概率论和数理统计期末考试试题(卷)与答案解析
概率论与数理统计》期末考试试题及解答

概率论与数理统计》期末考试试题及解答1.设事件A,B仅发生一个的概率为0.3,且P(A)+P(B)=0.5,则A,B至少有一个不发生的概率为0.3.解:由题意可得:P(AB+AB)=0.3,即0.3=P(AB)+P(AB)=P(A)-P(AB)+P(B)-P(AB)=0.5-2P(AB),所以P(AB)=0.1,P(A∪B)=P(AB)=1-P(AB)=0.9.2.设随机变量X服从泊松分布,且P(X≤1)=4P(X=2),则P(X=3)=1/e6.解答:由P(X≤1)=P(X=0)+P(X=1)=e^(-λ)+λe^(-λ)=5λe^(-λ/2)得e^(-λ/2)=0.4,即λ=ln2,所以P(X=2)=e^(-λ)λ^2/2!=1/6,又因为P(X≤1)=4P(X=2),所以P(X=0)+P(X=1)=4P(X=2),即e^(-λ)+λe^(-λ)=4λe^(-λ),解得λ=ln2,故P(X=3)=e^(-λ)λ^3/3!=1/e6.3.设随机变量X在区间(0,2)上服从均匀分布,则随机变量Y=X在区间(0,4)内的概率密度为f_Y(y)=1/2,0<y<4;其它为0.解答:设Y的分布函数为F_Y(y),X的分布函数为F_X(x),密度为f_X(x),则F_Y(y)=P(Y≤y)=P(X≤y)=F_X(y)-F_X(0)。
因为X~U(0,2),所以F_X(0)=0,F_X(y)=y/2,故F_Y(y)=y/2,所以f_Y(y)=F_Y'(y)=1/2,0<y<4;其它为0.4.设随机变量X,Y相互独立,且均服从参数为λ的指数分布,P(X>1)=e^(-λ),则λ=2,P{min(X,Y)≤1}=1-e^(-λ)。
解答:因为P(X>1)=1-P(X≤1)=e^(-λ),所以λ=ln2.因为X,Y相互独立且均服从参数为λ的指数分布,所以P{min(X,Y)≤1}=1-P{min(X,Y)>1}=1-P(X>1)P(Y>1)=1-e^(-λ)。
概率论与数理统计期末考试试题及参考答案

概率论与数理统计期末考试试题及参考答案一、选择题(每题2分,共20分)1. 设A、B为两个事件,且P(A) = 0.5,P(B) = 0.6,则P(A∪B)等于()A. 0.1B. 0.3C. 0.5D. 0.7参考答案:D2. 设随机变量X的分布函数为F(x),若F(x)是严格单调增加的,则X的数学期望()A. 存在且大于0B. 存在且小于0C. 存在且等于0D. 不存在参考答案:A3. 设X~N(0,1),以下哪个结论是正确的()A. P(X<0) = 0.5B. P(X>0) = 0.5C. P(X=0) = 0.5D. P(X≠0) = 0.5参考答案:A4. 在伯努利试验中,每次试验成功的概率为p,失败的概率为1-p,则连续n次试验成功的概率为()A. p^nB. (1-p)^nC. npD. n(1-p)参考答案:A5. 设随机变量X~B(n,p),则X的二阶矩E(X^2)等于()A. np(1-p)B. npC. np^2D. n^2p^2参考答案:A二、填空题(每题3分,共15分)1. 设随机变量X~N(μ,σ^2),则X的数学期望E(X) = _______。
参考答案:μ2. 若随机变量X、Y相互独立,且X~N(0,1),Y~N(0,1),则X+Y的概率密度函数f(x) = _______。
参考答案:f(x) = (1/√(2πσ^2))exp(-x^2/(2σ^2))3. 设随机变量X、Y相互独立,且X~B(n,p),Y~B(m,p),则X+Y~_______。
参考答案:B(n+m,p)4. 设随机变量X、Y的协方差Cov(X,Y) = 0,则X、Y的相关系数ρ = _______。
参考答案:ρ = 05. 设随机变量X~χ^2(n),则X的期望E(X) = _______,方差Var(X) = _______。
参考答案:E(X) = n,Var(X) = 2n三、计算题(每题10分,共40分)1. 设随机变量X、Y相互独立,且X~N(0,1),Y~N(0,1),求X+Y的概率密度函数f(x)。
《概率分析与数理统计》期末考试试题及解答(DOC)

《概率分析与数理统计》期末考试试题及
解答(DOC)
概率分析与数理统计期末考试试题及解答
选择题
1. 以下哪个选项不是概率的性质?
- A. 非负性
- B. 有界性
- C. 可加性
- D. 全备性
答案:B. 有界性
2. 离散随机变量的概率分布可以通过哪个方法来表示?
- A. 概率分布函数
- B. 累积分布函数
- C. 概率密度函数
- D. 方差公式
答案:B. 累积分布函数
计算题
3. 一批产品有10% 的不合格品。
从该批产品中随机抽查5个,计算至少有一个不合格品的概率。
解答:
设事件 A 为至少有一个不合格品的概率,事件 A 的对立事件
为没有不合格品的概率。
不合格品的概率为 0.1,合格品的概率为 0.9。
则没有不合格品的概率为 (0.9)^5。
至少有一个不合格品的概率为 1 - (0.9)^5,约为 0.409。
4. 一个骰子投掷两次,计算至少一次出现的点数大于3的概率。
解答:
设事件 A 为至少一次出现的点数大于3的概率,事件 A 的对立事件为两次投掷点数都小于等于3的概率。
一个骰子点数大于3的概率为 3/6 = 1/2。
两次投掷点数都小于等于3的概率为 (1/2)^2 = 1/4。
至少一次出现的点数大于3的概率为 1 - 1/4,约为 0.75。
以上是《概率分析与数理统计》期末考试的部分试题及解答。
希望对你有帮助!。
2020年大学公共课概率论与数理统计期末考试卷及答案(含解析)

2020年大学公共课概率论与数理统计期末考试卷及答案(含解析)一、单选题1、袋中有50个乒乓球,其中20个黄的,30个白的,现在两个人不放回地依次从袋中随机各取一球。
则第二人取到黄球的概率是(A )1/5 (B )2/5 (C )3/5 (D )4/5 【答案】B 2、设()(P Poission λX分布),且()(1)21E X X --=⎡⎤⎣⎦,则λ=A )1,B )2,C )3,D )0 【答案】A3、下列二无函数中, 可以作为连续型随机变量的联合概率密度。
A )f(x,y)=cos x,0,⎧⎨⎩x ,0y 122ππ-≤≤≤≤其他B) g(x,y)=cos x,0,⎧⎨⎩1x ,0y 222ππ-≤≤≤≤其他C) ϕ(x,y)=cos x,0,⎧⎨⎩0x ,0y 1π≤≤≤≤其他 D) h(x,y)=cos x,0,⎧⎨⎩10x ,0y 2π≤≤≤≤其他【答案】B4、对正态总体的数学期望μ进行假设检验,如果在显著水平0.05下接受00:H μμ=,那么在显著水平0.01下,下列结论中正确的是(A )必须接受0H (B )可能接受,也可能拒绝0H (C )必拒绝0H (D )不接受,也不拒绝0H 【答案】A5、设X ,Y 是相互独立的两个随机变量,它们的分布函数分别为F X (x),F Y (y),则Z = max {X,Y} 的分布函数是A )F Z (z )= max { F X (x),F Y (y)}; B) F Z (z )= max { |F X (x)|,|F Y (y)|}C) F Z (z )= F X (x )·F Y (y) D)都不是 【答案】C6、下列二无函数中, 可以作为连续型随机变量的联合概率密度。
A )f(x,y)=cos x,0,⎧⎨⎩x ,0y 122ππ-≤≤≤≤其他B) g(x,y)=cos x,0,⎧⎨⎩1x ,0y 222ππ-≤≤≤≤其他C) ϕ(x,y)=cos x,0,⎧⎨⎩0x ,0y 1π≤≤≤≤其他 D) h(x,y)=cos x,0,⎧⎨⎩10x ,0y 2π≤≤≤≤其他【答案】B7、设12,,,n X X X ⋅⋅⋅为总体X 的一个随机样本,2(),()E X D X μσ==,12211()n i i i C XX θ-+==-∑为 2σ的无偏估计,C =(A )1/n (B )1/1n - (C ) 1/2(1)n - (D ) 1/2n - 【答案】C8、在对单个正态总体均值的假设检验中,当总体方差已知时,选用(A )t 检验法 (B )u 检验法 (C )F 检验法 (D )2χ检验法 【答案】B9、已知n X X X ,,,21 是来自总体的样本,则下列是统计量的是( )X X A +)( +A ∑=-n i i X n B 1211)( a X C +)( +10 131)(X a X D ++5 【答案】B10、对总体的均值和作区间估计,得到置信度为95%的置信区间,意义是指这个区间 (A)平均含总体95%的值 (B)平均含样本95%的值2~(,)X N μσμ(C)有95%的机会含样本的值 (D)有95%的机会的机会含的值 【答案】D 二、填空题1、设总体X 服从正态分布N (μ,σ²),其中μ未知,X1,X2,…,Xn 为其样本。
《概率论与数理统计》期末考试题(附答案)

《概率论与数理统计》期末考试题一.填空题(每小题2分,共计60分)1、A 、B 是两个随机事件,已知0.1p(AB)0.3,)B (p ,5.0)A (p ,则)B -A (p 0.4 、)B A (p 0.7 、)B A (p 1/3 ,)(B A P = 0.3。
2、一个袋子中有大小相同的红球4只黑球2只,(1)从中不放回地任取2只,则第一、二次取到球颜色不同的概率为:8/15 。
(2)若有放回地任取2只,则第一、二次取到球颜色不同的概率为:4/9 。
(3)若第一次取一只球后再追加一只与其颜色相同的球一并放入袋中再取第二只球,则第一、二次取到球颜色不同的概率为:13/21 . 3、设随机变量X 服从参数为6的泊松分布,则1X p 1- 6e4、设随机变量X 服从B (2,0. 6)的二项分布,则2Xp 0.36 , Y服从B (8,0. 6)的二项分布, 且X 与Y 相互独立,则Y X 服从B (10,0. 6)分布,)(Y XE 6 。
5、设二维随机向量),(Y X 的分布律是有则a_0.3_,X的数学期望)(X E ___0.5_______,Y X 与的相关系数xy___0.1_______。
第1页共 4 页6、三个可靠性为p>0的电子元件独立工作,(1)若把它们串联成一个系统,则系统的可靠性为:3p ;(2)若把它们并联成一个系统,则系统的可靠性为:3)1(1p ;7、(1)若随机变量X )3,1(~U ,则20〈〈X p 0.5;)(2X E _13/3,)12(XD 3/4 .X Y0 1 0 10.30.2 0.2a(2)若随机变量X ~)4,1(N 且8413.0)1(则}31{X P 0.6826 ,(~,12N Y XY则 3 ,16 )。
8、随机变量X 、Y 的数学期望E(X)=1,E(Y)=2, 方差D(X)=1,D(Y)=2, 且X 、Y 相互独立,则:)2(Y XE 5 ,)2(Y XD 17 。
概率论与数理统计期末考试卷附答案

概率论与数理统计期末考试卷课程名称:概率论与数理统计考试时间1。
设,相互独立,则(1)至少出现一个的概率为_ __;(2)恰好出现一个的概率为_ _ _.2。
设,,,则__ ____。
3.设是相互独立的两个随机变量,它们的分布函数分别为,则的分布函数是。
4.若随机变量服从正态分布,是来自的一个样本,令,则服从分布。
则关于的回归函数 .二、单项选择题(每小题2分,共10分)1. 设函数在区间上等于,而在此区间外等于0,若可以做为某连续型随机变量的密度函数,则区间为()。
(A) ; (B) ;(C) ;(D)。
2. 假设随机变量的概率密度为,即,期望与方差都存在,样本取自,是样本均值,则有( )(A) ; (B) ;(C) ;(D) 。
3. 总体,已知,()时,才能使总体均值的置信度为的置信区间长不大于。
()(A);(B);(C); (D)。
4. 对回归方程的显著性的检验,通常采用3种方法,即相关系数检验法,检验法和检验法,下列说法正确的()。
(A)检验法最有效;(B)检验法最有效;(C) 3种方法是相通的,检验效果是相同的;(D) 检验法和检验法,可以代替相关系数的检验法。
5.设来自正态总体的样本(已知),令,并且满足(),则在检验水平下, 检验时,第一类和第二类错误的概率分别是()和( ).(A)当成立} ;(B)|当不成立};(C)当成立};(D) |当不成立}。
三、计算题(每小题10分,共20分)1。
设有甲、乙、丙三门炮,同时独立地向某目标射击命中率分别处为0.2、0.3、0。
5,目标被命中一发而被击毁的概率为0.2,被命中两发而被击毁的概率为0.6,被命中三发而被击毁的概率为0。
9,求:(1)三门火炮在一次射击中击毁目标的概率;(2)在目标被击毁的条件下,只由甲火炮击中的概率。
解:设事件分别表示甲、乙、丙三门炮击中目标,表示目标被击毁,表示有门炮同时击中目标(),由题设知事件相互独立,故,,;,,,(1)由全概率公式,得(2)由贝叶斯公式,得2.随机变量在区间上服从均匀分布,随机变量,。
(完整word版)概率论和数理统计考试试题和答案解析.doc

一. 填空题(每空题 2 分,共计 60 分)1、A、B是两个随机事件,已知p(A )0.4, P(B) 0.5,p( AB) 0.3 ,则p(A B)0.6 ,p(A - B)0.1,P( A B )= 0.4 ,p(A B)0.6 。
2、一个袋子中有大小相同的红球 6 只、黑球 4 只。
(1)从中不放回地任取 2 只,则第一次、第二次取红色球的概率为:1/3。
(2)若有放回地任取2只,则第一次、第二次取红色球的概率为:9/25。
(3)若第一次取一只球观查球颜色后,追加一只与其颜色相同的球一并放入袋中后,再取第二只,则第一次、第二次取红色球的概率为:21/55。
3、设随机变量 X 服从 B(2,0.5 )的二项分布,则p X 1 0.75, Y 服从二项分布 B(98, 0.5), X 与 Y 相互独立 , 则 X+Y服从 B(100,0.5) ,E(X+Y)= 50 ,方差 D(X+Y)= 25 。
4、甲、乙两个工厂生产同一种零件,设甲厂、乙厂的次品率分别为0.1 、0.15 .现从由甲厂、乙厂的产品分别占60%、40%的一批产品中随机抽取一件。
(1)抽到次品的概率为:0.12 。
(2)若发现该件是次品,则该次品为甲厂生产的概率为:0.5 .5、设二维随机向量( X ,Y)的分布律如右,则 a 0.1, E( X ) 0.4 ,X 0 1X与 Y 的协方差为: - 0.2Y,-1 0.2 0.3Z X Y2的分布律为 : z 1 21 0.4 a概率0.6 0.46、若随机变量X ~ N(2,4)且(1) 0.8413 ,(2) 0.9772 ,则 P{ 2 X 4}0.815,Y 2X 1,则Y~N( 5,16)。
7、随机变量X、Y 的数学期望E(X)= -1,E(Y)=2,方差D(X)=1,D(Y)=2,且X、Y相互独立,则:E(2X Y)-4,D(2X Y)6。
8、设D(X)25,D(Y)1,Cov ( X ,Y ) 2 ,则 D( X Y)309、设X1,, X 26是总体 N (8,16) 的容量为26 的样本,X为样本均值,S2为样本方差。
概率论与数理统计期末试题与详细解答

《概率论与数理统计》期末试卷一、填空题(每题4分,共20分)1、假设事件A 和B 满足1)(=A B P ,则A 和B 的关系是_______________。
2、设随机变量)(~λπX ,且{}{},21===X P X P 则{}==k X P _____________。
3、设X 服从参数为1的指数分布,则=)(2X E ___________。
4、设),1,0(~),2,0(~N Y N X 且X 与Y 相互独立,则~Y X Z -=___________。
5、),16,1(~),5,1(~N Y N X 且X 与Y 相互独立,令12--=Y X Z ,则=YZ ρ____。
二、选择题(每题4分,共20分)1、将3粒黄豆随机地放入4个杯子,则杯子中盛黄豆最多为一粒的概率为( )A 、323B 、83C 、161D 、812、随机变量X 和Y 的,0=XY ρ则下列结论不正确的是( ) A 、)()()(Y D X D Y X D +=- B 、a X +与b Y -必相互独立 C 、X 与Y 可能服从二维均匀分布 D 、)()()(Y E X E XY E =3、样本nX X X ,,,21 来自总体X ,,)(,)(2σμ==X D X E 则有( )A 、2i X )1(n i ≤≤都是μ的无偏估计 B 、X 是μ的无偏估计C 、)1(2n i X i ≤≤是2σ的无偏估计D 、2X 是2σ的无偏估计 4、设nX X X ,,,21 来自正态总体),(2σμN 的样本,其中μ已知,2σ未知,则下列不是统计量的是( ) A 、ini X ≤≤1min B 、μ-X C 、∑=ni iX 1σ D 、1X X n -5、在假设检验中,检验水平α的意义是( ) A 、原假设0H 成立,经检验被拒绝的概率 B 、原假设0H 不成立,经检验被拒绝的概率 C 、原假设0H 成立,经检验不能拒绝的概率D 、原假设0H 不成立,经检验不能拒绝的概率三、计算题(共28分)1、已知离散型随机变量的分布律为求:X 的分布函数,(2))(X D 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
易见 B1, B2 , B3是的一个划分 -----------------------------------------------------------------------------------2 分
3
3
(1) 由全概率公式,得 P(A) P(ABi ) P(Bi )P(A Bi ) 25% 5% 35% 4% 40% 2% 0.0345. -------------------5 分
f (x, y)dxdy 1,所以
2
(2)某人花钱买了 A、B、C 三种不同的奖券各一.已知各种奖券中奖是相互独立的,
中奖的概率分别为 p(A) 0.03, P(B) 0.01, p(C) 0.02, 如果只要有一种奖
券中奖此人就一定赚钱,则此人赚钱的概率约为
(A) 0.05 (B) 0.06 (C) 0.07
(D) 0.08
f
(C)只对 的个别值,才有 p1 p2 (D)对任意实数 ,都有 p1 p2
(4)设随机变量 X 的密度函数为 f (x) ,且 f (x) f (x), F(x) 是 X 的分布函数,
3、(10 分)设 X 与 Y 两个相互独立的随机变量,其概率密度分别为
1, 0 x 1;
f
6
x y), 0 x 2 ,0 0 , 其它
y
4
求:(1)常数 k
(2) P(X Y 4)
(3) X ~ N (,42 ), Y ~ N (,52 ), p1 P{X 4}, p2 P{Y 5},则
(A)对任意实数 , p1 p2
(B)对任意实数 , p1 p2
2005~2006 学年第一学期期末考试《概率论与数理统计 B》试卷(A)
标准答案和评分标准
一、选 择 题(5×3 分)
题号
1
2
3
4
5
答案
C
B
A
B
B
二、填 空 题(5×4 分)
1、 0.1
2、 1 42
3、 0.35
4、 3
5、 20
三、 计 算 题(65 分)
1、解:A 为事件“生产的产品是次品”,B1 为事件“产品是甲厂生产的”,B2 为事件“产品是乙厂生产的”,B3 为事件“产品是丙厂生产的”
4x3, 0 x 1
(2) 设随机变量 X 有密度 f (x) 0
,则使 P(X a) P(X a) 其它
的常数 a =
(3) 设随机变量 X ~ N (2, 2 ) ,若 P{0 X 4} 0.3 ,则 P{X 0}
6、(9 分)假设一部机器在一天发生故障的概率为 0.2,机器发生故障时全天停止工 作,若一周 5 个工作日里无故障,可获利润 10 万元;发生一次故障可获利润 5 万元;发生二次故障所获利润 0 元;发生三次或三次以上故障就要亏损 2 万 元,求一周期望利润是多少?
i 1
i 1
(2) 由 Bayes 公式有: P(B1 A)
P( A B1)P(B1)
3
25% 5% 25 -----------------------------------------------------10 分 0.0345 69
P( A Bi )P(Bi )
i 1
2、解:(1)由于
7、(10 分)设 X ~ N(0,1),Y ~ N(0,1) ,且相互独立U X Y 1,V X Y 1, 求:(1)分别求 U,V 的概率密度函数; (2)U,V 的相关系数 UV ;
(4) 设两个相互独立的随机变量 X 和 Y 均服从 N (1, 1) ,如果随机变量 X-aY+2 5
2005~2006 学年第一学期《概率论和数理统计 B》期末试卷(A 卷)
考试时间:2006.1.9 注意:答案一律要写在答题纸上!!!
一、选 择 题 (本大题分 5 小题, 每小题 3 分, 共 15 分)
(1)设 A、B 互不相容,且 P(A)>0,P(B)>0,则必有 (A) P(B A) 0 (B) P(A B) P(A) (C) P(A B) 0 (D) P(AB) P(A)P(B)
x 8, 0 x 4;
fX
(x)
0,
其他,
求:随机变量 Y e X 1的概率密度函数.
(5)二维随机变量(X,Y)服从二维正态分布,则 X+Y 与 X-Y 不相关的充要条件为
(A) EX EY
(B) EX 2 [EX ]2 EY 2 [EY ]2
(C) EX 2 EY 2
(D) EX 2 [EX ]2 EY 2 [EY ]2
三、解答题 (共 65 分)
1、(10 分)某工厂由甲、乙、丙三个车间生产同一种产品,每个车间的产量分别占全 厂的 25%,35%,40%,各车间产品的次品率分别为 5%,4%,2%, 求:(1)全厂产品的次品率 (2) 若任取一件产品发现是次品,此次品是甲车间生产的概率是多少?
2、(10 分)设二维随机变量(X,Y)的联合概率密度为
满足条件 D( X aY 2) E[( X aY 2) 2 ] , 则 a =__________.
(5) 已知 X ~ B(n, p) ,且 E(X ) 8 , D( X ) 4.8 , 则 n =__________.
……………………………… 装 ……………………………… 订 ………………………………… 线 ………………………………
5、(8 分)设随机变量 X 的概率密度为:
f (x) 1 e x x , 2
求: X 的分布函数.
二、填 空 题 (本大题 5 小题, 每小题 4 分, 共 20 分)
(1) P(A) 0.4 , P(B) 0.3 , P(A B) 0.4 ,则 P( AB ) ___________ .
0,
其它.
e y , y 0; fY ( y) 0, y 0.
求:随机变量 Z X Y 的概率密度函数.
则对任意实数 a 成立的是
a
(A) F (a) 1 f (x)dx 0
(C) F(a) F(a)
(B) F(a) 1
a
f (x)dx
20
(D) F(a) 2F(a) 1
4、(8 分)设随机变量 X 具有概率密度函数