(本小题共15分)已知椭圆2222:1x y W a b+=(0)a b >>过(0,1),(0,1)A B -.(Ⅰ)求椭圆W 的方程;(Ⅱ)过点A 的直线l 与椭圆W 的另一个交点为C ,直线l 交直线2y =于点M ,记直线BC ,BM 的斜率分别为1k ,2k ,求12k k 的值.26.(2020▪西城高三二模)(本小题满分14分)已知椭圆2222:1(0)x y C a b a b +=>>的离心率为12,右焦点为F ,点(,0)A a ,且1AF =.(Ⅰ)求椭圆C 的方程;(Ⅱ)过点F 的直线l (不与x 轴重合)交椭圆C 于点,M N ,直线,MA NA 分别与直线4x =交于点P ,Q ,求PFQ ∠的大小.27.(2020▪东城高三二模)(本小题14分)已知椭圆2222:1(0)x y C a b a b +=>>的一个顶点坐标为(0,1)A -,离心率为23.(Ⅰ)求椭圆C 的方程;(Ⅱ)若直线(1)(0)y k x k =-≠与椭圆C 交于不同的两点P ,Q ,线段PQ 的中点为M ,点(1,0)B ,求证:点M 不在以AB 为直径的圆上.28.(2020▪朝阳高三二模)(本小题14分)已知椭圆2222:1(0)x y C a b a b+=>>的离心率为2,且椭圆C 经过点 (I )求椭圆C 的方程;(II )已知过点(4,0)P 的直线l 与椭圆C 交于不同的两点,,A B 与直线1x =交于点Q ,设,(,),AP PB AQ QB R λμλμ==∈u u u r u u u r u u u r u u u r求证:λμ+为定值.29. (2020▪西城高三(下)6月模拟)(本小题满分14分)已知椭圆()2222:10yE a b x a b+=>>经过点()0,1C ,离心率为2.O 为坐标原点. (Ⅰ)求椭圆E 的方程;(Ⅱ)设,A B 分别为椭圆E 的左、右顶点,D 为椭圆E 上一点(不在坐标轴上),直线CD 交x 轴于点,P Q 为直线AD 上一点,且OP OQ 4=u u u r u u u rg ,求证:,,C B Q 三点共线.30.(2020▪昌平高三二模)(本小题15分)已知椭圆的离心率为,椭圆与轴交于两点(在下方),且.过点的直线与椭圆交于两点(不与重合).(Ⅰ)求椭圆的方程;(Ⅱ)证明:直线的斜率与直线的斜率乘积为定值.31. (2020▪丰台高三二模)(本小题共14分)已知椭圆2222:1(0)x y C a b ab+=>>经过(10)A ,,(0)B b ,两点.O 为坐标原点,且△AOB 4.过点(01)P ,且斜率为(0)k k >的直线l 与椭圆C 有两个不同的交点M N ,,且直线AM ,AN 分别与y 轴交于点S ,T .(Ⅰ)求椭圆C 的方程;(Ⅱ)求直线l 的斜率k 的取值范围;(Ⅲ)设PS PO PT PO λμ==u u r u u u r u u u r u u u r,,求λμ+的取值范围.32.(2020▪房山高三二模)(本小题14分).已知椭圆C的两个顶点分别为(2,0)B,焦点在x轴上,离心率为1A ,(2,0)2(Ⅰ)求椭圆C的方程;(Ⅱ)设O为原点,点P在椭圆C上,点Q和点P关于x轴对称,直线AP与直线BQ交于点M,求证:P,M两点的横坐标之积等于4,并求OM的取值范围.33.(2020▪密云高三二模)(本小题满分14分)已知椭圆:过点,设它的左、右焦点分别为,,左顶点为,上顶点为,且满足.(Ⅰ)求椭圆的标准方程和离心率;(Ⅱ)过点作不与轴垂直的直线交椭圆于,(异于点)两点,试判断的大小是否为定值,并说明理由.2020北京各区高三二模数学分类汇编—直线、圆与圆锥曲线参考答案1.B2.D3.A4.D5.A6.A7.D8.B9.A 10.D 11.C 12.A 13.C;14. 15. 16. ②③④ 17. 18. ;19. 答案不唯一. 如, 20. 21. ①② 22. 3 23. ;24.25.(本小题共15分)解:(Ⅰ)由题意,2221.b ca abc =⎧⎪⎪=⎨⎪⎪=+⎩, 解得2,1.a b =⎧⎨=⎩所以椭圆W 的方程为2214x y +=.(Ⅱ)由题意,直线l 不与坐标轴垂直. 设直线l 的方程为:1y kx =+(0k ≠). 由221,4 4.y kx x y =+⎧⎨+=⎩得22(41)80k x kx ++=. 设11(,)C x y ,因为10x ≠,所以12841kx k -=+. 得21122814114141k k y kx k k k --=+=⋅+=++. 即222814(,)4141k k C k k --++.又因为(0,1)B -,所以22121411418441k k k k k k -++==--+. 由1,2.y kx y =+⎧⎨=⎩得1,2.x k y ⎧=⎪⎨⎪=⎩ 所以点M 的坐标为1(,2)k.所以22131k k k+==. 所以1213344k k k k ⋅=-⋅=-. 26.(本小题满分14分)解:(Ⅰ)由题意得1,21,c a a c ⎧=⎪⎨⎪-=⎩解得2a =,1c =,……………3分 从而223b a c =-=, 所以椭圆C 的方程为22143x y +=.…5分 (Ⅱ)当直线l 的斜率不存在时,有3(1,)2M ,3(1,)2N -,(4,3)P -,(4,3)Q ,(1,0)F ,则(3,3)FP =-u u u r ,(3,3)FQ =u u u r ,故0FP FQ ⋅=u u u r u u u r ,即90PFQ ∠=o .…………6分 当直线l 的斜率存在时,设:(1)l y k x =-,其中0k ≠.………………7分 联立22(1),3412,y k x x y =-⎧⎨+=⎩得2222(43)84120k x k x k +-+-=.………………8分由题意,知0∆>恒成立, 设11(,)M x y ,22(,)N x y ,则2122843k x x k +=+,212241243k x x k -=+.…………9分MPAF NxyOQ直线MA 的方程为11(2)2y y x x =--.………………10分 令4x =,得1122P y y x =-,即112(4,)2y P x -.………………11分 同理可得222(4,)2y Q x -.………………12分所以112(3,)2y FP x =-u u u r ,222(3,)2y FQ x =-u u u r .因为121249(2)(2)y y FP FQ x x ⋅=+--u u u r u u u r212124(1)(1)9(2)(2)k x x x x --=+--2121212124[()1]92()4k x x x x x x x x -++=+-++ 22222222241284(1)434394121644343k k k k k k kk k --+++=+--+++22222224[(412)8(43)]9(412)164(43)k k k k k k k --++=+--++0=, 所以90PFQ ∠=o .综上,90PFQ ∠=o .………………14分 27.(本小题14分)(Ⅰ)解:由题意可知⎪⎪⎩⎪⎪⎨⎧===+,1,23,222b a ca c b解得⎪⎩⎪⎨⎧===,3,1,2c b a所以椭圆C 的方程为1422=+y x .………………………………4分(Ⅱ)证明:设11(,)P x y ,22(,)Q x y ,),(00y x M .由221,4(1),x y y k x ⎧+=⎪⎨⎪=-⎩得2222(4+1)8440k x k x k -+-=,所以22222(8)4(41)(44)4816k k k k ∆=--⨯+-=+. 所以当k 为任何实数时,都有0∆>. 所以2122841k x x k +=+,2122444+1k x x k -=.因为线段PQ 的中点为M , 所以212024241x x k x k +==+,002(1)41-=-=+k y k x k , 因为(1,0)B , 所以00(,1)AM x y =+uuu r,00(1,)BM x y =-uuur .所以2200000000(1)(1)=AM BM x x y y x x y y ⋅=-++-++uuu r uuur2222222244=()()41414141k k k k k k k k ---++++++322243=41k k k k ---+() 222(431)=41k k k k -+++()22237[4()]816=41k k k -+++().又因为0k ≠,2374()0816k ++>, 所以0AM BM ⋅≠uuu r uuu r,所以点M 不在以AB 为直径的圆上.………………………………14分 28.(本小题14分)解:(Ⅰ)由题意可知222222,121,⎧=+⎪⎪⎪+=⎨⎪⎪=⎪⎩a b c a b c a 得22=b ,24=a .所以椭圆C 的方程为22142+=x y .……………5分 (Ⅱ)由题意可知,直线l 的斜率存在,设直线l 的方程为(4)=-y k x . 由(4),10=-⎧⎨-=⎩y k x x 得1,3.=⎧⎨=-⎩x y k 所以(1,3)-Q k . 由22(4),24=-⎧⎨+=⎩y k x x y 得222(4)4+-=x kx k . 整理得2222(12)16(324)0+-+-=k x k x k .由2222(16)4(12)(324)0∆=--+->k k k,得<<k .设直线l 与椭圆C 的交点11(,)A x y ,22(,)B x y , 则21221612+=+k x x k ,212232412-=+k x x k .因为λ=u u u r u u u r AP PB ,μ=u u u r u u u r AQ QB 且11(4,)=--u u u r AP x y ,22(4,)=-u u u r PB x y ,11(1,3)=---u u u r AQ x k y ,22(1,3)=-+u u u r QB x y k , 所以111212222241(4)(1)(1)(4)41(4)(1)λμ----+--+=+=----x x x x x x x x x x1212225()28(4)(1)+--=--x x x x x x . 因为22121222163245()285281212-+--=⨯-⨯-++k k x x x x k k22228064881612-+--=+k k k k 0=,所以0λμ+=.……………14分29.(本小题满分14分)解:(Ⅰ)由题意,得,.………………2分又因为,………………3分 所以,.故椭圆的方程为.………………5分(Ⅱ),.设,则.………………6分所以直线的方程为,………………7分令,得点的坐标为.………………8分设,由,得(显然).……9分 直线的方程为,………………10分将代入,得,即. ………………11分故直线的斜率存在,且……12分.…………13分又因为直线的斜率,所以,即三点共线.………………14分30.(本小题满分15分)解:(Ⅰ)由题意得解得…………….3分即椭圆的方程为.…………….5分(Ⅱ)法一由题意,直线的斜率存在.当时,直线的方程为.代入椭圆方程有.则.所以所以…………….8分当时,则直线的方程为.由,得.…………….9分设,,则.…………10分又,所以,.…………….11分因为即直线的斜率与直线的斜率乘积为定值.…………….15分法二设直线的斜率为,则直线的方程为.…………….6分由,得.…………….7分设,,则.…………….9分又,所以,.…………….11分因为即直线的斜率与直线的斜率乘积为定值.…………….15分31.(本小题共14分) 解:(Ⅰ)因为椭圆2222:1x y C a b +=经过点(10)A ,,所以21a =解得1a =.由△AOB的面积为4可知,124ab =,解得2b =,所以椭圆C 的方程为2221x y +=.………3分(Ⅱ)设直线l 的方程为1y kx =+,1122()()M x y N x y ,,,. 联立22211x y y kx +==+⎧⎨⎩,消y 整理可得:22(21)410k x kx +++=.因为直线与椭圆有两个不同的交点,所以22164(21)0k k ∆=-+>,解得212k >.因为0k >,所以k的取值范围是)2+∞.………7分 (Ⅲ)因为(10)(01)A P ,,,1122()()M x y N x y ,,,,所以直线AM 的方程是:11(1)1y y x x =--. 令0x =,解得111y y x -=-.所以点S 的坐标为11(0)1y x --,. 同理可得:点T 的坐标为22(0)1y x --,. 所以11(01)1y PS x -=--u u r ,,22(01)1y PT x -=--u u u r ,,(01)PO =-u u u r,. 由,,μλ== 可得:12121111y y x x λμ---=--=---,, 所以111111111y kx x x λ+=+=+--. 同理22111kx x μ+=+-.由(Ⅱ)得121222412121kx x x x k k +=-=++,, 所以121211211kx kx x x λμ+++=++--()121212122(1)()221kx x k x x x x x x +-+-=+-++22222222142(1)()22121214()121212442(21)21421(1)2(1)121kk k k k kk k k k k k k k k k k ⋅+---++=+--+++-+-+=++++-+=++=-++g所以λμ+的范围是2).………14分32.(本小题14分)解:(Ⅰ)设椭圆C 的方程为22221(0)x y a b a b+=>>. 依题意,2a =,12c a =.得1c =,2223b a c =-=.所以,椭圆C 的方程为22143x y +=. (Ⅱ)依题意,可设(,)P m n (22m -<<且0m ≠),则(,)Q m n -. 点P 在椭圆C 上,则22143m n +=, AP 的斜率为12n k m =+,直线AP 方程为(2)2n y x m =++, BQ 的斜率为12n k m -=-,直线BQ 的方程为(2)2n y x m -=--. 设(,)M x y ,由(2)2(2)2n y x m n y x m ⎧=+⎪⎪+⎨-⎪=-⎪-⎩ 得42x m ny m ⎧=⎪⎪⎨⎪=⎪⎩,所以M 的坐标为42(,)n m m. 所以P ,M 的横坐标之积等于44m m⋅=. OM ==== 由204m <<, 所以,OM 的取值范围是()2,+∞.33.(本小题满分14分)(Ⅰ)解:根据题意得解得所以椭圆的方程为,离心率.(Ⅱ)解:方法一因为直线不与轴垂直,所以直线的斜率不为.设直线的方程为:,联立方程化简得.显然点在椭圆的内部,所以.设,,则,.又因为,所以,.所以=0所以,即是定值.方法二(1)当直线垂直于轴时解得与的坐标为.由点,易证.(2)当直线斜率存在时设直线的方程为:,联立方程化简得.显然点在椭圆的内部,所以.设,,则,.又因为,所以,.所以=0所以,即是定值.。
密云区2019-2020学年第二学期高三数学一模试卷含答案

者,“xk =0 ”表示任选一位第 k 类受访者不是习惯良好者(k=1,2,3,4,5,6).写
出方差 Dx1,Dx2, Dx3, Dx4, Dx5, Dx6 的大小关系.
18.(本小题满分 15 分)
如图,在四棱锥 P - ABCD 中,底面 ABCD 是边长为 2 的菱形, ÐADC = 60o , DPAD 为等边三角形,平面 PAD ⊥平面
请从① a = 7 ,② b = 2 ,③ sin C = 2sin B 这三个条件中任选两个,将问题(Ⅰ)
补充完整,并作答.注意,只需选择其中的一种情况作答即可,如果选择多种情况作
答,以第一种情况的解答计分.
(Ⅱ)求 cos B + cos C 的最大值.
17.(本小题满分 14 分)
在考察疫情防控工作中,某区卫生防控中心提出了“要坚持开展爱国卫生运动,从人居
14. 函数 f (x)= cos2 x 的最小正周期是_________,单调递增区间是_______.
ì 2-x -1, 15. 已知函数 f (x) = í
î f (x - 2),
x ≤ 0, 若关于 x 的方程 f (x) = 3 x + a 有且只有两个不相
x > 0.
2
等的实数根,则实数 a 的取值范围是________.
A.点 M 在圆 C 上
B.点 M 在圆 C 外
C.点 M 在圆 C 内
D.上述三种情况都有可能
7.函数 f (x) = sin(wx +j) 的部分图象如图所示,则 f (x) 的单调递增区间为
A.[- 5 + kπ, - 1 + kπ] , k Î Z
4
4
B.[- 5 + 2k来自, - 1 + 2kπ] , k Î Z
密云区2019-2020学年第二学期高三第二次阶段性测试答案20200602

密云区2019-2020学年第二学期高三第二次阶段性测试数学试卷 2020.6一、选择题:本大题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{|0}M x x =∈R ≥,N M ⊆,则在下列集合中符合条件的集合N 可能是 A. {0,1} B. 2{|1}x x = C. 2{|0}x x > D. R2.在下列函数中,定义域为实数集的偶函数为A.sin y x =B.cos y x =C.||y x x =D. ln ||y x =3. 已知x y >,则下列各不等式中一定成立的是A .22x y >B .11x y> C .11()()33x y >D .332x y -+>4.已知函数()y f x =满足(1)2()f x f x +=,且(5)3(3)4f f =+,则(4)f = A .16 B .8 C .4 D . 25.已知双曲线221(0)x y a a-=>的一条渐近线方程为20x y +=,则其离心率为 A.52 B.174 C. 32 D. 1546.已知平面向量和a b ,则“||||=-b a b ”是“1()02-=g b a a ”的 A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件7.已知圆22:(1)2C x y +-=,若点P 在圆C 上,并且点P 到直线y x =的距离为22,则满足条件的点P 的个数为A .1B .2C .3D .48.设函数1()sin()2f x x ωϕ=+,x ∈R ,其中0ω>,||ϕ<π.若51()82f π=,()08f 11π=,且()f x 的最小正周期大于2π,则 A .13ω=,24ϕ11π=-B .23ω=,12ϕπ= C .13ω=,24ϕ7π= D .23ω=,12ϕ11π=-9. 某三棱锥的三视图如图所示,则该三棱锥中最长的棱长为1A .2B .2C .22D .2310. 已知函数()f x 的定义域为 ,且满足下列三个条件:①对任意的 ,且,都有;② ;③ 是偶函数;若,,(2020)c f =,则 ,, 的大小关系正确的是 A .a b c << B .C .D .二、填空题:本大题共5小题,每小题5分,共25分.11.抛物线2()y mx m =为常数过点(1,1)-,则抛物线的焦点坐标为_______.12.在61()x x+的展开式中,常数项为_______.(用数字作答).13. 已知n S 是数列{n a }的前n 项和,且211(*)n S n n n =-∈N ,则1a =_________,n S 的最小值为_______.14. 在ABC V 中,三边长分别为4a =,5b =,6c =,则ABC V 的最大内角的余弦值为_________,ABC V 的面积为_______.15. 已知集合22{,,A a a x y x y ==-∈∈Z Z}.给出如下四个结论: ①2A ∉,且3A ∈;②如果{|21,}B b b m m ==-∈N*,那么B A ⊆;③如果{|22,}C c c n n ==+∈N*,那么对于c C ∀∈,则有c A ∈; ④如果1a A ∈,2a A ∈,那么12a a A ∈. 其中,正确结论的序号是__________.三、解答题: 本大题共6小题,共85分.解答应写出文字说明, 演算步骤或证明过程.16.(本小题满分14分)C 1A 1B 1如图,直三棱柱111ABC A B C -中,112AC BC AA ==,D 是棱1AA 的中点,1DC BD ⊥. (Ⅰ)证明:1DC BC ⊥;(Ⅱ)求二面角11A BD C --的大小.17.(本小题满分15分)已知函数 .(Ⅰ)求函数的单调递增区间和最小正周期;(Ⅱ)若当π[0,]2x ∈时,关于x 的不等式()f x m ≥_______,求实数的取值范围.请选择①和②中的一个条件,补全问题(Ⅱ),并求解.其中,①有解;②恒成立. 注意:如果选择①和②两个条件解答,以解答过程中书写在前面的情况计分.18.(本小题满分14分)某健身机构统计了去年该机构所有消费者的消费金额(单位:元),如图所示:(Ⅰ)将去年的消费金额超过3200元的消费者称为“健身达人”,现从所有“健身达人”中随机抽取2人,求至少有1位消费者,其去年的消费金额超过4000元的概率;(Ⅱ)针对这些消费者,该健身机构今年欲实施入会制.规定:消费金额为2000元、2700元和3200元的消费者分别为普通会员、银卡会员和金卡会员.预计去年消费金额在(0,1600]、(1600,3200]、(3200,4800]内的消费者今年都将会分别申请办理普通会员、银卡会员和金卡会员.消费者在申请办理会员时,需一次性预先缴清相应等级的消费金额.该健身机构在今年年底将针对这些消费者举办消费返利活动,预设有如下两种方案:方案 按分层抽样从普通会员,银卡会员,金卡会员中总共抽取25位“幸运之星”给予奖励.其中,普通会员、银卡会员和金卡会员中的“幸运之星”每人分别奖励500元、600元和元.方案2 每位会员均可参加摸奖游戏,游戏规则如下:从一个装有3个白球、2个红球(球只有颜色不同)的箱子中,有放回地摸三次球,每次只能摸一个球.若摸到红球的总数为2,则可获得200元奖励金;若摸到红球的总数为3,则可获得300元奖励金;其他情况不给予奖励.如果每位普通会员均可参加1次摸奖游戏;每位银卡会员均可参加2次摸奖游戏;每位金卡会员均可参加3次摸奖游戏(每次摸奖的结果相互独立).以方案的奖励金的数学期望为依据,请你预测哪一种方案投资较少?并说明理由.19.(本小题满分14分) 已知椭圆:过点3(1,)2P ,设它的左、右焦点分别为,,左顶点为,(800,1600] 40 30 20 10 0[0,800](1600,2400] (2400,3200] (4000,4800](3200,4000] 820253584消费金额/元人数上顶点为,且满足.(Ⅰ)求椭圆C 的标准方程和离心率;(Ⅱ)过点6(,0)5Q -作不与轴垂直的直线交椭圆于,(异于点)两点,试判断 的大小是否为定值,并说明理由.20.(本小题满分14分)已知函数()ln ,f x x a x a =-∈R .(Ⅰ)当1a =时,求曲线()f x 在1x =处的切线方程; (Ⅱ)设函数1()()ah x f x x+=+,试判断函数()h x 是否存在最小值,若存在,求出最小值,若不存在,请说明理由.(Ⅲ)当0x >时,写出ln x x 与2x x -的大小关系.21.(本小题满分14分)设n 为正整数,集合A =12{|(,,,),{0,1},1,2,,}n k t t t t k n αα=∈=L L .对于集合A 中的任意元素12(,,,)n x x x α=L 和12(,,,)n y y y β=L ,记111122221(,)[(||)(||)(||)]2n n n n M x y x y x y x y x y x y αβ=+-++-+++-+++L .(Ⅰ)当n =3时,若(0,1,1)α=,(0,0,1)β=,求(,)M αα和(,)M αβ的值; (Ⅱ)当4n =时,对于A 中的任意两个不同的元素,αβ,证明:(,)(,)(,)M M M αβααββ+≤.(Ⅲ)给定不小于2的正整数n ,设B 是A 的子集,且满足:对于B 中的任意两个不同元素α,β,(,)(,)(,)M M M αβααββ=+.写出一个集合B ,使其元素个数最多,并说明理由.(考生务必将答案答在答题卡上,在试卷上作答无效)密云区2019-2020学年第二学期高三第二次阶段性测试数学试卷参考答案 2020.6一、选择题:共10小题,每小题4分,共40分.题号 1 2 3 4 5 6 7 8 9 10 答案ABDBACCBDD二、填空题:共5小题,每小题5分,共25分.11.1(,0)4- 12.20 13.10-;30- 14.18;157415. ①②④. 备注:(1)若小题有两问,第一问3分,第二问2分;(2)第15题答案为①②④之一,3分;为①②④之二,4分;为①②④,5分;其它答案0分.三、解答题:共6小题,共85分.解答应写出文字说明,演算步骤或证明过程. 16.(本小题满分14分)(Ⅰ)证明:在直三棱柱111ABC A B C -中,侧面11ACC A 为矩形.因为112AC BC AA ==,D 是棱1AA 的中点,所以ADC ∆和11A DC ∆均为等腰直角三角形.所以o1145ADC A DC ∠=∠=. 因此o190C DC ∠=,即1C D DC ⊥. 因为1DC BD ⊥,BD DC D =I , 所以1DC ⊥平面BCD . 因为BC ⊂平面BCD ,所以1DC BC ⊥.(Ⅱ)解:因为1CC ⊥平面ABC ,AC ⊂平面ABC ,BC ⊂平面ABC ,所以1CC AC ⊥,1CC BC ⊥. 又因为1DC BC ⊥,111CC DC C =I , 所以BC ⊥平面11ACC A .因为AC ⊂平面11ACC A ,所以BC AC ⊥ 以C 为原点建立空间直角坐标系,如图所示. 不妨设1AC =,则(0,0,0)C ,(1,0,0)A ,(010)B ,,,(101)D ,,,1(102)A ,,,1(0,0,2)C , 所以1(0,0,1)A D =-u u u u r ,1(1,1,2)A B =--u u u r ,1(1,0,1)C D =-u u u u r ,1(0,1,2)C B =-u u u r. 设平面1A BD 的法向量()x y z =,,m ,由1100.A D AB ⎧⋅=⎪⎨⋅=⎪⎩u u u u r u u u r,m m 得020.z x y z -=⎧⎨-+-=⎩, 令1x =,则(1,1,0)=m .设平面1C BD 的法向量()x y z =,,n ,由1100.C D C B ⎧⋅=⎪⎨⋅=⎪⎩u u u u ru u u r ,n n 得020.x z y z -=⎧⎨-=⎩,令1x =,则(1,2,1)=n .则有1112013cos ,.||||226⋅⨯+⨯+⨯<>===⋅⨯m n m n m n因为二面角1A BD C --为锐角,C 1ABC A 1 B 1第16题图DDC 1 AB C A 1 B 1第16题图zxy所以二面角1A BD C --的大小为π6. 17. (本小题满分15分)(Ⅰ)解:因为22()=23sin cos cos sin f x x x x x +-=3sin 2cos 2x x + =π2sin(2)6x +.所以函数()f x 的最小正周期πT =. 因为函数sin y x =的的单调增区间为ππ[2π,2π],22k k k -++∈Z , 所以πππ2π22π,262k x k k -+++∈Z ≤≤, 解得ππππ,36k x k k -++∈Z ≤≤.所以函数数()f x 的的单调增区间为ππ[π,π],36k k k -++∈Z ,(Ⅱ)解:若选择①由题意可知,不等式()f x m ≥有解,即max ()m f x ≤.因为π[0,]2x ∈,所以ππ7π2666x +≤≤. 故当ππ262x +=,即π6x =时,()f x 取得最大值,且最大值为π()26f =.所以2m ≤.若选择②由题意可知,不等式()f x m ≥恒成立,即min ()m f x ≤.因为π[0,]2x ∈,所以ππ7π2666x +≤≤. 故当π7π266x +=,即π2x =时,()f x 取得最小值,且最小值为π()12f =-.所以1m -≤.18.(本小题满分14分)(Ⅰ)解:记“在抽取的2人中至少有1位消费者在去年的消费超过4000元”为事件A.由图可知,去年消费金额在(3200,4000]内的有8人,在(4000,4800]内的有4人, 消费金额超过3200元的“健身达人”共有 8+4=12(人),从这12人中抽取2人,共有212C 种不同方法,其中抽取的2人中至少含有1位消费者在去年的消费超过4000元,共有112844C C C +种不同方法.所以,()P A =11284421219=33C C C C +. (Ⅱ)解:方案1 按分层抽样从普通会员,银卡会员,金卡会员中总共抽取25位“幸运之星”,则“幸运之星”中的普通会员、银卡会员、金卡会员的人数分别为820257100+⨯=,25352515100+⨯=,12253100⨯=, 按照方案1奖励的总金额为1750015600380014900ξ=⨯+⨯+⨯=(元).方案2 设η表示参加一次摸奖游戏所获得的奖励金,则η的可能取值为0,200,300.由题意,每摸球1次,摸到红球的概率为121525C P C ==,所以03012133323281(0)()()()()5555125P C C η==+=, 21233236(200)()()55125P C η===, 3033328(300)()()55125P C η===. 所以η的分布列为:数学期望为81368020030076.8125125125E η=⨯+⨯+⨯=(元), 按照方案2奖励的总金额为2(28602123)76.814131.2ξ=+⨯+⨯⨯=(元),因为由12ξξ>,所以施行方案2投资较少.19.(本小题满分14分)(Ⅰ)解:根据题意得2222222131,4152,6.a b a b c a b c ⎧+=⎪⎪⎪+=⨯⎨⎪⎪=+⎪⎩解得2,1,3.a b c ⎧=⎪=⎨⎪=⎩所以椭圆C 的方程为2214x y +=,离心率3е2=.(Ⅱ)解:方法一因为直线不与轴垂直,所以直线的斜率不为. 设直线的方程为:65x ty =-, 联立方程226,51.4x ty x y ⎧=-⎪⎪⎨⎪+=⎪⎩化简得221264(4)0525t y ty +--=.显然点6(,0)5Q -在椭圆C 的内部,所以0∆>.设11(,)M x y ,22(,)N x y ,则122125(4)t y y t +=+,1226425(4)y y t =-+. 又因为(2,0)A -,所以11(2,)AM x y =+u u u u r ,22(2,)AN x y =+u u u r.所以1212(2)(2)AM AN x x y y =+++u u u u r u u u rg12122121222266(2)(2)55416(1)()5256441216(1)()25(4)55(4)25ty tx y y t y y t y y t t t t t =-+-++=++++=+⨯-+⨯+++=0 所以AM AN ⊥u u u u r u u u r ,即o90MAN ∠=是定值.方法二(1)当直线垂直于x 轴时 解得M 与N 的坐标为64(,)55-±.由点(2,0)A -,易证o90MAN ∠=. (2)当直线斜率存在时设直线的方程为:6(),0.5y k x k =+≠,联立方程226(),51.4y k x x y ⎧=+⎪⎪⎨⎪+=⎪⎩化简得2222484(3625)(14)0525k k x k x -+++=. B AM N Qxy显然点6(,0)5Q -在椭圆C 的内部,所以0∆>.设11(,)M x y ,22(,)N x y ,则2122485(14)k x x k +=-+,21224(3625)25(14)k x x k -=+.又因为(2,0)A -,所以11(2,)AM x y =+u u u u r ,22(2,)AN x y =+u u u r.所以1212(2)(2)AM AN x x y y =+++u u u u r u u u rg12122221212222222266(2)(2)()()55636(1)(2)()45254(3625)64836(1)(2)425(14)55(14)25x x k x k x k k x x k x x k k k k k k k =+++++=++++++--=+⨯++⨯++++=0所以AM AN ⊥u u u u r u u u r ,即o90MAN ∠=是定值.20.(本小题满分14分)(Ⅰ)解:当1a =时,()ln ,0f x x x x =->,所以1'()1,0f x x x=->,因此'(1)0k f ==. 又因为(1)1f =,所以切点为(1,1).所以切线方程为1y =.(Ⅱ)解:1()ln 0ah x x a x x a x+=-+>∈R ,,. 所以221(1)(1)'()10a a x x a h x x x x x ++--=-->=,. 因为0x >,所以10x +>. (1)当10a +≤,即a ≤-1时因为0x >,所以(1)0x a -+>,故'()0h x >.此时函数()h x 在(0,)+∞上单调递增.所以函数()h x 不存在最小值. (2)当10a +>,即a >-1时令'()0h x =,因为0x >,所以1x a =+.()h x 与'()h x 在(0,)+∞上的变化情况如下:x(0,1)a +1a +(1,)a ++∞'()h x − 0 + ()h x↘极小值↗所以当1x a =+时,()h x 有极小值,也是最小值,并且min ()(1)2ln(1)h x h a a a a =+=+-+. 综上所述,当a ≤-1时,函数()h x 不存在最小值;当1a >-时,函数()h x 有最小值2ln(1)a a a +-+.(Ⅲ)解:当0x >时,2ln x x x x -≤.21.(本小题满分14分)(Ⅰ)解:因为(0,1,1)α=,(0,0,1)β=,所以1(,)[(00|00|)(11|11|)(11|11|)]22M αα=++-+++-+++-=,1(,)[(00|00|)(10|10|)(11|11|)]22M αβ=++-+++-+++-=.(Ⅱ)证明:当4n =时,对于A 中的任意两个不同的元素,αβ,设12341234(,,,)(,,,)x x x x y y y y αβ==,,有12341234(,)(,)M x x x x M y y y y ααββ=+++=+++,.对于任意的,i i x y ,1,2,3,4i =,当i i x y ≥时,有11(||)[()]22i i i i i i i i i x y x y x y x y x ++-=++-=, 当i i x y ≤时,有11(||)[()]22i i i i i i i i i x y x y x y x y y ++-=+--=. 即1(||)max{,}2i i i i i i x y x y x y ++-=. 所以,有11223344(,)max{,}max{,}max{,}max{,}M x y x y x y x y αβ=+++. 又因为,{0,1}i i x y ∈,所以max{,}i i i i x y x y ≤+,1,2,3,4i =,当且仅当0i i x y =时等号成立. 所以,11223344max{,}max{,}max{,}max{,}x y x y x y x y +++11223344()()()()x y x y x y x y ≤+++++++ 12341234()()x x x x y y y y =+++++++,即(,)(,)(,)M M M αβααββ≤+,当且仅当0i i x y =(1,2,3,4i =)时等号成立.(Ⅲ)解:由(Ⅱ)问,可证,对于任意的123123(,,,,)(,,,,)n n x x x x y y y y αβ==L L ,,若(,)(,)(,)M M M αβααββ=+,则0i i x y =,1,2,3,,i n =L 成立. 所以,考虑设012312{(,,,,)|,0}n n A x x x x x x x =====L L , 11231{(,,,,)|1,{0,1},2,3,,}n i A x x x x x x i n ==∈=L L ,对于任意的2,3,,k n =L ,123123121{(,,,,)|(,,,,),0,1}k n n k k A x x x x x x x x A x x x x -=∈=====L L L .所以01n A A A A =U UL U .高三数学试题参考答案 第11页共11页 假设满足条件的集合B 中元素个数不少于2n +, 则至少存在两个元素在某个集合k A (1,2,,1k n =-L )中,不妨设为123123(,,,,)(,,,,)n n x x x x y y y y αβ==L L ,,则1k k x y ==. 与假设矛盾,所以满足条件的集合B 中元素个数不多于1n +. 取0(0,0,0)e =L ;对于1,2,,1k n =-L ,取123(,,,,)k n k e x x x x A =∈L ,且10k n x x +===L ;n n e A ∈. 令01{,,,}n B e e e =L ,则集合B 满足条件,且元素个数为1n +.故B 是一个满足条件且元素个数最多的集合.。
北京市密云区2019-2020学年第二学期高三第二次阶段性测试数学试卷及评分标准20200602

密云区2019-2020学年第二学期高三第二次阶段性测试数学试卷 2020.6一、选择题:本大题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{|0}M x x =∈R ≥,N M ⊆,则在下列集合中符合条件的集合N 可能是 A.{0,1} B.2{|1}x x = C. 2{|0}x x > D. R2.在下列函数中,定义域为实数集的偶函数为A.sin y x =B.cos y x =C.||y x x =D.ln ||y x =3.已知x y >,则下列各不等式中一定成立的是A .22x y >B .11x y> C .11()()33x y > D .332x y -+>4.已知函数()y f x =满足(1)2()f x f x +=,且(5)3(3)4f f =+,则(4)f = A .16 B .8 C .4 D . 25.已知双曲线221(0)x y a a-=>的一条渐近线方程为20x y +=,则其离心率为6.已知平面向量和a b ,则“||||=-b a b ”是“1()02-=g b a a ”的 A.充分而不必要条件B.必要而不充分条件 C.充分必要条件D.既不充分也不必要条件7.已知圆22:(1)2C x y +-=,若点P 在圆C 上,并且点P 到直线y x =的距离为2,则满足条件的点P 的个数为 A .1B .2C .3D .48.设函数1()sin()2f x x ωϕ=+,x ∈R ,其中0ω>,||ϕ<π.若51()82f π=,()08f 11π=,且()f x 的最小正周期大于2π,则 A .13ω=,24ϕ11π=-B .23ω=,12ϕπ= C .13ω=,24ϕ7π= D .23ω=,12ϕ11π=-9.某三棱锥的三视图如图所示,则该三棱锥中最长的棱长为 AB .2 C. D.10.已知函数()f x 的定义域为,且满足下列三个条件: ①对任意的,且,都有;②;③是偶函数;若,,(2020)c f =,则,,的大小关系正确的是 A .a b c <<B .C .D .二、填空题:本大题共5小题,每小题5分,共25分.11.抛物线2()y mx m =为常数过点(1,1)-,则抛物线的焦点坐标为_______.12.在61()x x+的展开式中,常数项为_______.(用数字作答).13.已知n S是数列{n a }的前n 项和,且211(*)n S n n n =-∈N ,则1a =_________,n S 的最小值为_______.14. 在ABC V 中,三边长分别为4a =,5b =,6c =,则ABC V 的最大内角的余弦值为_________,ABC V 的面积为_______.15. 已知集合22{,,A a a x y x y ==-∈∈Z Z}.给出如下四个结论: ①2A ∉,且3A ∈;②如果{|21,}B b b m m ==-∈N*,那么B A ⊆;③如果{|22,}C c c n n ==+∈N*,那么对于c C ∀∈,则有c A ∈; ④如果1a A ∈,2a A ∈,那么12a a A ∈. 其中,正确结论的序号是__________.第9题图11主视图1俯视图2三、解答题: 本大题共6小题,共85分.解答应写出文字说明, 演算步骤或证明过程. 16.(本小题满分14分)如图,直三棱柱111ABC A B C -中,112AC BC AA ==,D 是棱1AA 的中点,1DC BD ⊥.(Ⅰ)证明:1DC BC ⊥;(Ⅱ)求二面角11A BD C --的大小.17.(本小题满分15分)已知函数.(Ⅰ)求函数的单调递增区间和最小正周期;(Ⅱ)若当π[0,]2x ∈时,关于x 的不等式()f x m ≥_______,求实数的取值范围. 请选择①和②中的一个条件,补全问题(Ⅱ),并求解.其中,①有解;②恒成立. 注意:如果选择①和②两个条件解答,以解答过程中书写在前面的情况计分.18.(本小题满分14分)某健身机构统计了去年该机构所有消费者的消费金额(单位:元),如图所示:(Ⅰ)将去年的消费金额超过3200元的消费者称为“健身达人”,现从所有“健身达人”中随机抽取2人,求至少有1位消费者,其去年的消费金额超过4000元的概率; (Ⅱ)针对这些消费者,该健身机构今年欲实施入会制.规定:消费金额为2000元、2700元和3200元的消费者分别为普通会员、银卡会员和金卡会员.预计去年消费金额在(0,1600]、(1600,3200]、(3200,4800]内的消费者今年都将会分别申请办理普通会员、银卡会员和金卡会员.消费者在申请办理会员时,需一次性预先缴清相应等级的消费金额.该健身机构在今年年底将针对这些消费者举办消费返利活动,预设有如下两种方案: 方案按分层抽样从普通会员,银卡会员,金卡会员中总共抽取25位“幸运之星”给予奖励.其中,普通会员、银卡会员和金卡会员中的“幸运之星”每人分别奖励500元、600元和元.方案2每位会员均可参加摸奖游戏,游戏规则如下:从一个装有3个白球、2个红球(球只有颜色不同)的箱子中,有放回地摸三次球,每次只能摸一个球.若摸到红球的总数为2,则可获得200元奖励金;若摸到红球的总数为3,则可获得300元奖励金;其他情况不给予奖励.如果每位普通会员均可参加1次摸奖游戏;每位银卡会员C 1 A BC A 1B 1第16题图D(800,1600] (1600,2400] (2400,3200] (4000,4800](3200,4000] 消费金额/元人数均可参加2次摸奖游戏;每位金卡会员均可参加3次摸奖游戏(每次摸奖的结果相互独立).以方案的奖励金的数学期望为依据,请你预测哪一种方案投资较少?并说明理由.19.(本小题满分14分)已知椭圆:过点P ,设它的左、右焦点分别为,,左顶点为,上顶点为.(Ⅰ)求椭圆C 的标准方程和离心率;(Ⅱ)过点6(,0)5Q -作不与轴垂直的直线交椭圆于,(异于点)两点,试判断的大小是否为定值,并说明理由.20.(本小题满分14分)已知函数()ln ,f x x a x a =-∈R .(Ⅰ)当1a =时,求曲线()f x 在1x =处的切线方程; (Ⅱ)设函数1()()ah x f x x+=+,试判断函数()h x 是否存在最小值,若存在,求出最小值,若不存在,请说明理由.(Ⅲ)当0x >时,写出ln x x 与2x x -的大小关系.21.(本小题满分14分)设n 为正整数,集合A =12{|(,,,),{0,1},1,2,,}n k t t t t k n αα=∈=L L .对于集合A 中的任意元素12(,,,)n x x x α=L 和12(,,,)n y y y β=L ,记111122221(,)[(||)(||)(||)]2n n n n M x y x y x y x y x y x y αβ=+-++-+++-+++L .(Ⅰ)当n =3时,若(0,1,1)α=,(0,0,1)β=,求(,)M αα和(,)M αβ的值; (Ⅱ)当4n =时,对于A 中的任意两个不同的元素,αβ,证明:(,)(,)(,)M M M αβααββ+≤.(Ⅲ)给定不小于2的正整数n ,设B 是A 的子集,且满足:对于B 中的任意两个不同元素α,β,(,)(,)(,)M M M αβααββ=+.写出一个集合B ,使其元素个数最多,并说明理由.(考生务必将答案答在答题卡上,在试卷上作答无效)密云区2019-2020学年第二学期高三第二次阶段性测试数学试卷参考答案 2020.6一、选择题:共10小题,每小题4分,共40分.二、填空题:共5小题,每小题5分,共25分.11.1(,0)4- 12.20 13.10-;30- 14.18 15. ①②④. 备注:(1)若小题有两问,第一问3分,第二问2分;(2)第15题答案为①②④之一,3分;为①②④之二,4分;为①②④,5分;其它答案0分.三、解答题:共6小题,共85分.解答应写出文字说明,演算步骤或证明过程. 16.(本小题满分14分)(Ⅰ)证明:在直三棱柱111ABC A B C -中,侧面11ACC A 为矩形.因为112AC BC AA ==,D 是棱1AA 的中点,所以ADC ∆和11A DC ∆均为等腰直角三角形.所以o1145ADC A DC ∠=∠=.因此o190C DC ∠=,即1C D DC ⊥.因为1DC BD ⊥,BD DC D =I , 所以1DC ⊥平面BCD . 因为BC ⊂平面BCD ,所以1DC BC ⊥.(Ⅱ)解:因为1CC ⊥平面ABC ,AC ⊂平面ABC ,BC ⊂平面ABC ,所以1CC AC ⊥,1CC BC ⊥. 又因为1DC BC ⊥,111CC DC C =I , 所以BC ⊥平面11ACC A .因为AC ⊂平面11ACC A ,所以BC AC ⊥ 以C 为原点建立空间直角坐标系,如图所示. 不妨设1AC =,则(0,0,0)C ,(1,0,0)A ,(010)B ,,,(101)D ,,,1(102)A ,,,1(0,0,2)C , C 1ABC A 1 B 1所以1(0,0,1)A D =-u u u u r ,1(1,1,2)A B =--u u u r ,1(1,0,1)C D =-u u u u r ,1(0,1,2)C B =-u u u r . 设平面1A BD 的法向量()x y z =,,m ,由1100.A D AB ⎧⋅=⎪⎨⋅=⎪⎩u u u u r u u u r,m m 得020.z x y z -=⎧⎨-+-=⎩, 令1x =,则(1,1,0)=m .设平面1C BD 的法向量()x y z =,,n ,由1100.C D C B ⎧⋅=⎪⎨⋅=⎪⎩u u u u r u u u r ,n n 得020.x z y z -=⎧⎨-=⎩,令1x =,则(1,2,1)=n .则有cos ,||||⋅<>===⋅m n m n m n因为二面角1A BD C --为锐角, 所以二面角1A BD C --的大小为π6. 17. (本小题满分15分)(Ⅰ)解:因为22(cos cos sin f x x x x x +-2cos 2x x + =π2sin(2)6x +.所以函数()f x 的最小正周期πT =. 因为函数sin y x =的的单调增区间为ππ[2π,2π],22k k k -++∈Z , 所以πππ2π22π,262k x k k -+++∈Z ≤≤, 解得ππππ,36k x k k -++∈Z ≤≤.所以函数数()f x 的的单调增区间为ππ[π,π],36k k k -++∈Z ,(Ⅱ)解:若选择①由题意可知,不等式()f x m ≥有解,即max ()m f x ≤.因为π[0,]2x ∈,所以ππ7π2666x +≤≤. 故当ππ262x +=,即π6x =时,()f x 取得最大值,且最大值为π()26f =.所以2m ≤.若选择②由题意可知,不等式()f x m ≥恒成立,即min ()m f x ≤.因为π[0,]2x ∈,所以ππ7π2666x +≤≤. 故当π7π266x +=,即π2x =时,()f x 取得最小值,且最小值为π()12f =-.所以1m -≤.18.(本小题满分14分)(Ⅰ)解:记“在抽取的2人中至少有1位消费者在去年的消费超过4000元”为事件A.由图可知,去年消费金额在(3200,4000]内的有8人,在(4000,4800]内的有4人,消费金额超过3200元的“健身达人”共有 8+4=12(人),从这12人中抽取2人,共有212C 种不同方法,其中抽取的2人中至少含有1位消费者在去年的消费超过4000元,共有112844C C C +种不同方法.所以,()P A =11284421219=33C C C C +. (Ⅱ)解:方案1 按分层抽样从普通会员,银卡会员,金卡会员中总共抽取25位“幸运之星”,则“幸运之星”中的普通会员、银卡会员、金卡会员的人数分别为820257100+⨯=,25352515100+⨯=,12253100⨯=, 按照方案1奖励的总金额为1750015600380014900ξ=⨯+⨯+⨯=(元).方案2 设η表示参加一次摸奖游戏所获得的奖励金,则η的可能取值为0,200,300.由题意,每摸球1次,摸到红球的概率为121525C P C ==,所以03012133323281(0)()()()()5555125P C C η==+=, 21233236(200)()()55125P C η===, 3033328(300)()()55125P C η===. 所以η的分布列为:数学期望为81368020030076.8125125125E η=⨯+⨯+⨯=(元), 按照方案2奖励的总金额为2(28602123)76.814131.2ξ=+⨯+⨯⨯=(元),因为由12ξξ>,所以施行方案2投资较少.19.(本小题满分14分)(Ⅰ)解:根据题意得22222131,42,6.a b c a b c ⎧+=⎪⎪=⨯⎪=+⎪⎩解得2,1,a b c ⎧=⎪=⎨⎪=⎩所以椭圆C 的方程为2214x y +=,离心率е=(Ⅱ)解:方法一因为直线不与轴垂直,所以直线设直线的方程为:65x ty =-, 联立方程226,51.4x ty x y ⎧=-⎪⎪⎨⎪+=⎪⎩化简得2212(4)0525t y ty +--=.显然点6(,0)5Q -在椭圆C 的内部,所以0∆>.设11(,)M x y ,22(,)N x y ,则122125(4)t y y t +=+,1226425(4)y y t =-+. 又因为(2,0)A -,所以11(2,)AM x y =+u u u u r ,22(2,)AN x y =+u u u r.所以1212(2)(2)AM AN x x y y =+++u u u u r u u u rg12122121222266(2)(2)55416(1)()5256441216(1)()25(4)55(4)25ty tx y y t y y t y y t t t t t =-+-++=++++=+⨯-+⨯+++=0所以AM AN ⊥u u u u r u u u r,即o 90MAN ∠=是定值.方法二(1)当直线垂直于x 轴时 解得M 与N 的坐标为64(,)55-±.由点(2,0)A -,易证o 90MAN ∠=. (2)当直线斜率存在时设直线的方程为:6(),0.5y k x k =+≠,联立方程226(),51.4y k x x y ⎧=+⎪⎪⎨⎪+=⎪⎩化简得2222484(3625)(14)0525k k x k x -+++=. 显然点6(,0)5Q -在椭圆C 的内部,所以0∆>.设11(,)M x y ,22(,)N x y ,则2122485(14)k x x k +=-+,21224(3625)25(14)k x x k -=+.又因为(2,0)A -,所以11(2,)AM x y =+u u u u r ,22(2,)AN x y =+u u u r.所以1212(2)(2)AM AN x x y y =+++u u u u r u u u rg12122221212222222266(2)(2)()()55636(1)(2)()45254(3625)64836(1)(2)425(14)55(14)25x x k x k x k k x x k x x k k k k k k k =+++++=++++++--=+⨯++⨯++++=0所以AM AN ⊥u u u u r u u u r ,即o90MAN ∠=是定值.20.(本小题满分14分)(Ⅰ)解:当1a =时,()ln ,0f x x x x =->,所以1'()1,0f x x x=->,因此'(1)0k f ==. 又因为(1)1f =,所以切点为(1,1).所以切线方程为1y =.(Ⅱ)解:1()ln 0ah x x a x x a x+=-+>∈R ,,. 所以221(1)(1)'()10a a x x a h x x x x x++--=-->=,. 因为0x >,所以10x +>. (1)当10a +≤,即a ≤-1时因为0x >,所以(1)0x a -+>,故'()0h x >.此时函数()h x 在(0,)+∞上单调递增.所以函数()h x 不存在最小值. (2)当10a +>,即a >-1时令'()0h x =,因为0x >,所以1x a =+.()h x 与'()h x 在(0,)+∞上的变化情况如下:所以当1x a =+时,()h x 有极小值,也是最小值,并且min ()(1)2ln(1)h x h a a a a =+=+-+. 综上所述,当a ≤-1时,函数()h x 不存在最小值;当1a >-时,函数()h x 有最小值2ln(1)a a a +-+.(Ⅲ)解:当0x >时,2ln x x x x -≤.21.(本小题满分14分)(Ⅰ)解:因为(0,1,1)α=,(0,0,1)β=,所以1(,)[(00|00|)(11|11|)(11|11|)]22M αα=++-+++-+++-=,1(,)[(00|00|)(10|10|)(11|11|)]22M αβ=++-+++-+++-=.(Ⅱ)证明:当4n =时,对于A 中的任意两个不同的元素,αβ,设12341234(,,,)(,,,)x x x x y y y y αβ==,,有12341234(,)(,)M x x x x M y y y y ααββ=+++=+++,.对于任意的,i i x y ,1,2,3,4i =,高三数学第二次阶段性测试试题第11页共11页当i i x y ≥时,有11(||)[()]22i i i i i i i i i x y x y x y x y x ++-=++-=, 当i i x y ≤时,有11(||)[()]22i i i i i i i i i x y x y x y x y y ++-=+--=. 即1(||)max{,}2i i i i i i x y x y x y ++-=. 所以,有11223344(,)max{,}max{,}max{,}max{,}M x y x y x y x y αβ=+++. 又因为,{0,1}i i x y ∈,所以max{,}i i i i x y x y ≤+,1,2,3,4i =,当且仅当0i i x y =时等号成立. 所以,11223344max{,}max{,}max{,}max{,}x y x y x y x y +++11223344()()()()x y x y x y x y ≤+++++++ 12341234()()x x x x y y y y =+++++++,即(,)(,)(,)M M M αβααββ≤+,当且仅当0i i x y =(1,2,3,4i =)时等号成立.(Ⅲ)解:由(Ⅱ)问,可证,对于任意的123123(,,,,)(,,,,)n n x x x x y y y y αβ==L L ,,若(,)(,)(,)M M M αβααββ=+,则0i i x y =,1,2,3,,i n =L 成立. 所以,考虑设012312{(,,,,)|,0}n n A x x x x x x x =====L L , 11231{(,,,,)|1,{0,1},2,3,,}n i A x x x x x x i n ==∈=L L ,对于任意的2,3,,k n =L ,123123121{(,,,,)|(,,,,),0,1}k n n k k A x x x x x x x x A x x x x -=∈=====L L L .所以01n A A A A =U UL U .假设满足条件的集合B 中元素个数不少于2n +, 则至少存在两个元素在某个集合k A (1,2,,1k n =-L )中, 不妨设为123123(,,,,)(,,,,)n n x x x x y y y y αβ==L L ,,则1k k x y ==. 与假设矛盾,所以满足条件的集合B 中元素个数不多于1n +. 取0(0,0,0)e =L ;对于1,2,,1k n =-L ,取123(,,,,)k n k e x x x x A =∈L ,且10k n x x +===L ;n n e A ∈. 令01{,,,}n B e e e =L ,则集合B 满足条件,且元素个数为1n +.故B 是一个满足条件且元素个数最多的集合.。
2020年北京各区二模数学分类汇编----函数与导数

2020年北京各区二模数学分类汇编------函数与导数一、选填题部分1.(2020海淀二模)下列函数中,值域为[0,)+∞且为偶函数的是(A )2y x = (B )|1|y x =- (C )cos y x =(D )ln y x =答案 A.2.(2020密云二模)在下列函数中,定义域为实数集的偶函数为A.sin y x =B.cos y x =C.||y x x =D.ln ||y x = 答案B3.(2020密云二模)已知函数()y f x =满足(1)2()f x f x +=,且(5)3(3)4f f =+,则(4)f =A .16B .8C .4D . 2答案B4.(2020昌平二模)设0.30.512,(),ln 22a b c -===,则(A )c b a << (B )c a b << (C )a b c << (D )b a c << 答案B5. (2020昌平二模)点P 在函数e x y =的图象上.若满足到直线y x a =+的点P 有且仅有3个,则实数a 的值为(A ) (B ) (C )3 (D )4 答案C6.(2020东城二模)已知三个函数33,3,log xy x y y x ===,则(A)定义域都为R (B)值域都为 R (C)在其定义域上都是增函数 (D)都是奇函数 答案C7.(2020东城二模)已知函数()log af x x b=+的图象如图所示,那么函数()xg x a b=+的图象可能为(A)(B)(C)(D)答案B8.(2020西城二模).函数1()f x xx=-是( A)奇函数,且值域为0+∞(,)( B)奇函数,且值域为R( C)偶函数,且值域为0+∞(,)( D)偶函数,且值域为R答案B9.(2020丰台二模)函数()f x=的定义域为(A)(02),(B)[02],(C)(0)(2)-∞+∞U,,(D)(0][2)-∞+∞U,,答案C10.(2020丰台二模)已知函数()ln(1)ln(1)f x x x=--+,则()f x(A)是奇函数,且在定义域上是增函数(B)是奇函数,且在定义域上是减函数(C )是偶函数,且在区间(01),上是增函数 (D )是偶函数,且在区间(01),上是减函数 答案 B11.(2020房山二模)函数2()e xf x x =-的零点个数为 (A )0 (B )1 (C )2 (D )3答案B12.(2020房山二模)已知函数()lg |1|lg |1|f x x x =++-,则()f x(A )是奇函数,且在(1,)+∞上是增函数 (B )是奇函数,且在(1,)+∞上是减函数 (C )是偶函数,且在(1,)+∞上是增函数 (D )是偶函数,且在(1,)+∞上是减函数 答案 C13. (2020朝阳二模)函数()ln 1=-f x xx 的定义域为 (A )(0,)+∞ (B )(0,1)(1,)+∞U (C )[0,)+∞ (D )[0,1)(1,)+∞U 答案B14.(2020顺义二模)下列函数中,既是偶函数,又在()0,+∞上单调递减的是 (A )2y x =-(B )2y x =-(C )cos y x =(D )12xy =()答案A15. (2020顺义二模)已知()f x =21|1|,02,0x x x x x -+<⎧⎨-≥⎩,若实数[]2,0m ∈-,则()(1)f x f --在区间[],2m m +上的最大值的取值范围是 (A )[]1,4 (B )[]2,4(C )[]1,3(D )[]1,2答案D二、解答题部分:1.(2020丰台二模)已知函数1()exx f x +=.(Ⅰ)求函数()f x 的极值;(Ⅱ)求证:当(0,)x ∈+∞时,21()12f x x >-+;(Ⅲ)当0x >时,若曲线()y f x =在曲线21y ax =+的上方,求实数a 的取值范围. 答案解:(Ⅰ)因为1()e x x f x +=,定义域R ,所以'()exxf x =-.令'()0f x =,解得0x =.随x 的变化,'()f x 和()f x 的情况如下:由表可知函数()f x 在0x =时取得极大值(0)1f =,无极小值. ………5分 (Ⅱ)令22111()()11(0)2e 2x x g x f x x x x +=+-=+->, 1e 1'()=(1)()eeex xxxx g x x x x --+=-=.由0x >得e 10x->,于是'()0g x >,故函数()g x 是[0)∞,+上的增函数. 所以当(0)x ∈∞,+时,()(0)0g x g >=,即21()12f x x >-+. ………9分(Ⅲ)当12a ≤-时,由(Ⅱ)知221()121f x x ax >-+≥+,满足题意.令221()()11e xx h x f x ax ax +=--=--,1'()2(2)e e xxx x ax x a h =--=-+.当102a -<<时,若1(0ln())2x a∈-,,'()0h x <,则()h x 在1[0ln()]2a -,上是减函数.所以1(0ln())2x a∈-,时,()(0)0h x h <=,不合题意. 当0a ≥时'()0h x <,则()h x 在(0)∞,+上是减函数, 所以()(0)0h x h <=,不合题意. 综上所述,实数a 的取值范围1(]2-∞-,. ………15分2.(2020密云二模)已知函数()ln ,f x x a x a =-∈R . (Ⅰ)当1a =时,求曲线()f x 在1x =处的切线方程; (Ⅱ)设函数1()()ah x f x x+=+,试判断函数()h x 是否存在最小值,若存在,求出最小值,若不存在,请说明理由.(Ⅲ)当0x >时,写出ln x x 与2x x -的大小关系.答案 解:(Ⅰ)解:当1a =时,()ln ,0f x x x x =->,所以1'()1,0f x x x=->,因此'(1)0k f ==. 又因为(1)1f =,所以切点为(1,1).所以切线方程为1y =.(Ⅱ)解:1()ln 0ah x x a x x a x+=-+>∈R ,,. 所以221(1)(1)'()10a a x x a h x x x x x ++--=-->=,. 因为0x >,所以10x +>.(1)当10a +≤,即a ≤-1时因为0x >,所以(1)0x a -+>,故'()0h x >. 此时函数()h x 在(0,)+∞上单调递增.所以函数()h x 不存在最小值. (2)当10a +>,即a >-1时令'()0h x =,因为0x >,所以1x a =+.()h x 与'()h x 在(0,)+∞上的变化情况如下:所以当1x a =+时,()h x 有极小值,也是最小值,并且min ()(1)2ln(1)h x h a a a a =+=+-+. 综上所述,当a ≤-1时,函数()h x 不存在最小值;当1a >-时,函数()h x 有最小值2ln(1)a a a +-+.(Ⅲ)解:当0x >时,2ln x x x x -≤.3.(2020昌平二模)已知函数31(),.3f x x ax a a =-+∈R (Ⅰ)当1a =时,求曲线()y f x =在点(01),处的切线方程; (II )求函数()y f x =的单调区间;(III )当(0,2)x ∈时,比较()f x 与|1|a --的大小. 答案解:(Ⅰ)当1a =时,31() 1.3f x x x =-+ 因为2'()1f x x =-, …………….1分所以'(0)1f =-. …………….2分 所以曲线()y f x =在点(01),处的切线方程为10x y +-=. …………….4分 (II )定义域为R .因为2'(),.f x x a a =-∈R ①当0a =时,'()0f x ≥恒成立.所以函数()y f x =在∞∞(-,+)上单调递增. …………….5分 ②当0a <时,'()0f x >恒成立.所以函数()y f x =在∞∞(-,+)上单调递增. …………….6分③当0a >时,令'()0f x =,则x =x = …………….7分所以当'()0f x >时,x <x >当'()0f x <时,x <<…………….8分所以函数()y f x =在(,-∞和)+∞上单调递增,在(上单调递减. …………….9分 综上可知,当0a ≤时,函数()y f x =在∞∞(-,+)上单调递增;当0a >时,函数()y f x =在(,-∞和)+∞上单调递增,在(上单调递减.(III )法一:由(Ⅱ)可知,(1)当0a ≤时,函数()y f x =在∞∞(-,+)上单调递增; 所以当(0,2)x ∈时,min ()(0).f x f a >= 因为|1|=(1)1a a a ----=-,所以()|1|f x a >--. …………….10分(2)当0a >时,函数()y f x =在(,-∞和)+∞上单调递增,在(上单调递减.①当01<≤,即01a <≤时,|1|0a --≤.所以当(0,2)x ∈时,函数()y f x =在上单调递减,上单调递增,min ()f x f =313a =-(0a =>所以()|1|f x a >--. …………….11分②当12<<,即14a <<时,|1|=10a a ---<.由上可知min ()f x f =(1)a =,因为2(1)(1)213a a a --=--,设2()21,(14)3g x x x =--<<.因为'()20g x =>,所以()g x 在(1,4)上单调递增. 所以1()(1)03g x g >=>.所以(1)(1)210a a a --=--> 所以()|1|f x a >--. …………….13分2≥,即4a ≥时,|1|=10a a ---<.因为函数()y f x =在上单调递减, 所以当(0,2)x ∈时,min 8()(2)13f x f a a ==->-. 所以()|1|f x a >--.综上可知,当(0,2)x ∈时,()|1|f x a >--. …………….14分(III )法二:因为()(|1|)()|1|f x a f x a ---=+-,①当1a ≤时,因为(0,2)x ∈, 所以ax x -≥-.所以3311()|1|=()11133f x a f x a x ax x x +-+-=-+>-+. ……………10分 ②当1a >时,()|1|=()1f x a f x a +-+-331121(2)133x ax a x a x =-+-=+--因为(0,2)x ∈, 所以(2)(2)a x x -≥-. 所以333111()|1|(2)1(2)11333f x a x a x x x x x +-=+-->+--=-+.. 11分 设31()13g x x x =-+. 因为2'()1(1)(1)g x x x x =-=+-, 所以当'()0g x >时,1x <-或1x >,当'()0g x <时,11x -<<. …………….12分 所以()g x 在(0,1)上单调递减,在(1,2)上单调递增. ……………13分 所以min 1()(1)03g x g ==>. 所以当(0,2)x ∈时,()|1|f x a >--. …………….14分4.(2020东城二模)已知()sin ()xf x e x ax a =++∈R .(Ⅰ)当2a =-时,求证:()f x 在(0)-∞,上单调递减; (Ⅱ)若对任意0x ≥,()1f x ≥恒成立,求实数a 的取值范围; (Ⅲ)若()f x 有最小值,请直接给出实数a 的取值范围. 答案(Ⅰ)解:'()cos xf x e x a =++,对于2a =-,当0x <时,1,cos 1xe x <≤, 所以'()cos 20xf x e x =+-<. 所以()f x 在(),0-∞上单调递减. ………………………………4分 (Ⅱ)解:当0x =时,()11f x =≥,对于R ∈a ,命题成立,当0x >时,设()cos =++xg x e x a , 则'()sin xg x e x =-. 因为1,sin 1>≤xe x ,所以'()sin 11=0xg x e x =->-,()g x 在()0,+∞上单调递增. 又(0)2=+g a , 所以()2>+g x a .所以'()f x 在()0,+∞上单调递增,且'()2>+f x a . ① 当2a ≥-时,'()0>f x , 所以()f x 在()0,+∞上单调递增. 因为(0)1f =, 所以()1>f x 恒成立.② 当2a <-时,'(0)20f a =+<, 因为'()f x 在[0,)+∞上单调递增,又当ln(2)=-x a 时,'()2cos 2cos 0=-+++=+>f x a x a x , 所以存在0(0,)x ∈+∞,对于0(0,)∈x x ,'()0f x <恒成立. 所以()f x 在()00,x 上单调递减,所以当0(0,)∈x x 时,()(0)1<=f x f ,不合题意.综上,当2a ≥-时,对于0x ≥,()1f x ≥恒成立. ………………………………13分(Ⅲ)解:0a <.………………………………15分5.(2020海淀二模)已知函数()e (sin cos )x f x x x =+.(Ⅰ)求()f x 的单调递增区间;(Ⅱ)求证:曲线()y f x =在区间(0,)2π上有且只有一条斜率为2的切线.答案解:(Ⅰ)()e (sin cos )+e (cos sin )x xf x x x x x '=+-2e cos x x =.令()0,f x '>得22()22k x k k πππ-<<π+∈Z . 所以()f x 的单调递增区间为(2,2)22k k πππ-π+()k ∈Z .(Ⅱ)证明:要证曲线()y f x =在区间(0,)2π上有且只有一条斜率为2的切线,即证方程'()2f x =在区间(0,)2π上有且只有一个解.令()f x '2e cos 2x x ==,得e cos 1x x =.设c (1)e os xg x x =-,则()e cos e sin sin()4x x xg x x x x π'=-=-.当(0,)2x π∈时,令()0g x '=,得4x π=.当x 变化时,'(),()g x g x 的变化情况如下表:所以()g x 在(0,)4π上单调增,在(,)42ππ上单调减.因为0(0)g =,所以当(0,]4x π∈时,()0g x >;又1(0)2g π=-<,所以当(,)42x ππ∈时,()g x 有且只有一个零点.所以当(0,)2x π∈时,c (1)e os xg x x =-有且只有一个零点.即方程2()f x '=,(0,)2x π∈有且只有一个解.所以曲线()y f x =在区间(0,)2π上有且只有一条斜率为2的切线.6.(2020西城二模)设函数 ()ln f x ax x = ,其中a R ∈. 曲线()y f x =在点( 1, f ( 1) )处的切线经过点( 3, 2) . (Ⅰ)求 a 的值; (Ⅱ)求函数 ()f x 的极值; (Ⅲ)证明: 2()xx f x e e>- 答案解:(Ⅰ)由()ln f x ax x =,得()ln f x a x a '=+, ……………… 2分 则(1)0f =,(1)f a '=.所以曲线()y f x =在点(1,(1))f 处的切线为(1)y a x =-. ……………… 4分 将点(3,2)代入切线方程,得1a =. ……………… 5分 (Ⅱ)由题意,得()ln f x x x =,()ln 1f x x '=+. 令()0f x '=,得1ex =. ……………… 7分 随着x 变化,()f x '与()f x 的变化情况如下表所示:所以函数()f x 在1(0,)e 上单调递减,在1(,+)e ∞上单调递增. ……………… 9分所以函数()f x 存在极小值,且极小值为11()e ef =-;函数()f x 不存在极大值.……………… 10分(Ⅲ)“2()e ex x f x >-”等价于“2ln 0e e x x x x -+>”. ……………… 11分 由(Ⅱ),得1()ln e f x x x =≥-(当且仅当1ex =时等号成立). ①所以21ln e e e ex x x xx x -+-≥.故只要证明10ee xx-≥即可(需验证等号不同时成立). ……………… 12分 设1()e e x x g x =-,(0,+)x ∈∞,则1()ex x g x -'=. ……………… 13分因为当(0,1)x ∈时,1()0e x x g x -'=<;当(1,)x ∈+∞时,1()0ex x g x -'=>,所以函数()g x 在(0,1)上单调递减,在(1,+)∞上单调递增. 所以()(1)0g x g =≥(当且仅当1x =时等号成立). ② 因为①②两个不等式中的等号不同时成立, 所以当(0,)x ∈+∞时,2()e ex x f x >-. ……………… 15分7.(2020房山二模)已知函数cos ()e 1sin x xf x x=++.(Ⅰ)求函数()f x 的定义域;(Ⅱ)求曲线()f x 在点(0(0))f ,处的切线方程; (Ⅲ)求证:当ππ(,)22x ∈-时,()2f x ≥. 答案(Ⅰ)由sin 1x ≠-,得π2π()2x k k ≠-+∈Z 所以()f x 的定义域为π{|2π()}2x x k k ≠-+∈Z(Ⅱ)0cos0(0)e 21sin 0f =+=+22sin (1sin )cos 1()e e (1sin )1sin x xx x x f x x x -+-'=+=-+++ (π2π()2x k k ≠-+∈Z )(0)0f '=所以,曲线()f x 在点(0(0))f ,处的切线方程为2y = (Ⅲ)法一:由1()e 1sin x f x x'=-++,令1()e 1sin x g x x=-++,则2cos ()e (1sin )xx g x x '=++ 当ππ(,)22x ∈-时,()0g x '>,则()g x 在ππ(,)22-上单调递增,且(0)0g =所以当π(,0)2x ∈-时,()0f x '<,()f x 单调递减, 当π(0,)2x ∈时,()0f x '>,()f x 单调递增,()f x 的极小值为(0)2f =所以,当ππ(,)22x ∈-时,()2f x ≥ 法二:1()e 1sin x f x x'=-++当0x =时,01(0)e 01sin 0f '=-+=+;当(,0)2x π∈-时,sin (1,0),x ∈-1sin (0,1),x +∈11(1,),(,1),1sin 1sin x x-∈+∞∈-∞-++2e (e ,1)xπ-∈,所以当(,0)2x π∈-时,()0f x '<,()f x 单调递减,当(0,)2x π∈时,sin (0,1),x ∈11111sin (1,2),(,1),(1,),1sin 21sin 2x x x -+∈∈∈--++2e (1,e )xπ∈,所以当(0,)2x π∈时,()0f x '>,()f x 单调递增,()f x 的极小值为(0)2f =所以,当ππ(,)22x ∈-时,()2f x ≥ 8. (2020朝阳二模)已知函数()2sin cos =--f x x x x ax ()∈a R . (Ⅰ)若曲线()y f x =在点(0,(0))f 处的切线的斜率为1.(ⅰ)求a 的值;(ⅱ)证明:函数()f x 在区间(0,π)内有唯一极值点; (Ⅱ)当1≤a 时,证明:对任意(0,π)∈x ,()0>f x . 答案 解:(Ⅰ)(ⅰ)因为()2sin cos =--f x x x x ax,所以()2cos (cos sin )cos sin '=---=+-f x x x x x a x x x a .因为曲线()=y f x 在点(0,(0))f 处的切线的斜率为1,所以(0)1'=f ,即11-=a ,故0=a . 经检验,符合题意.……………4分(ⅱ)由(ⅰ)可知()2sin cos =-f x x x x ,()cos sin '=+f x x x x .设()()'=g x f x ,则()cos '=g x x x .令()0'=g x ,又)π(0,∈x ,得2π=x . 当(0,)2π∈x 时,()0'>g x ;当π(,π)2∈x 时,()0'<g x ,所以()g x 在π(0,)2内单调递增,在π(,π)2内单调递减.又(0)1=g ,ππ()22=g ,(π)1=-g ,因此,当π(0,]2∈x 时,()(0)0>>g x g ,即()0'>f x ,此时()f x 在区间π(0,]2上无极值点;当π(,π)2∈x 时,()0=g x 有唯一解0x ,即()0'=f x 有唯一解0x ,且易知当0π(,)2∈x x 时,()0'>f x ,当0(,π)∈x x 时,()0'<f x ,故此时()f x 在区间π(,π)2内有唯一极大值点0x .综上可知,函数()f x 在区间(0,π)内有唯一极值点.……………10分(Ⅱ)因为()cos sin '=+-f x x x x a ,设()()'=h x f x ,则()cos '=h x x x .令()0'=h x ,又(0,π)∈x ,得π2=x .且当π(0,)2∈x 时,()0'>h x ;当π(,π)2∈x 时,()0'<h x ,所以()'f x 在π(0,)2内单调递增,在π(,π)2内单调递减.当1≤a 时,(0)10'=-≥f a ,()022ππ'=->f a ,()1'π=--f a .(1)当()10'π=--≥f a ,即1≤-a 时,()0'≥f x .此时函数()f x 在(0,π)内单调递增,()(0)0>=f x f ;(2)当()10'π=--<f a ,即11-<≤a 时,因为(0)10'=-≥f a ,()022ππ'=->f a , 所以,在π(0,)2内()0'≥f x 恒成立,而在区间π(,π)2内()'f x 有且只有一个零点,记为1x ,则函数()f x 在1(0,)x 内单调递增,在1(,π)x 内单调递减. 又因为(0)0=f ,()(1)0π=-π≥f a ,所以此时()0>f x .由(1)(2)可知,当1≤a 时,对任意(0,π)∈x ,总有()0>f x .……………15分9.(2020顺义二模)(本小题14分)已知函数2()e x f x ax =-,a ∈R .(I )当1a =时,求曲线()y f x =在点(0,(0))A f 处的切线方程; (II )若()f x 在(0,)+∞内单调递增,求实数a 的取值范围;(III )当1a =-时,试写出方程()1f x =根的个数.(只需写出结论)解:(I )1a =时,2()x f x e x =-.()2x f x e x '=-(或在这里求的()2x f x e ax '=-也可以). -------------2分 ∴ 0(0)01f e =-=,0(0)01k f e '==-=. -------------4分 所求切线方程为1y x =+ ---------------5分 (II )方法一:()2x f x e ax '=-.若2()x f x e x =-在(0,)+∞上单调递增,则对任意(0,)x ∈+∞,都有()0f x '≥-------6分 即2x e a x ≤恒成立,等价于min ()2x e a x ≤. ----------------7分设()2x e g x x =,则2(1)()2x e x g x x -'=, ---------------8分令()0g x '=得1x =当(0,1)x ∈时,()0g x '<,()g x 在(0,1)上单调递减; 当(1,)x ∈+∞时,()0g x '>,()g x 在(1,)+∞上单调递增,所以函数()g x 的最小值为e(1)2g =. ------------------11分 所以,2e a ⎛⎤∈-∞ ⎥⎝⎦. ------------------12分方法二:()2x f x e ax '=-.若2()x f x e x =-在(0,)+∞上单调递增,则对任意(0,)x ∈+∞,都有()0f x '≥--------6分 等价于min (())0f x '≥.设()2x h x e ax =-,()2x h x e a '=-.当(0,)x ∈+∞时,1x e > ----------------7分 分类讨论:①当21a ≤,即12a ≤时,()0h x '≥恒成立, 所以()2x h x e ax =-在(0,)x ∈+∞上单调递增, 那么()(0)1h x h ≥=,所以12a ≤时,满足()0f x '≥. -------------------8分 ②当21a >,即12a >时,令()20x h x e a '=-=,得ln2x a =.当(0,ln 2)x a ∈时,()0h x '<,()h x 在(0,ln 2)x a ∈上单调递减; 当(ln 2,)x a ∈+∞时,()0h x '>,()h x 在(ln 2,)x a ∈+∞上单调递增;所以函数()h x 的最小值为(ln 2)2(1ln 2)h a a a =- ----------------10分由2(1ln 2)0a a -≥解得2e a ≤,所以122ea <≤ . -------------------11分综上:,2e a ⎛⎤∈-∞ ⎥⎝⎦. --------------------12分(III ) 2个 -------------------14分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
21.(本小题满分 14 分)
设 n 为正整数,集合 A={ | (t1,t2, ,tn ), tk {0,1}, k 1, 2, , n} .对于集合 A 中的任 意元素 (x1, x2 , , xn ) 和 ( y1, y2 , , yn ) ,记
M
( ,
)
1 2 [(x1
y1 +
|
x1
2 ,则满足条件的点 P 的个数为 2
A.1
B.2
C.3
D.4
8.设函数 f (x) 1 sin(x ) , x R ,其中 0 , | | .若 f (5) 1 , f () 0 ,
2
82Biblioteka 8且 f (x) 的最小正周期大于 2 ,则
A. 1 ,
3
24
B. 2 ,
3
12
(Ⅲ)给定不小于 2 的正整数 n,设 B 是 A 的子集,且满足:对于 B 中的任意两个不同元素
α, β ,M (, ) M (,) M (, ) .写出一个集合 B,使其元素个数最多,并说明理
由.
(考生务必将答案答在答题卡上,在试卷上作答无效)
高三数学第二次阶段性测试试题 第 4 页共 4 页
(Ⅱ)解:若选择①
由题意可知,不等式 f (x) ≥ m 有解,即 m ≤ f (x)max .
高三数学第二次阶段性测试试题 第 2 页共 4 页
微信公众号:每日一题高中数学
三、解答题: 本大题共 6 小题,共 85 分.解答应写出文字说明, 演算步骤或证明过程. 16.(本小题满分 14 分)
如图,直三棱柱
ABC
A1B1C1
中,AC
BC
1 2
AA1
,D
是棱 AA1 的中点, DC1 BD .
y1
|)
(x2
y2
+
|
x2
y2
|)
(xn yn + | xn yn |)] .
(Ⅰ)当 n=3 时,若 (0,1,1) , (0,0,1) ,求 M (,) 和 M (, ) 的值;
(Ⅱ)当 n 4 时,对于 A 中的任意两个不同的元素, , 证明: M (, ) ≤ M (,) M (, ) .
15. 已知集合 A {a a x2 y2, x Z, y Z} .给出如下四个结论: ① 2 A,且 3 A; ②如果 B {b | b 2m 1, mN*},那么 B A ; ③如果 C {c | c 2n 2, n N*} ,那么对于 c C ,则有 c A ;
④如果 a1 A , a2 A ,那么 a1a2 A . 其中,正确结论的序号是__________.
(Ⅱ)针对这些消费者,该健身机构今年欲实施入会制.规定:消费金额为 2000 元、2700
元和 3200 元的消费者分别为普通会员、银卡会员和金卡会员.预计去年消费金额在
(0,1600]、(1600,3200] 、(3200, 4800]内的消费者今年都将会分别申请办理普通会
员、银卡会员和金卡会员.消费者在申请办理会员时,需一次性预先缴清相应等级的
13. 已知 Sn 是数列{ an }的前n项和,且 Sn n2 11n(n N*) ,则 a1 =_________, Sn 的最
小值为_______.
14. 在 VABC 中,三边长分别为 a 4 , b 5 , c 6 ,则 VABC 的最大内角的余弦值为 _________, VABC 的面积为_______.
高三数学第二次阶段性测试试题 第 1 页共 4 页
微信公众号:每日一题高中数学
C. 1 ,
3
24
D. 2 ,
3
12
9. 某三棱锥的三视图如图所示,则该三棱锥中最长的棱长为
A. 2
B.2
C. 2 2
1
2
主视图
1
1
1
3 左视图
D. 2 3
俯视图
第 9 题图
10. 已知函数 f (x) 的定义域为 ,且满足下列三个条件:
12.20
13. 10 ; 30
14. 1 ; 15 7 84
备注:
15. ①②④.
(1)若小题有两问,第一问 3 分,第二问 2 分;
(2)第 15 题答案为①②④之一,3 分;为①②④之二,4 分;为①②④,5 分;其它答案 0 分.
三、解答题:共 6 小题,共 85 分.解答应写出文字说明,演算步骤或证明过程.
8
4
消费金额/元
(800,1600] (1600,2400] (2400,3200] (3200,4000] (4000,4800]
(Ⅰ)将去年的消费金额超过 3200 元的消费者称为“健身达人”,现从所有“健身达人”中
随机抽取 2 人,求至少有 1 位消费者,其去年的消费金额超过 4000 元的概率;
| m || n|
2 6
2
因为二面角 A1 BD C 为锐角,
所以二面角
A1
BD
C
的大小为
π 6
.
17. (本小题满分 15 分)
(Ⅰ)解:因为 f (x)=2 3 sin x cos x cos2 x sin2 x
= 3 sin 2x cos 2x
= 2sin(2x π) . 6
所以函数 f (x) 的最小正周期T π .
B1
A1
D
B C A 第 16 题图
因为 DC1 BD , BD DC D ,
所以 DC1 平面 BCD.
因为 BC 平面 BCD,
所以 DC1 BC .
(Ⅱ)解:因为 CC1 平面 ABC , AC 平面 ABC ,BC 平面 ABC ,
z C1
所以 CC1 AC , CC1 BC .
请选择①和②中的一个条件,补全问题(Ⅱ),并求解.其中,①有解;②恒成立.
注意:如果选择①和②两个条件解答,以解答过程中书写在前面的情况计分.
18.(本小题满分 14 分) 某健身机构统计了去年该机构所有消费者的消费金额(单位:元),如图所示:
人数 40
30 20
35 25 20
10 8 0
[0,800]
A. {0,1}
B. {x | x2 1} C. {x | x2 0}
D. R
2.在下列函数中,定义域为实数集的偶函数为
A. y sin x
B. y cos x
C. y x | x |
D. y ln | x |
3. 已知 x y ,则下列各不等式中一定成立的是
A. x2 y2
B. 1 1 xy
①对任意的
,且
,都有
;
② ③ 若
A. a b c
;
是偶函数;
,
, c f (2020) ,则 , , 的大小关系正确的是
B.
C.
D.
二、填空题:本大题共 5 小题,每小题 5 分,共 25 分.
11.抛物线 y2 mx(m为常数) 过点 (1,1) ,则抛物线的焦点坐标为_______.
12.在 (x 1 )6 的展开式中,常数项为_______.(用数字作答). x
20.(本小题满分 14 分)
已知函数 f (x) x a ln x, a R . (Ⅰ)当 a 1时,求曲线 f (x) 在 x 1处的切线方程; (Ⅱ)设函数 h(x) f (x) 1 a ,试判断函数 h(x) 是否存在最小值,若存在,求出最小
x
值,若不存在,请说明理由.
(Ⅲ)当 x 0 时,写出 x ln x 与 x2 x 的大小关系.
高三数学试题参考答案 第 1 页共 7 页
微信公众号:每日一题高中数学
所以 A1D (0, 0, 1) , A1B (1,1, 2) , C1D (1, 0, 1) , C1B (0,1, 2) .
设平面 A1BD 的法向量 m x,y,z ,
由
m m
A1D A1B
0,
得
0.
z x
0, y 2z
0.
令 x 1,则 m (1,1, 0) .
设平面 C1BD 的法向量 n x,y,z ,
由
n n
C1D C1B
0,
得
0.
x y
z 2
0, z 0.
令 x 1,则 n (1, 2,1) .
则有 cos m, n m n 111 2 01 3 .
消费金额.
该健身机构在今年年底将针对这些消费者举办消费返利活动,预设有如下两种方案:
方案 按分层抽样从普通会员,银卡会员,金卡会员中总共抽取 25 位“幸运之星”
给予奖励.其中,普通会员、银卡会员和金卡会员中的“幸运之星”每人分别奖励 500
元、600 元和 元.
方案 2 每位会员均可参加摸奖游戏,游戏规则如下:从一个装有 3 个白球、2 个红球
A1
B1
又因为 DC1 BC , CC1 DC1 C1 ,
所以 BC 平面 ACC1A1 . 因为 AC 平面 ACC1A1 ,所以 BC AC 以 C 为原点建立空间直角坐标系,如图所示. 不妨设 AC 1,
D
B
C
y
A x 第 16 题图
则 C(0, 0, 0) , A(1, 0, 0) , B(0,1,0) , D(1,0,1) , A1(1,0,2) , C1(0, 0, 2) ,
因为函数 y sin x 的的单调增区间为[ π 2kπ, π 2kπ], k Z ,
2
2
所以 π 2kπ ≤ 2x π ≤ π 2kπ, k Z ,
2
62
解得 π kπ ≤ x ≤ π kπ, k Z .
3
6