计算机图形学实验报告-中点画圆算法
计算机图形学 圆的生成算法的实现

实验三:圆的生成算法的实现班级:信计二班学号:20080502076 姓名:刘刚分数:一实验目的和要求1 理解圆生成的基本原理2 熟练掌握圆生成算法二实验内容1 编程实现了中点画圆算法,Bresenham画圆算法同时应用开平方法和参数法生成圆2编程实现中点算法,开平方法和参数法生成椭圆3 应用不同颜色显示各个图形三实验结果分析1 本程序实现了圆和椭圆生成的几种算法,在编程中,其中圆的开平方法最为简单,而Bresenham算法比较繁杂,但相对而言,Bresenham算法最有效2 程序编码:#include "Conio.h"#include "graphics.h"#define closegr closegraph#include "math.h"#define pie 3.1415926void initgr(void) /* BGI初始化*/{int gd = DETECT, gm = 0; /* 和gd = VGA,gm = VGAHI是同样效果*/registerbgidriver(EGAVGA_driver); initgraph(&gd, &gm, "");}void CirclePoints(int x,int y,int t,int s,int color){putpixel(t+x,s+y,color);putpixel(s+y,t+x,color);putpixel(s-y,t+x,color);putpixel(t-x,s+y,color);putpixel(s+y,t-x,color);putpixel(t+x,s-y,color);putpixel(t-x,s-y,color);putpixel(s-y,t-x,color);}void EllipsePoints(int x,int y,int t,int s,int color){putpixel(t+x,s+y,color);putpixel(t-x,s+y,color);putpixel(t+x,s-y,color);putpixel(t-x,s-y,color);}/*-----------------------------开平方法生成圆-----------------------------*/void sqrtCircle(int radius,int color){float x,y;x=0;y=radius;CirclePoints(x,y,100,100,color);while(y>=x){x++;y=sqrt(radius*radius-x*x);CirclePoints((int)(x+0.5),(int)(y+0.5),100,100,color);}outtextxy(50,170,"sqrtCircle");}/*----------------------------参数法生成圆---------------------------------*/void funCircle(int radius,int color){float x,y,afla;x=radius;y=0;afla=0;CirclePoints(x,y,200,200,color);while (afla<=pie/4){afla+=pie/400;x=radius*cos(afla);y=radius*sin(afla);CirclePoints((int)(x+0.5),(int)(y+0.5),200,200,color);outtextxy(100,250,"funCircle");}}/*----------------------------Bresenham算法生成圆-----------------------------*/ BresenhamCircle(int R,int color){int x,y,dD,dHD,dDV,next;x=0;y=R;dD=2*(1-R);while(y>=0){CirclePoints(x,y,300,300,color);if(dD<0){dHD=2*(dD+y)-1;if(dHD<=0) next=0;else next=1;}else if(dD>0){dDV=2*(dD-x)-1;if(dDV<=0) next=1;else next=2;}else next=1;switch(next){case 0:x++;dD+=2*x+1;break;case 1:x++;y--;dD+=2*(x-y+1);break;case 2:y--;dD+=-2*y+1;break;} /*switch*/} /*while*/outtextxy(150,350,"BresenhamCircle");}/*----------------------------中点算法生成圆--------------------------------*/ void MidPointCircle(int radius,int color){int x,y,d,deltaE,deltaSE;x=0;y=radius;d=5-4*radius;deltaE=12;deltaSE=20-8*radius;CirclePoints(x,y,400,400,color);while(y>x){if(d<=0){d+=deltaE;deltaSE+=8;}else{d+=deltaSE;deltaSE+=16;y--;}deltaE+=8;x++;CirclePoints(x,y,400,400,color);}outtextxy(250,450,"MidPointCircle");}/*---------------------------开平方法生成椭圆---------------------------------*/ void sqrtEllipse(int a,int b,int color){float x,y;x=0;y=b;EllipsePoints(x,y,300,100,color);while(x<a){x++;y=sqrt(b*b-(x*x*b*b)/(a*a));EllipsePoints((int)(x+0.5),(int)(y+0.5),300,100,color);}outtextxy(350,100,"sqrtEllipse");}/*---------------------------参数法生成椭圆-----------------------------------*/ void funEllipse(int a,int b,int color){float x,y,afla;x=a;y=0;afla=0;EllipsePoints(x,y,400,200,color);while(afla<=pie/2){afla+=pie/400;x=a*cos(afla);y=b*sin(afla);EllipsePoints((int)(x+0.5),(int)(y+0.5),400,200,color);}outtextxy(450,200,"funEllipse");}/*---------------------------中点算法生成椭圆---------------------------------*/ void MidPointEllipse(double a,double b,int color){double x,y,d,xP,yP,squarea,squareb;squarea=a*a;squareb=b*b;xP=(int)(0.5+(double)squarea/sqrt((double)(squarea+squareb)));yP=(int)(0.5+(double)squareb/sqrt((double)(squarea+squareb)));x=0;y=b;d=4*(squareb-squarea*b)+squarea;EllipsePoints(x,y,500,300,color);while(x<=xP){if(d<=0) d+=4*squareb*(2*x+3);else{d+=4*squareb*(2*x+3)-8*squarea*(y-1);y--;}x++;EllipsePoints(x,y,500,300,color);}x=a;y=0;d=4*(squarea-a*squareb)+squareb;EllipsePoints(x,y,500,300,color) ;while(y<yP){if(d<=0) d+=4*squarea*(2*y+3);else{d+=4*squarea*(2*y+3)-8*squareb*(x-1);x--;}y++;EllipsePoints(x,y,500,300,color);}outtextxy(480,380,"MidPointsEllipse");}int main(void){initgr(); /* BGI初始化*/sqrtCircle(50,105);funCircle(50,5);BresenhamCircle(50,35);MidPointCircle(50,255);sqrtEllipse(50,80,220);funEllipse(50,80,180);MidPointEllipse(50,80,150); getch();closegr(); /* 恢复TEXT屏幕模式*/ return 0;}3运行结果:。
计算机图形学--圆的生成算法的实现

三、实验结果分析 1、显示圆上的 8 个对称点的算法如下:
void CirclePoints(int x,int y,int color) {
putpixel(x,y,color); putpixel(y,x,color); putpixel(-x,y,color); putpixel(y,-x,color); putpixel(x,-y,color); putpixel(-y,x,color); putpixel(-x,-y,color); putpixel(-y,-x,color); }
2 ) 7+ 3 2 7( 2 1)
5=2R-3R/
2
5(2R-3R/ 2 )/(R/ 2 ) 4.8
通过实际的程序运行进行比较,结论是中点画圆法速度比较快, 就算法本身而言,该算法仍可以在某些方面进行改进,如其中的浮点 运算改为整数运算等,执行速度将更快。生成直线和圆这类基础算法 在编程时要被无数次的调用,可能每生成一帧画面就要被调用成百上 千次,因此其执行速度是至关重要的。而这类基础算法的长度都很短, 即使多用一些分支,多用一些变量和语句,一般来说只不过是增加几 十个语句,这样的空间增加与算法极其重要的速度来比较是相对次要 的因素。因此在开发图形学的基础算法时,如果有可能提高算法的速 度,应不惜多占用一些存储空间。
2
{ int i,j; for(i=-n/2;i<=n/2;i++) for(j=-n/2;j<=n/2;j++) putpixel(x+j,y+i,color);
} void putpixelt(int x,int y,int color,int i) {int a[8]={1,1,1,1,0,0,0,0}; if(a[i%8])putpixel(x,y,color); } void EllipsePoints(int x,int y,int color) { putpixel(xo+x,yo+y,color);
计算机图形学-三种直线生成算法及圆的生成算法

计算机科学与技术学院2013-2014学年第一学期《计算机图形学》实验报告班级:110341C学号:110341328姓名:田野教师:惠康华成绩:实验(一):平面图形直线和圆的生成一、实验目的与要求1.在掌握直线和圆的理论基础上,分析和掌握DDA生成直线算法、中点生成直线算法、Bresenham生成直线算法、中点画圆算法、Bresenham圆生成算法。
2.熟悉VC6.0MFC环境,利用C语言编程实现直线和圆的生成。
3.比较直线生成三种算法的异同,明确其优点和不足。
同时了解圆的生成算法适用范围。
二、实验内容1.掌握VC6.0环境中类向导和消息映射函数的概念,并且为本次实验做好编程准备工作。
2. 用C语言进行编程实现上述算法,并且调试顺利通过。
3. 在MFC图形界面中显示不同算法下的图形,并且注意对临界值、特殊值的检验。
完成后保存相关图形。
三、算法分析➢DDA直线生成算法描述:1)给定一直线起始点(x0,y0)和终点(x1,y1)。
分别计算dx=x1-x0,dy=y1-y0。
2)计算直线的斜率k=dy/dx。
当|k|<1时转向3);当|k|<=1时,转向4);3)当x每次增加1时,y增加k。
即(xi,yi)→(xi+1,yi+k)。
直到xi增加到x1。
并且每次把得到的坐标值利用系统函数扫描显示出来。
但要注意对y坐标要进行int(y+0.5)取整运算。
结束。
4)对y每次增加1时,x增加1/k,即(xi,yi)→(xi+1/k,yi+1)。
直到yi增加到y1. 并且每次把得到的坐标值利用系统函数扫描显示出来。
但要注意对x坐标要进行int(x+0.5)取整运算。
结束。
➢中点生成算法描述:算法基本思想:取当前点(xp,yp),那么直线下一点的可能取值只能近的正右方点P1(xp+1,yp)或者P2(xp+1,yp+1)。
为了确定好下一点,引入了这两点中的中点M(xp+1,yp+0.5)。
这时可以把改点带入所在直线方程,可以观察该中点与直线的位置关系。
图形学实验报告-Bresenham算法画圆

计算机图形学实验报告姓名:张晓波学号:090081322010 年10月实验1 实用OpenGL 绘制二维图形实验目的1.进一步了解OpenGL程序的框架。
2.掌握利用OpenGL绘制简单视图的方法。
3.利用OpenGL中的Bresenham算法直接利用像素点绘制图形。
实验要求1.明确实验目的,按实验内容及基本步骤完成实验。
2.在实验过程中,结合思考与探究中的问题,通过实验进行理解。
3.理解并掌握本实验的内容。
实验内容及基本步骤1.绘制圆形分析:利用Bresenham算法,可以在自定了第一个点之后算出下一个点的位置,由于要保证斜率小于1,而且只在一个象限内绘制,所以找出的只是1/8圆弧,因此在找点的时候,利用对称性,同时找到8个点,进行绘制。
void Circle(int r){int x=0,y=r; //初始点int d=0; //声明决策变量d=3-2*r;while(x<=y){CircleVertex(x,y);//画圆上点FillCircle(x,y); //选取对应点,用矩形填充if(d<0)d=d+4*x+6;else{d=d+4*(x-y)+10;y --;}x++;}}void CircleVertex(int x, int y){glBegin(GL_POINTS);glVertex2f( x, y);//右上角glVertex2f(- x, y);//左上角glVertex2f( x,- y);//右下角glVertex2f(- x,- y);//左下角//上下侧四个点glVertex2f( y, x);//右上角glVertex2f(- y, x);//左上角glVertex2f( y,- x);//右下角glVertex2f(- y,- x);//左下角//左右侧四个点glEnd();}试验结果如下:2.填充圆形分析:在一次寻找确定出8个点之后,可以将其上下两端的点作为一组,左右两端的点作为一组分别绘制实心四边形。
计算机图形学课内实验

《计算机图形学课内实验》实验报告班级:计算机91姓名:程战战学号:2009055006日期:2012/11/7一、实验目的及要求基本掌握中点圆算法的编程实现。
二、实验环境Windows7 OS、VS编程环境三、实验内容输入任一点作为圆心坐标,并输入一个任意的半径,从而画出相应圆,并且对非法输入能够检测。
四、数据结构和算法描述1.数据结构:设要显示圆的圆心在原点(0,0),半径为R,起点在(0,R)处,终点在(,)处,顺时针生成八分之一圆,利用对称性扫描转换全部圆。
为了应用中点画圆法,我们定义一个圆函数F(x,y)=x2+y2-R2任何点(x,y)的相对位置可由圆函数的符号来检测:F(x,y) <0点(x,y)位于数学圆内=0点(x,y)位于数学圆上>0点(x,y)位于数学圆外如下图所示,图中有两条圆弧A和B,假定当前取点为Pi(xi,yi),如果顺时针生成圆,那么下一点只能取正右方的点E(xi+1,yi)或右下方的点SE(xi+1,yi-1)两者之一。
假设M是E和SE的中点,即,则:1、当F(M)<0时,M在圆内(圆弧A),这说明点E距离圆更近,应取点E作为下一象素点;2、当F(M)>0时,M在圆外(圆弧B),表明SE点离圆更近,应取SE点;3、当F(M)=0时,在E点与SE点之中随便取一个即可,我们约定取SE点。
2.中点圆算法思想如下:我们用中点M的圆函数作为决策变量di,同时用增量法来迭代计算下一个中点M的决策变量di+1。
(2-21) 下面分两种情况来讨论在迭代计算中决策变量di+1的推导。
1、见图(a),若di<0,则选择E点,接着下一个中点就是,这时新的决策变量为:(2-22)(a)(d i<0) 中点画线算法式(2-22)减去(2-21)得:d i+1=d i+2x i+3 (2-23)2、见图(b),若di≥0,则选择SE点,接着下一个中点就是,这时新的决策变量为:(2-24)(b)(d i≥0) 中点画线算法式(2-24)减去(2-21)得:d i+1=d i+2(x i-y i)+5 (2-25)我们利用递推迭代计算这八分之一圆弧上的每个点,每次迭代需要两步处理:(1)用前一次迭代算出的决策变量的符号来决定本次选择的点。
计算机图形学课程设计实验报告

《计算机图形学》实验报告班级计算机科学与技术姓名学号2014 年6 月2 日实验一基本图形生成算法一、实验目的:1、掌握中点Bresenham绘制直线的原理;2、设计中点Bresenham算法;3、掌握八分法中点Bresenham算法绘制圆的原理;4、设计八分法绘制圆的中点Bresenham算法;5、掌握绘制1/4椭圆弧的上半部分和下半部分的中点Bresenham算法原理;6、掌握下半部分椭圆偏差判别式的初始值计算方法;7、设计顺时针四分法绘制椭圆的中点Bresenham算法。
二、实验过程:1、实验描述实验1:使用中点Bresenham算法绘制斜率为0<=k<=1的直线。
实验2:使用中点Bresenham算法绘制圆心位于屏幕客户区中心的圆。
实验3:使用中点Bresenham算法绘制圆心位于屏幕客户区中心的椭圆。
2、实验过程1)用MFC(exe)建立一个单文档工程;2)编写对话框,生成相应对象,设置相应变量;3)在类CLineView中声明相应函数,并在相关的cpp文件中实现;4)在OnDraw()函数里调用函数实现绘制直线、圆、椭圆;5)运行程序,输入相应值,绘制出图形。
三、源代码实验1:直线中点Bresenham算法1.// cline.cpp : implementation file// cline dialogcline::cline(CWnd* pParent /*=NULL*/): CDialog(cline::IDD, pParent){//{{AFX_DATA_INIT(cline)m_x0 = 0;m_y0 = 0;m_x1 = 0;m_y1 = 0;//}}AFX_DATA_INIT}void cline::DoDataExchange(CDataExchange* pDX){CDialog::DoDataExchange(pDX);//{{AFX_DATA_MAP(cline)DDX_Text(pDX, IDC_x0, m_x0);DDX_Text(pDX, IDC_y0, m_y0);DDX_Text(pDX, IDC_x1, m_x1);DDX_Text(pDX, IDC_y1, m_y1);//}}AFX_DATA_MAP}BEGIN_MESSAGE_MAP(cline, CDialog)//{{AFX_MSG_MAP(cline)//}}AFX_MSG_MAPEND_MESSAGE_MAP()2、// LineView.hclass CLineView : public CView{public:CLineDoc* GetDocument();..........void Mbline(double,double,double,double); //直线中点Bresenham函数.......}3、// Line.cpp//*******************直线中点Bresenham函数*********************/void CLineView::Mbline(double x0, double y0, double x1, double y1) {CClientDC dc(this);COLORREF rgb=RGB(0,0,255); //定义直线颜色为蓝色double x,y,d,k;x=x0; y=y0; k=(y1-y0)/(x1-x0); d=0.5-k;for(x=x0;x<=x1;x++){dc.SetPixel((int)x,(int)y,rgb);if(d<0){y++;d+=1-k;}elsed-=k;}}4、//LineView.cppvoid CLineView::OnDraw(CDC* pDC){CLineDoc* pDoc = GetDocument();ASSERT_VALID(pDoc);// TODO: add draw code for native data herecline a;a.DoModal();//初始化CLineView::Mbline(a.m_x0,a.m_y0,a.m_x1,a.m_y1); }实验2:圆中点Bresenham算法1、//cricle.cpp// Ccricle dialogCcricle::Ccricle(CWnd* pParent /*=NULL*/): CDialog(Ccricle::IDD, pParent){//{{AFX_DATA_INIT(Ccricle)m_r = 0;//}}AFX_DATA_INIT}void Ccricle::DoDataExchange(CDataExchange* pDX) {CDialog::DoDataExchange(pDX);//{{AFX_DATA_MAP(Ccricle)DDX_Text(pDX, r_EDIT, m_r);//}}AFX_DATA_MAP}2、//CcircleView.hclass CCcircleView : public CView{.......public:CCcircleDoc* GetDocument();void CirclePoint(double,double); //八分法画圆函数void Mbcircle(double); //圆中点Bresenham函数........}3、//CcircleView.cppvoid CCcircleView::OnDraw(CDC* pDC){CCcircleDoc* pDoc = GetDocument();ASSERT_VALID(pDoc);// TODO: add draw code for native data hereCcricle r;r.DoModal();CCcircleView::Mbcircle(r.m_r);//画圆}4、//CcircleView.cpp//*******************八分法画圆*************************************/ void CCcircleView::CirclePoint(double x,double y){CClientDC dc(this);COLORREF rgb=RGB(0,0,255);dc.SetPixel((int)(300+x),(int)(300+y),rgb);dc.SetPixel((int)(300-x),(int)(300+y),rgb);dc.SetPixel((int)(300+x),(int)(300-y),rgb);dc.SetPixel((int)(300-x),(int)(300-y),rgb);dc.SetPixel((int)(300+y),(int)(300+x),rgb);dc.SetPixel((int)(300-y),(int)(300+x),rgb);dc.SetPixel((int)(300+y),(int)(300-x),rgb);dc.SetPixel((int)(300-y),(int)(300-x),rgb);}//**************************圆中点Bresenham函数*********************/ void CCcircleView::Mbcircle(double r){double x,y,d;COLORREF rgb=RGB(0,0,255);d=1.25-r;x=0;y=r;for(x=0;x<y;x++){CirclePoint(x,y); //调用八分法画圆子函数if(d<0)d+=2*x+3;else{d+=2*(x-y)+5;y--;}}}实验3:椭圆中点Bresenham算法1、//ellipse1.cpp// Cellipse dialogCellipse::Cellipse(CWnd* pParent /*=NULL*/) : CDialog(Cellipse::IDD, pParent){//{{AFX_DATA_INIT(Cellipse)m_a = 0;m_b = 0;//}}AFX_DATA_INIT}void Cellipse::DoDataExchange(CDataExchange* pDX) {CDialog::DoDataExchange(pDX);//{{AFX_DATA_MAP(Cellipse)DDX_Text(pDX, IDC_EDIT1, m_a);DDX_Text(pDX, IDC_EDIT2, m_b);//}}AFX_DATA_MAP}2、//EllipseView.hclass CEllipseView : public CView{......................public:CEllipseDoc* GetDocument();void EllipsePoint(double,double); //四分法画椭圆void Mbellipse(double a, double b); //椭圆中点Bresenham函数..................}3、//Ellipse.cpp//*****************四分法画椭圆********************************/void CEllipseView::EllipsePoint(double x,double y){CClientDC dc(this);COLORREF rgb=RGB(0,0,255);dc.SetPixel((int)(300+x),(int)(300+y),rgb);dc.SetPixel((int)(300-x),(int)(300+y),rgb);dc.SetPixel((int)(300+x),(int)(300-y),rgb);dc.SetPixel((int)(300-x),(int)(300-y),rgb);}//************************椭圆中点Bresenham函数*********************/ void CEllipseView::Mbellipse(double a, double b){double x,y,d1,d2;x=0;y=b;d1=b*b+a*a*(-b+0.25);EllipsePoint(x,y);while(b*b*(x+1)<a*a*(y-0.5))//椭圆AC弧段{if(d1<0)d1+=b*b*(2*x+3);else{d1+=b*b*(2*x+3)+a*a*(-2*y+2);y--;}x++;EllipsePoint(x,y);}d2=b*b*(x+0.5)*(x+0.5)+a*a*(y-1)*(y-1)-a*a*b*b;//椭圆CB弧段while(y>0){if(d2<0){d2+=b*b*(2*x+2)+a*a*(-2*y+3);x++;}elsed2+=a*a*(-2*y+3);y--;EllipsePoint(x,y);}}4、//EllipseView.cppvoid CEllipseView::OnDraw(CDC* pDC){CEllipseDoc* pDoc = GetDocument();ASSERT_VALID(pDoc);// TODO: add draw code for native data hereCellipse el;el.DoModal();//初始化CEllipseView::Mbellipse(el.m_a, el.m_b);//画椭圆}四、实结果验实验1:直线中点Bresenham算法实验2:圆中点Bresenham算法实验3:椭圆中点Bresenham算法实验二有效边表填充算法一、实验目的:1、设计有效边表结点和边表结点数据结构;2、设计有效边表填充算法;3、编程实现有效边表填充算法。
计算机图形学圆的生成算法的实现

}
ReleaseDC(pDC>。
}
四、实验结果分析
调试是程序成功后,运行结果如下:中点算法生成的圆<蓝色圆弧)如图3-2,Bresenham算法生成的圆<黑色圆弧)如图3-3,中点算法生成的椭圆如图3-4。xHAQX74J0X
图3-2 中点法画圆效果图
pDC->SetPixel(-y+x0,-x+y0,c>。
pDC->SetPixel(y+x0,-x+y0,c>。
}
ReleaseDC(pDC>。
}
中点算法画椭圆。设中心在 ,长半轴为 ,短半轴为 。其VC程序设计代码如下:
void CMyView::OnMidpointellispe(>
{
CDC *pDC=GetDC(>。
pDC->SetPixel(y+x0,x+y0,color>。
pDC->SetPixel(-y+x0,x+y0,color>。
pDC->SetPixel(-y+x0,-x+y0,color>。
pDC->SetPixel(y+x0,-x+y0,color>。
}
ReleaseDC(pDC>。
}
Bresenham算法画圆。利用Bresenham画圆算法画出圆心在 、半径为R的圆,其VC程序设计代码如下:jLBHrnAILg
实验三圆的生成算法的实现
班级 08信计2班 学号20080502054姓名曲凯歌分数
使用中点法画圆

六、屏幕显示结果:
这里将绘出的图形界面拷贝下来;
七 、 思 考 题 ( 尽 量 做 , 计 入 成 绩 ):
1、由于 Windows 缺省的映射模式是窗口的左上角为原点,所以使用教材中的中点画圆法绘 制出来的圆只能显示右下角的四分之一圆弧,如何在现有的映射模式下显示整个圆?在程序 中做什么改动? 提 示 : 在 void MidPointCircle(int r, COLORREF color)和 void CirclePoints(int x, int y, COLORREF color)两个函数的参数中加上圆心座标 dx,dy,整型变量;然后在函数内部处理 引入圆心后如何画点的问题。
SetPixel()的函数功能是该函数将指定坐标处的像素设为指定的颜色。中点圆的画法 圆弧的正负划分性:构造函数 F(x,y)=x2 +y2 −R2 =0 圆弧外的点:F(X,Y)>0 圆弧内的点: F(X,Y)<0;考虑对象: 第一象限的八分之一圆弧。
九、注意及特别说明:
1ɺ 凡使用 Ellipse()函数进行绘制圆的,本次实验没有成绩。 2ɺ 如果没有实现整个圆弧的绘制,作业算完成一半。
图1
图2 3ɺ 在函数体 void MidPointCircle(int r, COLORREF color)和 void CirclePoints(int x, int y,
COLORREF color)中,实现中点画圆的算法。具体代码参考教材 P34 和 P36。需要 注意的是,CirclePoints 函数中调用 Setpixel 函数之前需要得到设备上下文,即在函 数体前部加入如下代码:
3. 新添加的函数 MidPointCircle 和 CirclePoints: void CZCC0329View::MidPointCircle(int r,COLORREF color) {
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
d+=2*x+3;
else
{
d+=2*(x-y)+5;
y--;
}
x++;
pDC->SetPixel((xc+x),(yc+y),c);
pDC->SetPixel((xc-x),(yc+y),c);
pDC->SetPixel((xc+x),(yc-y),c);
pDC->SetPixel((xc-x),(yc-y),c);
pDC->SetPixel((xc-x),(yc-y),c);
pDC->SetPixel((xc+y),(yc+x),c);
pDC->SetPixel((xc-y),(yc+x),c);
pDC->SetPixel((xc+y),(yc-x),c);
pDC->SetPixel((xc-y),(yc-x),c);
pDC->SetPixel((xc+y),(yc+x),c);
pDC->SetPixel((xc-y),(yc+x),c);
pDC->SetPixel((xc+y),(yc-x),c);
pDC->SetPixel((xc-y),(yc-x),c);
Sleep(1);
}
ReleaseDC(pDC);
}
运行结果
实验心得:
2010年12月20日
教师评语:
年月日
班级R数学111
大连交通大学姓名
实验报告同组人
课程名称:计算机图形学成绩
实验名称:中点画圆算法指导老师
实验目的、要求:
通过上机实践,更好地掌握中点画圆算法
实验仪器:
PC机、VC6.0
实验步骤、内容:
菜单
消息响应函数:
void CDrawCircleView::OnMidPoint()
{
CDC *pDC=GetDC();
int xc=200,yc=300,r=50,c=0;
int x,y; float d;
x=0;y=r;d=1.25-r;
pDC->SetPixel((xc+x),(yc+y),c);
pDC->SetPixel((xc-x),(yc+y),c);
pDC->SetPixel((xc+x),(yc-y),c);