2008年四川省初中数学联赛初赛初二
2008年四川省巴中市初中毕业升学统一考试、数学试卷及答案

巴中市二○○八年高中阶段教育学校招生考试数 学 试 卷(全卷满分150分,120分钟完卷)第Ⅰ卷 选择题(共30分)注意事项:1.考生姓名、考号、考试科目,应在答题卡上“先填后涂”. 2.每小题选出的答案,必须用2B 铅笔在答题卡上“对应涂黑”. 3.答题卡上答案若需改动,应用橡皮擦擦干净后再涂.一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项的番号涂卡.(本题共10个小题,每小题3分,共30分) 1.下列各式正确的是( ) A .33--=B .326-=- C .(3)3--=D .0(π2)0-=2.在学校开展的“为灾区儿童过六一”的活动中,晶晶把自己最喜爱的铅笔盒送给了一位灾区儿童.这个铅笔盒(图1)的左视图是( )A .B .C .D .3.如图2.在ABCD 中,对角线AC 和BD 相交于点O , 则下面条件能判定ABCD 是矩形的是( ) A .AC BD = B .AC BD ⊥ C .AC BD =且AC BD ⊥ D .AB AD =4.在常温下向一定量的水中加入食盐Nacl ,则能表示盐水溶液的浓度与加入的Nacl 的量之间的变化关系的图象大致是( )A .B .C .D . 5.下列命题是真命题的是( )A .对于给定的一组数据,它的平均数一定只有一个B .对于给定的一组数据,它的中位数可以不只一个C .对于给定的一组数据,它的众数一定只有一个D .对于给定的一组数据,它的极差就等于方差6.点(213)P m -,在第二象限,则m 的取值范围是( )图1A .12m >B .12m ≥C .12m <D .12m ≤7.如图3,“吋”是电视机常用尺寸,1吋约为大拇指第一节的长, 则7吋长相当于( ) A .一支粉笔的长度 B .课桌的长度 C .黑板的宽度D .数学课本的宽度8.用计算器计算数据13.49,13.53,14.07,13.51,13.84,13.98,14.67,14.80,14.61,14.60,14.41,14.31,14.38,14.02,14.17的平均数约为( ) A .14.15 B .14.16 C .14.17 D .14.209.二次函数2(0)y ax bx c a =++≠的图象如图4所示, 则下列说法不正确的是( ) A .240b ac -> B .0a >C .0c >D .02ba-< 10.巴中日报讯:今年我市小春粮油再获丰收,全市产量预计由前年的45万吨提升到50万吨,设从前年到今年我市的粮油产量年平均增长率为x ,则可列方程为( ) A .45250x += B .245(1)50x += C .250(1)45x -=D .45(12)50x +=巴中市二○○八年高中阶段教育学校招生考试数 学 试 卷说明:1.全卷满分为150分,120分钟完卷.2.本试卷分为第Ⅰ卷和第Ⅱ卷,第Ⅰ卷为选择题,答案涂卡;第Ⅱ卷为非选择题,考生用蓝、黑墨水钢笔或圆珠笔在试卷上作答.3.考试结束后监考老师将答题卡装入专用袋,不装订第Ⅰ卷,只装订第Ⅱ卷.第Ⅱ卷 非选择题(共120分)二、填空题:(每小题3分,共30分,把正确答案直接填写在题中横线上). 11.当x = 时,分式33x x --无意义. 12.唐家山堰塞湖是“512汶川地震”形成的最大最险的堰塞湖,垮塌山体约达2037万立方米,把2037万立方米这个数用科学记数法表示为 立方米. 13.把多项式32244x x y xy -+分解因式,结果为 .14.下面图形:四边形,三角形,正方形,梯形,平行四边形,圆,从中任取一个图形既是轴对称图形又是中心对称图形的概率为 .15.如图5,PA 为O 的切线,A 为切点,PO 交O 于点B ,4PA =,3OA =,则OP =.16.在长为a m ,宽为b m 的一块草坪上修了一条1m 宽的笔直小路,则余下草坪的面积可表示为 2m ;现为了增加美感,把这条小路改为宽恒为1m 的弯曲小路(如图6), 则此时余下草坪的面积为 2m .17.如图7,将一平行四边形纸片ABCD 沿AE EF ,折叠,使点E B C ,,在同一直线上,则AEF ∠= .18.如图8,若点A 在反比例函数(0)ky k x=≠的图象上,AM x ⊥轴于点M ,AMO △的面积为3,则k = . 19.若0234x y z ==≠,则23x y z+= . 20.大家一定熟知杨辉三角(Ⅰ),观察下列等式(Ⅱ)根据前面各式规律,则5()a b += . 三、解答题(每题6分,共18分) 21.解方程:26160x x --=11 1 12 1 13 3 1 14 6 4 1......................................... Ⅰ1222332234432234()()2()33()464a b a b a b a ab b a b a a b ab b a b a a b a b ab b +=++=+++=++++=++++Ⅱ22.计算:2008(1)2tan 20cot 20-+23.在解题目:“当1949x =时,求代数式2224421142x x x x x x x-+-÷-+-+的值”时,聪聪认为x 只要任取一个使原式有意义的值代入都有相同结果.你认为他说的有理吗?请说明理由.四、推理论证(24题10分,25题10分,共20分)24.已知:如图9,梯形ABCD 中,AD BC ∥,点E 是CD 的中点,BE 的延长线与AD 的延长线相交于点F .(1)求证:BCD FDE △≌△.(2)连结BD CF ,,判断四边形BCFD 的形状,并证明你的结论.25.已知:如图10,在ABC △中,点D 是BAC ∠的角平分线上一点,BD AD ⊥于点D ,过点D 作DE AC ∥交AB 于点E .求证:点E 是过A B D ,,三点的圆的圆心.五、社会实践(10分)26.国家主管部门规定:从2008年6月1日起,各商家禁止向消费者免费提供一次性塑料购物袋.为了了解巴中市市民对此规定的看法,对本市年龄在16—65岁之间的居民,进行了400个随机访问抽样调查,并根据每个年龄段的抽查人数和该年龄段对此规定的支持人数绘制了下面的统计图.根据上图提供的信息回答下列问题:(1)被调查的居民中,人数最多的年龄段是 岁.(2)已知被调查的400人中有83%的人对此规定表示支持,请你求出31—40岁年龄段的满意人数,并补全图b .(3)比较21—30岁和41—50岁这两个年龄段对此规定的支持率的高低(四舍五入到1%,注:某年龄段的支持率100=⨯该年龄段支持人数该年龄段被调查人数%).六、实践应用(27题10分,28题10分,共20分) 27.为预防“手足口病”,某校对教室进行“药熏消毒”.已知药物燃烧阶段,室内每立方米空气中的含药量y (mg )与燃烧时间x (分钟)成正比例;燃烧后,y 与x 成反比例(如图所示).现测得药物10分钟燃完,此时教室内每立方米空气含药量为8mg .据以上信息解答下列问题: (1)求药物燃烧时y 与x 的函数关系式. (2)求药物燃烧后y 与x 的函数关系式.(3)当每立方米空气中含药量低于1.6mg 时,对人体方能无毒害作用,那么从消毒开始,经多长时间学生才可以回教室?28.又到了一年中的春游季节,某班学生利用周末到白塔山去参观“晏阳初博物馆”. 下面是两位同学的一段对话: 甲:我站在此处看塔顶仰角为60 乙:我站在此处看塔顶仰角为30 甲:我们的身高都是1.5m 乙:我们相距20m请你根据两位同学的对话,计算白塔的高度(精确到1米).七、实践探索(10分)29.王强在一次高尔夫球的练习中,在某处击球,其飞行路线满足抛物线21855y x x =-+,其中y (m )是球的飞行高度,x (m )是球飞出的水平距离,结果球离球洞的水平距离还有2m .(1)请写出抛物线的开口方向、顶点坐标、对称轴. (2)请求出球飞行的最大水平距离.(3)若王强再一次从此处击球,要想让球飞行的最大高度不变且球刚好进洞,则球飞行路线应满足怎样的抛物线,求出其解析式.八、拓展探索(12分)30.已知:如图14,抛物线2334y x =-+与x 轴交于点A ,点B ,与直线34y x b =-+相交于点B ,点C ,直线34y x b =-+与y 轴交于点E .(1)写出直线BC 的解析式. (2)求ABC △的面积.(3)若点M 在线段AB 上以每秒1个单位长度的速度从A 向B 运动(不与A B ,重合),同时,点N 在射线BC 上以每秒2个单位长度的速度从B 向C 运动.设运动时间为t 秒,请写出MNB △的面积S 与t 的函数关系式,并求出点M 运动多少时间时,MNB △的面积最大,最大面积是多少?巴中市二○○八年高中阶段教育学校招生考试数学试题参考答案及评分意见请评卷老师注意:解答题中各题的解法并不唯一,此答案只是给出一种参考答案,在评卷中,请视具体情况给分.一、选择题(每小题3分,共30分) 1.C 2.B 3.A 4.D 5.A 6.C 7.D 8.B 9.D 10.B 二、填空题(每小题3分,共30分) 11.312.72.03710⨯13.2(2)x x y -14.1315.5 16.(1)a b -(或ab a -) (1)a b -(或ab a -) 17.9018.6-19.13420.54322345510105a a b a b a b ab b +++++三、解答题(每小题6分,共18分) 21.26160x x --=解:(8)(2)0x x -+= ···················································································· 3分 80x -=或20x += ······················································································ 5分 18x ∴=,22x =-························································································· 6分22.解:原式12)1=-+ ········································································· 2分121=-+ ··························································································· 5分4=-··································································································· 6分23.解:聪聪说的有理. ················································································· 1分2224421142x x x x x x x-+-÷-+-+ 2(2)211(2)(2)(2)x x x x x x x-+=⨯-++-- ····································································· 3分 111x x =-+ ··································································································· 4分 1= ············································································································· 5分 ∴只要使原式有意义,无论x 取何值,原式的值都相同,为常数1. ························ 6分 四、推理论证(24题10分,25题10分,共20分)24.(1)证明:点E 是DC 中点 DE CE ∴= ························································· 1分 又AD BC ∥,F 在AD 延长线上,DFE EBC ∴∠=∠,FDE ECB ∠=∠ ······························································ 3分 在BCE △与FDE △中EBC DFEECB FDE CE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩·························································· 5分(AAS)BCE FDE ∴△≌△ ·············································································· 6分 (2)四边形BCFD 是平行四边形.理由如下: ··················································· 7分BCE FDE △≌△DE CE ∴=,FE BE = ················································································· 9分 ∴四边形BCFD 是平行四边形. ······································································ 10分 25.证明:点D 在BAC ∠的平分线上12∴∠=∠ ··································································································· 1分 又DE AC ∥23∴∠=∠,13∴∠=∠ ················································································ 2分 AE DE ∴= ································································································· 3分 又BD AD ⊥于点D ,90ADB ∴∠= ···························································· 4分 1390EBD EDB ∴∠+∠=∠+∠= ································ 5分EBD EDB ∴∠=∠ ····················································· 6分 BE DE ∴= ······························································· 7分 AE BE DE ∴==······················································· 8分 过A B D ,,三点确定一圆,又90ADB ∠=AB ∴是A B D ,,所在的圆的直径. ································································· 9分 ∴点E 是A B D ,,所在的圆的圆心. ······························································ 10分 五、社会实践(26题10分,共10分)26.(1)21-30 ·································· 3分解:(2)40083332⨯=%(人) ··········· 4分 332(6015032135)72-++++=(人)5分 A B CD EFABCDE1 2 3 支持人数年龄段- ---AMNPCB乙 甲 60 30(3)21-30岁的支持率:1501009640039⨯⨯%≈%%··················· 7分 41-50岁的支持率:321005340015⨯⨯%≈%%···················· 9分 ∴20-30岁年龄段的市民比41-50岁年龄段的市民对此规定的支持率高,约高43个百分点. ··················································· 10分 六、实践应用(27题10分,28题10分,共20分)27.解:(1)设药物燃烧阶段函数解析式为11(0)y k x k =≠,由题意得:1810k = ······································································································· 2分145k =.∴此阶段函数解析式为45y x = ···························································· 3分 (2)设药物燃烧结束后的函数解析式为22(0)ky k x=≠,由题意得:2810k= ········································································································ 5分 280k =.∴此阶段函数解析式为80y x= ···························································· 6分(3)当 1.6y <时,得801.6x< ········································································ 7分 0x > ········································································································ 8分 1.680x >50x > ········································································································ 9分 ∴从消毒开始经过50分钟后学生才可回教室. ··················································· 10分 28.由题目可得:30CAB ∠=,60CBD ∠=,20m AB =1.5m AM BN DP === ················································································· 1分 在ABC △中,CBD ACB CAB ∠=∠+∠ ·························································· 2分603030ACB ∴∠=-=ACB CAB ∴∠=∠ ························································································· 3分 20m BC AB ∴== ························································································ 4分 在Rt CBD △中,20m BC =,60CBD ∠=sin CDCBD BC ∠= ······························· 6分sin 6020CD∴= ································· 7分20sin 6020CD ∴===····································································· 8分1.519m CP CD DP ∴=+=≈.答:白塔的高度约为19米.············································································ 10分 七、实践探索(29题10分,共10分) 29.解:(1)21855y x x =-+ 2116(4)55x =--+ ························································································· 1分 ∴抛物线21855y x x =-+开口向下,顶点为1645⎛⎫⎪⎝⎭,,对称轴为4x = ······················ 3分(2)令0y =,得:218055x x -+= ···························································································· 4分 解得:10x =,28x = ···················································································· 5分∴球飞行的最大水平距离是8m . ······································································ 6分(3)要让球刚好进洞而飞行最大高度不变,则球飞行的最大水平距离为10m∴抛物线的对称轴为5x =,顶点为1655⎛⎫ ⎪⎝⎭, ························································ 7分设此时对应的抛物线解析式为216(5)5y a x =-+ ·················································· 8分 又点(00),在此抛物线上,162505a ∴+= 16125a =-···································································································· 9分 21616(5)1255y x ∴=--+ 2163212525y x x=-+ ················································· 10分 八、拓展探索(30题12分,共12分) 30.解:(1)在2334y x =-+中,令0y = 23304x ∴-+=12x ∴=,22x =-(20)A ∴-,,(20)B , (1)又点B 在34y x b =-+上 302b ∴=-+32b =。
2008年四川初中数学联赛(初二组)初赛试题 参考解答及评分细则

2008年四川初中数学联赛(初二组)初赛试题参考解答及评分细则一、选择题(本题满分42分,每小题7分)1、若b a ,为实数,满足b a b a +=-111,则ba ab -的值是( D ). (A )1- (B )0 (C )21(D )1解:由题设条件知ab a b =-22,两边同时除以ab ,得1=-ba ab .故答案选D.2、下面4种说法:(1)一个有理数与一个无理数的和一定是无理数; (2)一个有理数与一个无理数的积一定是无理数; (3)两个无理数的和一定是无理数; (4)两个无理数的积一定是无理数. 其中,正确的说法种数为( A ). A .1 B .2 C .3 D .4 解:在上述四种说法中(1)正确;(2)、(3)、(4)错误.故答案选A.3、已知一次函数b kx y +=,其中0>kb .则所有符合条件的一次函数的图象一定通过( B ).A.第一、二象限 B.第二、三象限 C.第三、四象限 D.第一、四象限解:因为0>kb ,故b k 、同号.当b k 、同为正数时,则一次函数的图象通过第一、二、三象限;当b k 、同为负数时,则一次函数的图象通过第二、三、四象限.所以,符合条件的一次函数的图形一定通过第二、三象限.故答案选B.4、在凸四边形ABCD 中,H G F E 、、、分别为DA CD BC AB 、、、的中点,EG 与FH 相交于O ,设四边形CGOF BFOE AEOH 、、的面积分别为3、4、5,则四边形DHOG 的面积为( C )A .215B .415C .4D .6解:如图,连结OD OC OB OA ,,,,则BEO AEO S S ∆∆=,CFO BFO S S ∆∆=,DGO CGO S S ∆∆=,AHO DHO S S ∆∆=.于是D H O G BFO E CFO G AEO H S S S S +=+, 所以4453=-+=DH OG S .故答案选C.5、20082007=x ,则x 除以10的余数是( A ).A.1 B. 3 C.7 D.9 解:x 除以10的余数等于20087除以10的余数.又 、、、、、543277777除以10的余数分别为 、、、、、71397.它们以4为周期.又45022008⨯=,于是20087除以10的余数为1,即x 除以10的余数是1.故答案选A .6、已知c b a ,,为互不相同的有理数,满足)2)(2()2(2++=+c a b .则符合条件的c b a ,,的组数共有( A )A.0组 B.1组 C.2组 D.4组解:因为)2)(2()2(2++=+c a b ,即2)(22222c a ac b b +++=++,则2b ac =,b c a 2=+.于是ac b c a ac c a 44)(22222==+=++.所以0)(2=-c a ,故c a =,这与条件矛盾.故答案选A.二、填空题(本题满分28分,每小题7分)1、关于x 的不等式:6|12|<-x 的所有非负整数解的和为 .解:原不等式等价于⎩⎨⎧->-<-612612x x ,解得2725<<-x .于是,符合条件的所有非负整数解为3210,,,=x .所以,所有非负整数解的和为6. 故答案填6. 2、已知321+=x ,321-=y ,则=++3312y xy x .解:32-=x ,32+=y ,则4=+y x .于是64)()(31233333=+=+++=++y x y x xy y x y xy x .故答案填64.3、用三种边长相等的正多边形地砖铺地,其顶点拼在一起,刚好能完全铺满地面.已知正多边形的边数为z y x 、、,则zy x 111++的值为 . 解:依题意,有360180218021802=⨯-+⨯-+⨯-zz y y x x ,化简得21111=++z y x .故答案填21.4、如图,在梯形ABCD 中,AB ∥DC ,AC AB =,DB DA =,90=∠ADB , 则ACD ∠的度数等于 .解:如图,过A 作CD AE ⊥交CD 延长线于E ,过D 作AB DF ⊥于F .由DB DA =,90=∠ADB 知ADB ∆为等腰直角三角形. 故45=∠=∠DAF DBA .因为AB ∥DC ,故45=∠ADE . 因为AB DF ⊥,则AB DF 21=, 45=∠ADF . 于是90=∠FDE ,即CD FD ⊥.又CD AE ⊥,故AE ∥FD .又AF ∥ED ,故AFDE 为平行四边形. 从而AC AB DF AE 2121===.所以, 30=∠ACD .故答案填 30.三、(本大题20分)如图,在梯形ABCD 中,AD ∥BC ,DB AC ⊥,5=AC , 30=∠DBC .(1)求对角线BD 的长度; (2)求梯形ABCD 的面积. 解:(1)如图,过A 作AE ∥DB 交CB 延长线于E∵ DB AC ⊥,AE ∥DB .∴ AE AC ⊥,30=∠=∠DBC AEC .∴90=∠EAC ,即EAC ∆为直角三角形. ∴ 102==ACEC . ∴ 355102222=-=-=AC EC AE .∵ AD ∥BC 且AE ∥DB . ∴ 四边形AEBD 为平行四边形. ∴ 35==AE DB .(2)记梯形ABCD 的面积为S ,过A 作BC AF ⊥于F ,则AFE ∆为直角三角形. ∵30=∠AEF . ∴ 23521==AE AF ,即梯形ABCD 的高235=AF .∵ 四边形AEBD 为平行四边形. ∴ EB AD =. ∴475235352121)(21=⨯⨯=⨯=⨯+=AF EC AF BC AD S .四、(本大题25分) 设实数x 满足:1013536324213--≥---x x x . 求|4||1|2++-x x 的最小值.解:原不等式两边同乘以30,得:39)36(6)24(10)13(15--≥---x x x 化简得:6231-≥-x .解得:2≤x .记|4||1|2++-=x x y(1)当4-≤x 时,23)4()1(2--=+---=x x x y . 所以,y 的最小值都为102)4()3(=--⨯-,此时4-=x . (2)当14≤≤-x 时,6)4()1(2+-=++--=x x x y . 所以,y 的最小值为5,此时1=x .(3)当21≤≤x 时,23)4()1(2+=++-=x x x y . 所以,y 的最小值为5,此时1=x .综上所述,|4||1|2++-x x 的最小值为5,在1=x 时取到. 五、(本大题25分)已知正整数c b a ,,满足:c b a <<,且a b c ca bc ab =++.求所有符合条件的c b a ,,.解:由c b a <<≤1知bc ca bc ab abc 3<++=,所以3<a .故1=a 或者2=a .(1)当1=a 时,有bc c bc b =++,即0=+c b ,这与c b ,为正整数矛盾. (2)当2=a 时,有bc c bc b 222=++,即022=--c b bc . 所以4)2)(2(=--c b .又因为c b <<2,故220-<-<c b . 于是42,12=-=-c b .即6,3==c b .所以,符合条件的正整数仅有一组:6,3,2===c b a .。
2008年全国初中数学联赛四川初赛试卷

A.叶 6 c O +>
6 .已知 、 是 i个非负 实数 ,满  ̄ 3+ yz 5 H z2 若 : .x 2 += , -= ,
S 2 + 一 . 的 最 大 值 与最 小 值 的 和 为 ( : x 3 则5
A.5 B.6 C.7
)
D.8
●
●●●●__^_^_^__●●________ 一
1 若一 ≤ . ≤lⅡ 式了、 丽 ,! l /
2
4 .如 图3 △‘B 内接 于 OD, 曰 C, , 4 C 且A 直径AD交B 于E, C )
B.5 C.2 + x 3 D. x 3 4+
等于 (
A.— 3 4十
解得 盟 ±
2
7 三 .
4
3 115 .( )0 g
( )0 ,6 g 24 % 3 0k
当
一 / 时。 一、
2
8 1n 一 2 3 .( )> 1( )
9 1 1 0 ( ) 9 .( ) 0 2 2 2 8 5 1 . 2 . 1 m 0 长 8 m 宽 4c c
4 .61: 2 10
(在 标 + , 3) 3 , 为3 丁 - )坐 1 存 + V
或 3 x 3- ! 一/ ,三
2
因 为x+ x d- 的 根 是b d 2c + - O 和 .
所 以6 — b- c. d d =
1由. , 略 理
( ) 一 若d≠0 则 由6 知易 l , d =
的 内心 是 , △A
求 证 :1A2,、 、 ( ) I2 3 、 , A 四点 共 圆 ;2 /1 := 0 . ( ) 厶 9 。
图 1
2008年四川省初中数学联赛初赛(初二)

2008年四川省初中数学联赛初赛(初二)
四川省数学竞赛委员会
【期刊名称】《《中等数学》》
【年(卷),期】2008(000)011
【总页数】3页(P25-27)
【作者】四川省数学竞赛委员会
【作者单位】四川省数学竞赛委员会
【正文语种】中文
【中图分类】G4
【相关文献】
1.2009年全国初中数学联赛四川省初赛 [J], 四川省数学竞赛委员会
2.2008年全国初中数学联赛浙江赛区初赛 [J],
3.2008年四川省初中数学联赛决赛(初二) [J], 四川省数学竞赛委员会
4.2007年四川省初中数学联赛初赛(初二) [J], 许清华
5.2008年全国初中数学联赛四川省初赛 [J], 四川省数学竞赛委员会
因版权原因,仅展示原文概要,查看原文内容请购买。
初二奥林匹克数学竞赛试题

22008年初中数学联赛(初二组)试卷一、选择题(本大题满分56分,每小题8分)1、已知a 、b 、c 是三角形的三边,则a 4+b 4c 4 -2 a 2c 2-2 b 2c 2-2 a 2c 2的值是( )A.恒正 B. 恒负 C.可正可负 D.非负 2、已知a +b +c =0, a1+b1+c1=-4,那么,(a1)2+(b1)2+(c1)2的值是( ) A.3 B. 8 C. 16 D.203、已知:a 1-│a │=1,那么代数式a1+│a │的值是( )A.25B.-25C.-5D. 54、已知│a │=5,b 2=9时,且ab >0则a +b 的值为( ),A. 8B.-2C.-8或8D.-2或25、已知a 、b 、c 是正整数,a >b ,且a 2-a b -a c +bc =7,则a -c 的值为( )A.-1B.-1或-7C.1D.1或7 6、已知△ABC 的一个角是400,且∠A =∠B ,那么∠C 的外角的大小是( )A. 1400B. 800或1000C. 1000或 1400D. 800 或14007、如图,已知FA =FB,FC =FD,下列结论中:①∠A ②DE =CE ;③连接FE ,则FE 平分∠F ,正确的是( ) A. ①② B.②③ C.①③ D.①②③二、填空题(本大题满分40分,每小题8分)1、若x 2+x y +y =14,y 2+x y +x =28,则 x +y 的值为 .2、(3+1)2001-2(3+1)2000-2(3+1)1999+2008= .3、已知x 、y 是实数,43+x +y 2-6y+9=0,若axy-3x=y ,则a= . 4、a 、b 、c 为△ABC 的三边,且3a 3+6a 2b-3a 2c-6abc=0,则△ABC 的形状为 .5、已知x1+y1=5,则yxy x yxy x +++-2252= .1 2三、计算(本大题满分20分,)要求写出必要的步骤.(1)2115141021151410+++--+2) 18612⨯+(1+3)(1-3)四、(本大题满分12分,)如图,在△ABC 中,AD 若AB=5,AC=3,求AD五、(本大题满分12分)如图,在△ABC 中,AB=AC ∠BAC=80°O 为△ABC 内一点,且∠OBC=10°,∠OCA=20°,求∠BAO 的度数.。
2011-2013年四川初中数学联赛(初二组)初赛试题及答案

2011年四川初中数学联赛(初二组)初赛一、选择题(本题满分42分,每小题7分)1、分式)0(≠++xyz zy x xyz中z y x ,,的值都变为原来的2倍,则分式的值变为原来的( )。
(A )2倍 (B )4倍 (C ) 6倍 (D ) 8倍 答:选B 。
2、有甲、乙两班,甲班有m 个人,乙班有n 个人。
在一次考试中甲班平均分是a 分,乙班平均分是b 分。
则甲乙两班在这次考试中的总平均分是( ).(A )2b a + (B ) 2n m + (C ) b a bn am ++ (D )n m bnam ++ 答:选D 。
3、若实数a 满足a a -=||,则||2a a -一定等于( ). (A )2a (B )0 (C ) -2a (D )-a答:因为a a -=||,所以0≤a ,故a a a a a a 2|2|||||||2-==-=-,选C 。
4、ABC ∆中,AD 是BAC ∠的平分线,且CD AC AB +=。
若60=∠BAC ,则ABC ∠的大小为( )(A )40 (B )60 (C )80 (D )100答:作C 关于AD 的对称点C ’。
因为AD 是角平分线,则C ’一定落在AB 上。
由CD AC AB +=,得D C AC AB ''+=,故D C BC ''=,所以B D AC C ∠=∠=∠2',又120180=∠-=∠+∠A C B ,故40=∠B ,选A 。
5、在梯形ABCD 中,AD 平行BC ,2:1:=BC AD ,若ABO ∆的面积是2,则梯形ABCD 的面积是( )。
(A )7 (B )8 (C )9 (D )10答:设x S ADO =∆。
由2:1:::===∆∆CDO ADO S S OC AO BC AD ,故x S CDO 2=∆,同理x S ABO 2=∆,x S CBO 4=∆,故1=x ,所以梯形面积是9,选C 。
2008年全国初中数学联赛四川初赛试卷

2008年全国初中数学联赛四川初赛试卷(3月21日下午2:30━4:30或3月22日上午9:00━11:00)学校___________________年级___________班 姓名_________________一、选择题(本大题满分42分,每小题7分) 1、若121≤≤-x ,则式子1449612222++++-++-x x x x x x 等于( ) (A )-4x +3 (B )5 (C )2x +3 (D )4x +32、用三种边长相等的正多边形地砖铺地,其顶点拼在一起,刚好能完全铺满地面.已知正多边形的边数为x 、y 、z ,则zy x 111++的值为( ) (A )1 (B )32 (C )21 (D )313、已知a 为非负整数,关于x 的方程0412=+---a x a x 至少有一个整数根,则a 可能取值的个数为( )(A )4 (B )3 (C )2 (D ) 14、如图,设△ABC 和△CDE 都是正三角形,且∠EBD =62o ,则∠AEB 的度数是( ) (A )124o (B )122o (C )120o (D )118o5、如图,直线x =1是二次函数y =ax 2+bx +c 的图象的对称轴,则有( ) (A )a +b +c >0 (B )b >a +c(C )abc <0 (D )c >2b6、已知x 、y 、z 是三个非负实数,满足3x +2y +z =5,x +y -z =2,若S =2x +y -z ,则S 的最大值与最小值的和为( ) (A )5 (B )6 (C )7 (D )8二、填空题(本大题满分28分,每小题7分)1、已知a 是方程x 2-5x +1=0的一个根,则44-+a a 的个位数字为_____________. 2、在凸四边形ABCD 中,对角线AC 、BD 交于O 点,若S △OAD =4,S △OBC =9,则凸四边形ABCD 面积的最小值为__________________.3、实数x 、y 满足x 2-2x -4y =5,记t =x -2y ,则t 的取值范围为___________________.4、如图,△ABC内接于⊙O,且AB=AC,直径AD交BC于E,F是OE的中点.如果BD//CF,BC=25,则线段CD的长度为__________________.三、(本大题满分20分)已知方程x2+ax-b=0的根是a和c,方程x2+cx+d=0的根是b和d.其中,a、b、c、d为不同实数,求a、b、c、d的值.四、(本大题满分25分)如图,四边形A1A2A3A4内接于一圆,△A1A2A3的内心是I1,△A2A3A4的内心是I2,△A3A4A1的内心是I3.求证:(1)A2、I1、I2、A3四点共圆;(2)∠I1I2I3=90o.五、(本大题满分25分)如图,将3枚相同硬币依次放入一个4×4的正方形格子中(每个正方形格子只能放1枚硬币).求所放的3枚硬币中,任意两个都不同行且不同列的概率.2008年全国初中数学联赛四川初赛试卷参考答案及评分细则一、选择题(本题满分42分,每小题7分)1、B2、C3、B4、B5、D6、A 二、填空题(本大题满分28分,每小题7分) 1、7 2、25 3、29≤t 4、6 三、(本大题20分)解:∵方程x 2+ax -b =0的根是a 和c ,∴a +c =-a ,ac =-b ∵x 2+cx +d =0的根是b 和d ,∴b +d =-c ,bd =d ······································· 5分 (一)若d ≠0,则由bd =d 知b =1由a +c =-a 知c =-2a ,由ac =-b 知-2a 2=-1,解得22±=a ················· 10分 当22=a 时,2-=c 得d =-c -b =12-; ········································· (1) 当22-=a 时2=c ,得d =-c -b =12--. ······································· (2) 经验证,22±=a ,b =1,2 =c ,d =12-±是符合条件的两组解. ······· 15分 (二)若d =0,则b =-c ,由a +c =-a 知c =-2a ,由ac =-b 知ac =c 若c =0,则a =0,这与a 、b 、c 、d 是不同的实数矛盾. 若c ≠0,则a =1,再由c =-2a 知c =-2,从而b =-c =2 经验证,a =1,b =2,c =-2,d =0也是符合条件的解. ································ 20分 四、(本大题25分) 证明:(1)如图,连结I 1A 1,I 1A 2,I 1A 3,I 2A 2和I 2A 3∵I 1是△A 1A 2A 3的内心,∴∠I 1A 1A 2=∠I 1A 1A 3=21∠A 2A 1A 3 ∠I 1A 2A 1=∠I 1A 2A 3=21∠A 1A 2A 3,∠I 1A 3A 1=∠I 1A 3A 2=21∠A 1A 3A 2 ···················· 5分延长A 1I 1交四边形A 1A 2A 3A 4外接圆于P ,则∠A 2I 1A 3=∠A 2I 1P +∠PI 1A 3=∠I 1A 1A 2+∠I 1A 2A 1+∠I 1A 1A 3+∠I 1A 3A 1 =21(∠A 2A 1A 3+∠A 1A 2A 3+∠A 2A 3A 1)+21∠A 2A 1A 3=90o +21∠A 2A 1A 3 ··············· 10分同理∠A 2I 2A 3=90o +21∠A 2A 4A 3,又∵四边形A 1A 2A 3A 4内接于一圆 ∴∠A 2A 1A 3=∠A 2A 4A 3,∴∠A 2I 1A 3=∠A 2I 2A 3.∴A 2、I 1、I 2、A 3四点共圆.········ 15分 (2)又连结I 3A 4,则由(1)知A 3、I 2、I 3、A 4四点共圆∴∠I 1I 2A 3=180o -∠I 1A 2A 3=180o -21∠A 1A 2A 3 同理∠I 3I 2A 3=180o -∠I 3A 4A 3=180o -21∠A 1A 4A 3 ··········································· 20分∴∠I 1I 2I 3=360o -(∠I 1I 2A 3+∠I 3I 2A 3)=21(∠A 1A 2A 3+∠A 1A 4A 3)=90o ················· 25分五、(本大题25分)解:1、计算总的放法数N :第一枚硬币放入16个格子有16种放法;第二枚硬币放入剩下的15个格子有15种放法;第三枚硬币放入剩下的14个格子有14种放法.所以,总的放法数N =16×15×14=3360. ············································ 10分2、计算满足题目要求的放法数m :第一枚硬币放入16个格子有16种放法,与它不同行或不同列的格子有9个.因此,与第一枚硬币不同行或不同列的第二枚硬币有9种放法.与前两枚硬币不同行或不同列的格子有4个,第三枚硬币放入剩下的4个格子有4种放法.所以,满足题目要求的放法数m =16×9×4=576. ·································· 20分所求概率P =3561415164916=⨯⨯⨯⨯=N m . ·················································· 25分。
2008年四川省初中数学联赛初赛初二

2008年四川省初中数学联赛初赛(初二) 一、选择题(每小题7分,共42分)1.若a 、b 为实数,满足1a -1b =1a +b ,则b a -ab的值是( ).(A )-1 (B )0 (C )12 (D )12.下面四种说法:①一个有理数与一个无理数的和一定是无理数;②一个有理数与一个无理数的积一定是无理数;③两个无理数的和一定是无理数;④两个无理数的积一定是无理数.其中,正确的说法种数为( ).(A )1(B )2(C )3(D )43.已知一次函数y =kx +b ,其中kb >0.则所有符合条件的一次函数的图像一定通过( ).(A )第一、二象限(B )第二、三象限(C )第三、四象限(D )第一、四象限4.在凸四边形ABCD 中,E 、F 、G 、H 分别为AB 、BC 、CD 、DA 的中点,EG 与FH 交于点O .设四边形AEOH 、BFOE 、CGOF 的面积分别为3、4、5.则四边形DHOG 的面积为( ).(A )152 (B )154 (C )4 (D )65.已知x =20072008.则x 除以10的余数是( ).(A )1(B )3(C )7(D )96.设a 、b 、c 为互不相同的有理数,满足(b +2)2=(a +2)(c +2).则符合条件的a 、b 、c 共有( )组.(A )0(B )1(C )2(D )4二、填空题(每小题7分,共28分)1.关于x 的不等式|2x -1|<6的所有非负整数解的和为.2.已知x =12+3,y =12-3.则x 3+12xy +y 3=.3.用三种边长相等的正多边形地砖铺地,其顶点拼在一起,刚好能完全铺满地面.设正多边形的边数为x 、y 、z .则1x+1y+1z的值为.4.如图1,在梯形ABCD 中,AB ∥DC ,AB =AC ,DA =DB ,∠ADB =90°.则∠ACD 的度数等于.图1图2三、(20分)如图2,在梯形ABCD 中,AD ∥BC ,AC ⊥DB ,AC =5,∠DBC =30°.(1)求对角线BD 的长度;(2)求梯形ABCD 的面积.四、(25分)设实数x 满足3x -12-4x -23≥6x -35-1310.求2|x -1|+|x +4|的最小值.五、(25分)已知正整数a 、b 、c 满足a <b <c ,且ab +bc +ca =abc .求所有符合条件的a 、b 、c .参考答案一、1.D.由题设条件知b 2-a 2=ab .两边同时除以ab 得b a -a b=1.2.A.题目的四种说法中,①对,②、③、④错.3.B.由kb >0,知k 、b 同号.522008年第11期当k 、b 同为正数时,一次函数的图像通过第一、二、三象限;当k 、b 同为负数时,一次函数的图像通过第二、三、四象限.所以,符合条件的一次函数的图像一定通过第二、三象限.4. C.图3如图3,联结OA 、OB 、OC 、OD .则S △AEO =S △B EO , S △B FO =S △CFO , S △CG O =S △DG O , S △DH O =S △AH O .故S 四边形AEOH +S 四边形CFOG=S 四边形B FOE +S 四边形DH OG .所以,S 四边形DH OG =3+5-4=4.5.A.x 除以10的余数等于72008除以10的余数.又7,72,73,74,75,…除以10的余数分别为7,9,3,1,7,….它们以4为周期.又2008=502×4,于是,72008除以10的余数为1,即x 除以10的余数是1.6.A.因为(b +2)2=(a +2)(c +2),即b 2+2+22b =ac +2+(a +c )2,则 ac =b 2,a +c =2b .故a 2+c 2+2ac =(a +c )2=4b 2=4ac .所以,(a -c )2=0.因此,a =c ,与题设矛盾.二、1.6.原不等式等价于2x -1<6,2x -1>-6.解得-52<x <72.于是,符合条件的所有非负整数解为x =0,1,2,3.因此,所有非负整数解的和为6.2.64.易知x =2-3,y =2+ 3.于是,x +y =4.则x 3+12xy +y 3=x 3+y 3+3xy (x +y )=(x +y )3=64.3.12.依题意有x -2x×180°+y -2y×180°+z -2z×180°=360°.化简得1x+1y+1z=12.4.30°.图4如图4,过A 作AE ⊥CD 交CD 的延长线于E ,过D 作DF ⊥AB 于F .由DA =DB ,∠ADB =90°,知△ADB 为等腰直角三角形.故∠DBA =∠DAF =45°.因为AB ∥DC ,所以,∠ADE =45°.又DF ⊥AB ,则DF =12AB ,∠ADF =45°.所以,∠FDE =90°,即FD ⊥CD .由AE ⊥CD ,得AE ∥FD .又AF ∥ED ,故四边形AFDE 为平行四边形.从而,AE =DF =12AB =12AC .所以,∠ACD =30°.图5三、(1)如图5,过A 作AE ∥DB 交CB 的延长线于E .由AC ⊥DB , AE ∥DB]AC ⊥AE , ∠AEC =∠DBC =30°]∠EAC =90°,即△EAC 为直角三角形]EC =2AC =10]AE =EC 2-AC 2=102-52=5 3.又AD ∥BC 且AE ∥DB ,则四边形AEBD 为平行四边形.从而,DB =AE =5 3.(2)记梯形ABCD 的面积为S .过A 作AF 62中等数学⊥BC于F,则△AFE为直角三角形.因为∠AEF=30°,所以,AF=12AE=532,即梯形ABCD的高AF=532.又四边形AEBD为平行四边形,因此,AD=EB.故S=12(AD+BC)AF=12EC・AF=12×10×532=2532.四、原不等式两边同乘以30得15(3x-1)-10(4x-2)≥6(6x-3)-39.解得x≤2.记y=2|x-1|+|x+4|.(1)当x≤-4时,y=-2(x-1)-(x+4)=-3x-2.所以,y的最小值为(-3)×(-4)-2= 10,此时x=-4.(2)当-4≤x≤1时,y=-2(x-1)+(x+4)=-x+6.所以,y的最小值为5,此时x=1.(3)当1≤x≤2时,y=2(x-1)+(x+4)=3x+2.所以,y的最小值为5,此时x=1.综上所述,2|x-1|+|x+4|的最小值为5,在x=1时取到.五、由1≤a<b<c,知abc=ab+bc+ca<3bc.所以,a<3.故a=1或a=2.(1)当a=1时,有b+bc+c=bc,即b+c=0,这与b、c为正整数矛盾.(2)当a=2时,有2b+bc+2c=2bc,即bc-2b-2c=0.所以,(b-2)(c-2)=4.又2<b<c,则0<b-2<c-2.于是,b-2=1,c-2=4.从而,b=3,c=6.所以,符合条件的正整数仅有一组:a=2,b=3,c=6.(四川省数学竞赛委员会 提供)2008年全国高中数学联赛江苏赛区复赛第一试一、选择题(每小题6分,共36分)1.函数f(x)=cos4x+sin2x(x∈R)的最小正周期是( ).(A)π4(B)π2(C)π(D)2π2.已知平面上点的集合M={(x,y)|y=2x-x2},N={(x,y)|y=k(x+1)}.当M∩N≠ 时,k的取值范围是( ).(A)-33,33(B)0,33(C)-33,0(D)33,+∞3.“x2+y2<4”是“xy+4>2x+2y”成立的( ).(A)充分但不必要条件(B)必要但不充分条件(C)既不充分也不必要条件(D)充分必要条件4.已知关于x的方程x2-2ax+a2-4a =0至少有一个模为3的复数根.则实数a 的所有取值为( ).(A)1,9(B)-1,9,2-13(C)1,9,2+13(D)1,9,2-13图15.设f(x)是一个三次函数,f′(x)为其导函数.图1所示的是y=xf′(x)的图像的一部分.则f(x)的极大值与极722008年第11期。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2008年四川省初中数学联赛初赛(初二) 一、选择题(每小题7分,共42分)1.若a 、b 为实数,满足1a -1b =1a +b ,则b a -ab的值是( ).(A )-1 (B )0 (C )12 (D )12.下面四种说法:①一个有理数与一个无理数的和一定是无理数;②一个有理数与一个无理数的积一定是无理数;③两个无理数的和一定是无理数;④两个无理数的积一定是无理数.其中,正确的说法种数为( ).(A )1(B )2(C )3(D )43.已知一次函数y =kx +b ,其中kb >0.则所有符合条件的一次函数的图像一定通过( ).(A )第一、二象限(B )第二、三象限(C )第三、四象限(D )第一、四象限4.在凸四边形ABCD 中,E 、F 、G 、H 分别为AB 、BC 、CD 、DA 的中点,EG 与FH 交于点O .设四边形AEOH 、BFOE 、CGOF 的面积分别为3、4、5.则四边形DHOG 的面积为( ).(A )152 (B )154 (C )4 (D )65.已知x =20072008.则x 除以10的余数是( ).(A )1(B )3(C )7(D )96.设a 、b 、c 为互不相同的有理数,满足(b +2)2=(a +2)(c +2).则符合条件的a 、b 、c 共有( )组.(A )0(B )1(C )2(D )4二、填空题(每小题7分,共28分)1.关于x 的不等式|2x -1|<6的所有非负整数解的和为.2.已知x =12+3,y =12-3.则x 3+12xy +y 3=.3.用三种边长相等的正多边形地砖铺地,其顶点拼在一起,刚好能完全铺满地面.设正多边形的边数为x 、y 、z .则1x+1y+1z的值为.4.如图1,在梯形ABCD 中,AB ∥DC ,AB =AC ,DA =DB ,∠ADB =90°.则∠ACD 的度数等于.图1图2三、(20分)如图2,在梯形ABCD 中,AD ∥BC ,AC ⊥DB ,AC =5,∠DBC =30°.(1)求对角线BD 的长度;(2)求梯形ABCD 的面积.四、(25分)设实数x 满足3x -12-4x -23≥6x -35-1310.求2|x -1|+|x +4|的最小值.五、(25分)已知正整数a 、b 、c 满足a <b <c ,且ab +bc +ca =abc .求所有符合条件的a 、b 、c .参考答案一、1.D.由题设条件知b 2-a 2=ab .两边同时除以ab 得b a -a b=1.2.A.题目的四种说法中,①对,②、③、④错.3.B.由kb >0,知k 、b 同号.522008年第11期当k 、b 同为正数时,一次函数的图像通过第一、二、三象限;当k 、b 同为负数时,一次函数的图像通过第二、三、四象限.所以,符合条件的一次函数的图像一定通过第二、三象限.4. C.图3如图3,联结OA 、OB 、OC 、OD .则S △AEO =S △B EO , S △B FO =S △CFO , S △CG O =S △DG O , S △DH O =S △AH O .故S 四边形AEOH +S 四边形CFOG=S 四边形B FOE +S 四边形DH OG .所以,S 四边形DH OG =3+5-4=4.5.A.x 除以10的余数等于72008除以10的余数.又7,72,73,74,75,…除以10的余数分别为7,9,3,1,7,….它们以4为周期.又2008=502×4,于是,72008除以10的余数为1,即x 除以10的余数是1.6.A.因为(b +2)2=(a +2)(c +2),即b 2+2+22b =ac +2+(a +c )2,则 ac =b 2,a +c =2b .故a 2+c 2+2ac =(a +c )2=4b 2=4ac .所以,(a -c )2=0.因此,a =c ,与题设矛盾.二、1.6.原不等式等价于2x -1<6,2x -1>-6.解得-52<x <72.于是,符合条件的所有非负整数解为x =0,1,2,3.因此,所有非负整数解的和为6.2.64.易知x =2-3,y =2+ 3.于是,x +y =4.则x 3+12xy +y 3=x 3+y 3+3xy (x +y )=(x +y )3=64.3.12.依题意有x -2x×180°+y -2y×180°+z -2z×180°=360°.化简得1x+1y+1z=12.4.30°.图4如图4,过A 作AE ⊥CD 交CD 的延长线于E ,过D 作DF ⊥AB 于F .由DA =DB ,∠ADB =90°,知△ADB 为等腰直角三角形.故∠DBA =∠DAF =45°.因为AB ∥DC ,所以,∠ADE =45°.又DF ⊥AB ,则DF =12AB ,∠ADF =45°.所以,∠FDE =90°,即FD ⊥CD .由AE ⊥CD ,得AE ∥FD .又AF ∥ED ,故四边形AFDE 为平行四边形.从而,AE =DF =12AB =12AC .所以,∠ACD =30°.图5三、(1)如图5,过A 作AE ∥DB 交CB 的延长线于E .由AC ⊥DB , AE ∥DB]AC ⊥AE , ∠AEC =∠DBC =30°]∠EAC =90°,即△EAC 为直角三角形]EC =2AC =10]AE =EC 2-AC 2=102-52=5 3.又AD ∥BC 且AE ∥DB ,则四边形AEBD 为平行四边形.从而,DB =AE =5 3.(2)记梯形ABCD 的面积为S .过A 作AF 62中等数学⊥BC于F,则△AFE为直角三角形.因为∠AEF=30°,所以,AF=12AE=532,即梯形ABCD的高AF=532.又四边形AEBD为平行四边形,因此,AD=EB.故S=12(AD+BC)AF=12EC・AF=12×10×532=2532.四、原不等式两边同乘以30得15(3x-1)-10(4x-2)≥6(6x-3)-39.解得x≤2.记y=2|x-1|+|x+4|.(1)当x≤-4时,y=-2(x-1)-(x+4)=-3x-2.所以,y的最小值为(-3)×(-4)-2= 10,此时x=-4.(2)当-4≤x≤1时,y=-2(x-1)+(x+4)=-x+6.所以,y的最小值为5,此时x=1.(3)当1≤x≤2时,y=2(x-1)+(x+4)=3x+2.所以,y的最小值为5,此时x=1.综上所述,2|x-1|+|x+4|的最小值为5,在x=1时取到.五、由1≤a<b<c,知abc=ab+bc+ca<3bc.所以,a<3.故a=1或a=2.(1)当a=1时,有b+bc+c=bc,即b+c=0,这与b、c为正整数矛盾.(2)当a=2时,有2b+bc+2c=2bc,即bc-2b-2c=0.所以,(b-2)(c-2)=4.又2<b<c,则0<b-2<c-2.于是,b-2=1,c-2=4.从而,b=3,c=6.所以,符合条件的正整数仅有一组:a=2,b=3,c=6.(四川省数学竞赛委员会 提供)2008年全国高中数学联赛江苏赛区复赛第一试一、选择题(每小题6分,共36分)1.函数f(x)=cos4x+sin2x(x∈R)的最小正周期是( ).(A)π4(B)π2(C)π(D)2π2.已知平面上点的集合M={(x,y)|y=2x-x2},N={(x,y)|y=k(x+1)}.当M∩N≠ 时,k的取值范围是( ).(A)-33,33(B)0,33(C)-33,0(D)33,+∞3.“x2+y2<4”是“xy+4>2x+2y”成立的( ).(A)充分但不必要条件(B)必要但不充分条件(C)既不充分也不必要条件(D)充分必要条件4.已知关于x的方程x2-2ax+a2-4a =0至少有一个模为3的复数根.则实数a 的所有取值为( ).(A)1,9(B)-1,9,2-13(C)1,9,2+13(D)1,9,2-13图15.设f(x)是一个三次函数,f′(x)为其导函数.图1所示的是y=xf′(x)的图像的一部分.则f(x)的极大值与极722008年第11期。