高考数学难点突破 难点33 函数的连续及其应用
高考数学难点突破_难点33__函数的连续及其应用

高考数学难点突破_难点33__函数的连续及其应用函数的连续及其应用是高考数学中的一个重要难点,对于很多学生来说,理解和掌握这个知识点是比较困难的。
本文将分为三个部分进行讲解,首先是函数连续的概念和定义;其次是连续函数的性质和判断方法;最后是函数连续的应用。
一、函数连续的概念和定义在数学中,函数连续是指函数在一些点上没有突变、断层,即在该点上没有跳跃,也没有突变的现象。
具体来说,对于函数f(x)在点x=a处连续,需要满足以下三个条件:1.函数在点x=a处存在;2.函数在点x=a处的左极限和右极限存在且相等;3.函数在点x=a处的极限等于函数在该点的函数值。
符号化表示如下:f(a-)=f(a+)=f(a)二、连续函数的性质和判断方法1.连续函数的四则运算性质:如果函数f(x)和g(x)在点x=a处连续,则它们的和、差、积、商也在点x=a处连续。
2.连续函数的复合函数性质:如果函数f(x)在点x=a处连续,函数g(x)在点x=b处连续,并且a是g(x)的定义域内特定点的函数值,则复合函数f(g(x))在点x=b处连续。
3.连续函数的初等函数性质:初等函数包括常数函数、幂函数、指数函数、对数函数、三角函数等,它们在其定义域上都是连续的。
对于函数连续的判断方法,可以通过根据定义依次检查函数是否满足连续的条件,也可以利用函数的性质进行判断。
三、函数连续的应用1.函数连续与导数的关系:对于连续函数f(x),在其定义域内的每个点上都有导数存在。
2.函数连续与极值的关系:对于连续函数f(x),在闭区间[a,b]上,如果f(x)在内部点取得最大值或最小值,则必然在[a,b]的边界点或者内部存在极值。
3.函数连续与介值定理的关系:对于连续函数f(x),如果[a,b]上f(a)和f(b)异号,那么在(a,b)内必然存在一些点c,使得f(c)=0。
4.函数连续与零点存在性的关系:对于连续函数f(x),如果f(a)和f(b)异号,则在(a,b)内必然存在一些点c,使得f(c)=0。
解决高考数学中的函数极限与连续性难题的方法

解决高考数学中的函数极限与连续性难题的方法在高考数学考试中,函数极限与连续性是一道难题,许多学生常常感到头疼。
然而,只要掌握正确的解题方法和技巧,这类题目不再是难题。
本文将介绍一些解决高考数学中的函数极限与连续性难题的方法,帮助学生们更好地应对这一考点。
一、关于函数极限函数极限是高考数学中常见的考点之一。
在解决函数极限难题时,一般可以采取以下步骤:1. 确定x趋于的值:首先,需要明确x的变化趋势,是否趋于无穷大、无穷小或某一特定值。
根据情况,选择使用不同的极限判断方法。
2. 分解式并化简:对于复杂的函数,可以通过分解式和化简的方式来更好地理解题目,找到解题的突破口。
将函数拆解成更简单的形式,有助于快速求解。
3. 利用常用极限公式:高考中涉及到的函数极限问题中,有许多常用的极限公式可以利用。
例如极限值为自然对数e、三角函数极限、指数函数极限等。
4. 利用洛必达法则:洛必达法则是许多函数极限问题中的常用技巧。
当遇到函数间的极限形式为“无穷与无穷相除”、“0/0”、“∞/∞”等不确定形式时,可使用洛必达法则将问题转化为求导数的形式,进一步求解。
5. 利用夹逼定理:夹逼定理是函数极限问题中常用的判断方法。
当某一函数趋于极限时,可以找到两个已知函数,一个极限值较小,一个极限值较大,通过这两个函数夹逼待求函数,从而确定其极限。
二、关于函数连续性函数连续性是另一个常见的考点,解决函数连续性难题可以采取以下方法:1. 确定函数的定义域:首先,需要明确函数的定义域,即x的取值范围。
根据定义域的特点,确定函数在该范围内是否连续。
2. 利用函数连续性的性质:函数连续性的性质是解决连续性问题的关键。
例如,有界闭区间上的连续函数一定有最大值和最小值等。
3. 分段讨论函数的连续性:对于分段函数,可以将函数分为不同的区间,并分别讨论每个区间上的连续性。
通过分段讨论,可以更好地理解函数在不同区间上的连续性特点。
4. 利用介值定理和零点定理:介值定理和零点定理是解决连续性问题的重要定理。
函数的连续性及极限的应用

函数的连续性1.函数在一点连续的定义: 如果函数f (x )在点x =x 0处有定义,0lim x x →f (x )存在,且limx x →f (x )=f (x 0),那么函数f (x )在点x =x 0处连续.2..函数f (x )在点x =x 0处连续必须满足下面三个条件.(1)函数f (x )在点x =x 0处有定义; (2)0lim x x →f (x )存在;(3)0lim x x →f (x )=f (x 0),即函数f (x )在点x 0处的极限值等于这一点的函数值.如果上述三个条件中有一个条件不满足,就说函数f (x )在点x 0处不连续.那根据这三个条件,我们就可以给出函数在一点连续的定义. 3.函数连续性的运算:①若f(x),g(x)都在点x 0处连续,则f(x)±g(x),f(x)•g(x),)()(x g x f (g(x)≠0)也在点x 0处连续。
②若u(x)都在点x 0处连续,且f(u)在u 0=u(x 0)处连续,则复合函数f[u(x)]在点x 0处连续。
4.函数f (x )在(a ,b )内连续的定义:如果函数f (x )在某一开区间(a ,b )内每一点处连续,就说函数f (x )在开区间(a ,b )内连续,或f (x )是开区间(a ,b )内的连续函数.f (x )在开区间(a ,b )内的每一点以及在a 、b 两点都连续,现在函数f (x )的定义域是[a ,b ],若在a 点连续,则f (x )在a 点的极限存在并且等于f (a ),即在a 点的左、右极限都存在,且都等于f (a ), f (x )在(a ,b )内的每一点处连续,在a 点处右极限存在等于f (a ),在b 点处左极限存在等于f (b ). 5.函数f (x )在[a ,b ]上连续的定义:如果f (x )在开区间(a ,b )内连续,在左端点x =a 处有+→ax lim f (x )=f (a ),在右端点x =b 处有-→bx lim f (x )=f (b ),就说函数f (x )在闭区间[a ,b ]上连续,或f (x )是闭区间[a ,b ]上的连续函数. 6. 最大值最小值定理如果f (x )是闭区间[a ,b ]上的连续函数,那么f (x )在闭区间[a ,b ]上有最大值和最小值7.特别注意:函数f(x)在x=x 0处连续与函数f(x)在x=x 0处有极限的联系与区别。
高考第一轮复习数学函数的连续性及极限的应用

答案:D
3.下列图象表示的函数在x=x0处连续的是
A.①B.②③C.①④D.③④
答案:A
4.四个函数:①fx= ;②gx=sinx;③fx=|x|;④fx=ax3+bx2+cx+d.其中在x=0处连续的函数是____________.把你认为正确的代号都填上
答案:②③④
●典例剖析
图丁表示的是 fx存在,但它不等于函数在这一点处的函数值fx0.
●教师下载中心
教学点睛
1.函数fx在点x0处连续与fx在点x0处有极限的联系与区别:
其联系是:它要求 fx存在.
其区别是:函数在某点处连续比在此点处有极限所具备的条件更强.首先,fx在点x0处有极限,对于点x0而言,x0可以属于fx的定义域,也可以不属于fx的定义域,即与fx0是否有意义无关,而fx在点x0处连续,要求fx在点x0及其附近都有定义;其次,fx在点x0处的极限值与fx在点x0处的函数值fx0可以无关,而fx在点x0处连续,要求fx在点x0处的极限值等于它在这一点的函数值fx0.我们通常说“连续必有极限,有极限未必连续”,正是针对上述事实而言的.
1.函数fx在点x0处连续反映到函数fx的图象上是在点x=x0处是不间断的.一般地,函数fx在点x0处不连续间断大致有以下几种情况如下图所示.
图甲表示的是fx在点x0处的左、右极限存在但不相等,即 fx不存在.
图乙表示的是fx在点x0处的左极限存在,而右极限不存在,也属于 fx不存在的情况.
图丙表示的是 fx存在,但函数fx在点x0处没有定义.
2.函数fx在点x0处连续必须具备以下三个条件:
函数fx在点x=x0处有定义;
函数fx在点x=x0处有极限;
高考数学难点突破与解题方法

高考数学难点突破与解题方法随着高考日益逼近,数学作为一门重要的科目,成为许多考生头疼的难题。
其中,存在着一些难点,对于许多考生来说是必须要突破的难关。
本文将介绍一些高考数学难点的突破方法和解题技巧,帮助考生在考试中取得更好的成绩。
一、代数与函数代数与函数是高考数学中的一大难点,其中包括方程、函数和不等式。
首先,要熟练掌握基本的代数知识,比如一元二次方程、分式方程等,切忌死记硬背,要通过大量的练习来加深理解。
其次,要了解各类函数的性质,包括基本初等函数的图像、性质和变化规律等。
高考中常见的函数类型有线性函数、二次函数和指数函数等,掌握它们的性质和变化规律能够解决不少难题。
最后,对于不等式的解法,要掌握常见的不等式性质,比如绝对值不等式、二次式不等式等,通过画图或代入法来解决。
二、立体几何立体几何也是高考数学中的难点之一。
在解题时,要注重对图形性质的理解和几何关系的把握。
了解常见几何图形的特征和性质,包括正方体、正四面体和圆锥等,会对解题有很大帮助。
同时,还需要掌握立体几何的投影问题,如求柱体、圆柱和圆锥的截面面积和体积等。
通过多做一些相关的题目进行练习,能够提高解决立体几何难题的能力。
三、概率与统计概率与统计在高考数学中占有一定的比重,也是一些考生容易忽视的部分。
在解题时,要注意理解概率与统计的基本概念和原理。
掌握概率计算的方法,包括排列组合、事件的计算和条件概率等。
对于统计的问题,要熟悉常见统计量的计算,如均值、中位数和标准差等。
此外,还要注意对数据的分析与解读,包括直方图和折线图的解读,以及数据的比较和推断分析。
四、解题技巧在考试时,掌握一些解题技巧对于突破数学难点是非常有效的。
首先,要学会研读题目,理解题目所给的条件和要求,抓住关键信息。
其次,学会尝试多种解题方法,从不同的角度入手,比较其优劣并选择最合适的方法。
此外,要善于归纳总结,在做题过程中,记录解题思路和方法,方便日后进行复习和总结。
高考数学中的函数极限与连续性应用技巧

高考数学中的函数极限与连续性应用技巧数学作为高考重要科目之一,其中的函数极限与连续性是一项重要的考察内容。
函数极限与连续性的应用在高考中占据较大的比重,下面将介绍一些应用技巧,帮助同学们更好地应对高考数学考试。
一、一元函数极限的应用技巧在高考数学中,一元函数极限的应用经常涉及到函数的极限值、极值问题以及其他相关应用。
为了解决这些问题,以下是一些技巧和方法。
1. 利用函数极限求函数的极值:当函数极限存在时,可以通过极限的定义来求取函数的极值。
首先,找到函数的定义域和极限的边界条件;然后通过求导、求导数的零点以及边界点等方法,判断函数的极值存在性及其取值。
2. 利用函数极限解决趋向问题:对于一些趋向问题,我们可以利用函数极限的定义来解决。
一般来说,我们可以先将问题转化为数学表达式,然后通过函数极限的性质和操作方法来求取问题的解。
3. 利用函数极限推导变量间的关系式:在一些复杂的高考数学问题中,函数极限的应用可以帮助我们建立变量间的关系式。
通过对特定函数的极限进行分析,可以得到一定的关系式,进而解决问题。
二、连续函数的应用技巧连续性是高考数学中另一个重要的概念,相对于函数极限,连续函数的应用要略显复杂。
以下是一些应用技巧。
1. 利用连续函数求函数值:当一个函数是连续的时,可以通过直接将自变量的值代入函数表达式中,求得函数的函数值。
对于较复杂的函数,可以利用函数的性质和运算法则进行简化。
2. 利用连续函数解决函数存在性与唯一性问题:对于给定的方程或不等式,我们可以通过构造连续函数来解决其存在性与唯一性问题。
通过建立恰当的连续函数,并利用连续函数不变性、介值定理等技巧,可以判断给定方程或不等式是否存在解,以及解的个数和范围。
3. 利用连续函数解决极值问题:在高考中,我们常常遇到一些求函数的最大值和最小值的问题。
对于连续函数来说,可以通过求取函数的导数,找到导函数的零点和定义域的边界点,来判断函数的极值点和取值。
高中数学的解析如何应用极限概念求解函数的连续性

高中数学的解析如何应用极限概念求解函数的连续性高中数学中,解析几何和极限概念是数学学习中的两个重要内容。
解析几何研究了平面和空间中的点、直线、曲线等几何图形的性质,而极限概念则是数列、函数等的重要性质之一。
本文将探讨如何运用极限概念来解析高中数学中的函数连续性问题。
一、函数的极限和连续性在开始讨论如何应用极限概念求解函数的连续性前,我们首先需要了解函数的极限和连续性的概念。
函数的极限是指当自变量趋近于某个值时,函数值的变化趋势。
通常用极限符号来表示,例如lim(x→a)f(x)。
当函数在某点的左右极限存在且相等时,即lim(x→a⁻)f(x) = lim(x→a⁺)f(x),则该函数在该点是连续的。
换句话说,函数f(x)在x=a处连续,意味着f(x)在x=a处的函数值和极限值相等。
二、极限概念在连续性证明中的运用当我们需要证明一个函数在某个区间内连续时,可以通过运用极限概念来进行推导和证明。
以函数f(x)在区间[a, b]上连续为例,我们可以按照以下步骤来证明:1. 首先,我们要证明函数f(x)在[a, b]上是无间断的。
为此,我们需要先证明f(x)在[a, b]的每个点x=a和x=b处的函数值和极限存在且相等。
a) 对于x=a,我们可以计算lim(x→a⁺)f(x)和lim(x→a⁻)f(x)。
如果这两个极限存在且相等,且和f(a)相等,则f(x)在x=a处满足连续性。
b) 对于x=b,同样计算lim(x→b⁺)f(x)和lim(x→b⁻)f(x)。
如果这两个极限存在且相等,且和f(b)相等,则f(x)在x=b处满足连续性。
2. 其次,我们需证明对于区间[a, b]内的任意一点x,lim(x→c)f(x)存在,且lim(x→c)f(x) = f(c),其中c∈(a, b)。
这意味着函数f(x)在[a, b]内的每个点都满足连续性。
通过以上步骤,我们可以得出函数f(x)在区间[a, b]上连续的结论。
高考数学难点突破——函数运用

高考数学难点突破——函数运用函数是高考数学中的一个重要难点,在解题中经常需要运用函数的性质和相关的理论。
下面我将从函数的图像与性质、函数的应用以及函数方程的解法等方面进行详细讲解,以帮助你突破高考数学中的函数难题。
首先,要理解函数的图像与性质。
在高考中,常常会涉及到函数的图像特征、最值、奇偶性、周期性等性质。
对于一元函数,首先要掌握函数的图像画法以及与函数图像有关的性质,如函数与坐标轴的交点、函数的极值点等。
其次,要了解如何通过函数的图像来判断函数的单调性和奇偶性。
对于二元函数,要掌握如何画出函数的等值线图,以及如何根据等值线图来判断函数的最值点等性质。
这些知识点在解题中经常会出现,掌握好这些函数的图像与性质,能够帮助你更好地理解题意和解题思路。
其次,函数的应用也是高考数学中关于函数难点的重要内容。
函数的应用包括函数的实际意义、函数的模型建立和解决实际问题等。
在高考中,经常会出现通过给定的条件,建立函数模型并解决问题的情况。
在解决函数应用问题时,要先明确问题所涉及到的变量和条件,然后建立函数模型,最后通过函数模型进行运算计算出解答。
这里需要特别注意的是实际问题中的函数模型往往需要灵活运用数学知识来进行转化和抽象。
对于这一部分的难点,要多进行实际问题的应用练习,加强练习题的理解和解答,提高解决实际问题的能力。
最后,函数方程的解法也是高考数学中涉及到的一个重要难点。
对于函数方程的解法,要根据题意确定方程的求解方法,如利用函数的性质和图像解方程、利用函数的定义域和值域解方程等。
特别是在高等数学中,对于函数方程的求解方法要更加深入和复杂。
解决这一类问题,我们需要熟练掌握函数方程性质和运算法则,灵活运用函数的性质和等式的性质,确定方程的解的范围和具体的求解方法。
通过多进行函数方程的解一类题目的练习,能够帮助我们对函数方程的解法有更深入的理解。
综上,函数是高考数学中的一个难点,突破函数难题需要在函数的图像与性质、函数的应用以及函数方程的解法等方面进行系统的学习。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
116难点33 函数的连续及其应用函数的连续性是新教材新增加的内容之一.它把高中的极限知识与大学知识紧密联在一起.在高考中,必将这一块内容溶入到函数内容中去,因而一定成为高考的又一个热点.本节内容重点阐述这一块知识的知识结构体系.●难点磁场(★★★★)已知函数f (x )=⎪⎩⎪⎨⎧≤<-≤≤-+-<)51( )1(log )11( )1()1( 32x x x x x x(1)讨论f (x )在点x =-1,0,1处的连续性;(2)求f (x )的连续区间.●案例探究[例1]已知函数f (x )=242+-x x , (1)求f (x )的定义域,并作出函数的图象;(2)求f (x )的不连续点x 0;(3)对f (x )补充定义,使其是R 上的连续函数.命题意图:函数的连续性,尤其是在某定点处的连续性在函数图象上有最直观的反映.因而画函数图象去直观反映题目中的连续性问题也就成为一种最重要的方法.知识依托:本题是分式函数,所以解答本题的闪光点是能准确画出它的图象.错解分析:第(3)问是本题的难点,考生通过自己对所学连续函数定义的了解.应明确知道第(3)问是求的分数函数解析式.技巧与方法:对分式化简变形,注意等价性,观察图象进行解答.解:(1)当x +2≠0时,有x ≠-2因此,函数的定义域是(-∞,-2)∪(-2,+∞)当x ≠-2时,f (x )=242+-x x =x -2, 其图象如上图(2)由定义域知,函数f (x )的不连续点是x 0=-2.(3)因为当x ≠-2时,f (x )=x -2,所以)2(lim )(lim 22-=-→-→x x f x x =-4.因此,将f (x )的表达式改写为f (x )=⎪⎩⎪⎨⎧-=--≠+-2)( 4)2( 242x x x x则函数f (x )在R 上是连续函数.[例2]求证:方程x =a sin x +b (a >0,b >0)至少有一个正根,且它不大于a +b .命题意图:要判定方程f (x )=0是否有实根.即判定对应的连续函数y =f (x )的图象是否与x 轴有交点,因此根据连续函数的性质,只要找到图象上的两点,满足一点在x 轴上方,另一点在x 轴下方即可.本题主要考查这种解题方法.知识依托:解答本题的闪光点要找到合适的两点,使函数值其一为负,另一为正.错解分析:因为本题为超越方程,因而考生最易想到画图象观察,而忽视连续性的性质在解这类题目中的简便作用.117证明:设f (x )=a sin x +b -x ,则f (0)=b >0,f (a +b )=a ·sin(a +b )+b -(a +b )=a [sin(a +b )-1]≤0,又f (x )在(0,a +b ]内是连续函数,所以存在一个x 0∈(0,a +b ],使f (x 0)=0,即x 0是方程f (x )=0的根,也就是方程x =a ·sin x +b 的根.因此,方程x =a sin x +b 至少存在一个正根,且它不大于a +b .●锦囊妙计1.深刻理解函数f (x )在x 0处连续的概念:等式lim 0x x →f (x )=f (x 0)的涵义是:(1)f (x 0)在x =x 0处有定义,即f (x 0)存在;(2)lim 0x x →f (x )存在,这里隐含着f (x )在点x =x 0附近有定义;(3)f (x )在点x 0处的极限值等于这一点的函数值,即lim 0x x →f (x )=f (x 0).函数f (x )在x 0处连续,反映在图象上是f (x )的图象在点x =x 0处是不间断的.2.函数f (x )在点x 0不连续,就是f (x )的图象在点x =x 0处是间断的.其情形:(1)lim 0x x →f (x )存在;f (x 0)存在,但lim 0x x →f (x )≠f (x 0);(2)lim 0x x →f (x )存在,但f (x 0)不存在.(3) lim 0x x →f (x )不存在.3.由连续函数的定义,可以得到计算函数极限的一种方法:如果函数f (x )在其定义区间内是连续的,点x 0是定义区间内的一点,那么求x →x 0时函数f (x )的极限,只要求出f (x )在点x 0处的函数值f (x 0)就可以了,即lim 0x x →f (x )=f (x 0). ●歼灭难点训练一、选择题1.(★★★★)若f (x )=11113-+-+x x 在点x =0处连续,则f (0)等于( ) A.23 B.32 C.1 D.02.(★★★★)设f (x )=⎪⎪⎩⎪⎪⎨⎧<<=<<2111 2110 x x x x 则f (x )的连续区间为( ) A.(0,2)B.(0,1)C.(0,1)∪(1,2)D.(1,2)二、填空题 3.(★★★★)xx x x arctan 4)2ln(lim 21--→ =_________. 4.(★★★★)若f (x )=⎪⎩⎪⎨⎧≥+<--0 0 11x bx a x x x 处处连续,则a 的值为_________. 三、解答题1185.(★★★★★)已知函数f (x )=⎪⎪⎩⎪⎪⎨⎧=≠+-)0(1)0( 121211x x x x (1)f (x )在x =0处是否连续?说明理由;(2)讨论f (x )在闭区间[-1,0]和[0,1]上的连续性.6.(★★★★)已知f (x )=⎪⎩⎪⎨⎧≥+<--)0()0(11x bx a x x x (1)求f (-x );(2)求常数a 的值,使f (x )在区间(-∞,+∞)内处处连续.7.(★★★★)求证任何一个实系数一元三次方程a 0x 3+a 1x 2+a 2x +a 3=0(a 0,a 1,a 2,a 3∈R ,a 0≠0)至少有一个实数根.8.(★★★★)求函数f (x )=⎪⎩⎪⎨⎧>-≤)1( )21(log )1( 2x x x x 的不连续点和连续区间.参考答案难点磁场解:(1)lim 1--→x f (x )=3, lim 1+-→x f (x )=-1,所以lim 1-→x f (x )不存在,所以f (x )在x =-1处不连续, 但lim 1-→x f (x )=f (-1)=-1, lim 1--→x f (x )≠f (-1),所以f (x )在x =-1处右连续,左不连续 lim 1-→x f (x )=3=f (1), lim 1+→x f (x )不存在,所以lim 1→x f (x )不存在,所以f (x )在x =1不连续,但左连续,右不连续.又lim 0→x f (x )=f (0)=0,所以f (x )在x =0处连续.(2)f (x )中,区间(-∞,-1),[-1,1],(1,5]上的三个函数都是初等函数,因此f (x )除不连续点x =±1外,再也无不连续点,所以f (x )的连续区间是(-∞,-1),[-1,1]和(1,5].歼灭难点训练一、1.解析:]11][11)1()[11(]11)1()[11)(11()(3332332-+++++++++++-+++=x x x x x x x x x f2311111)0(1111)1(323=+++=++++++=f x x x 答案:A2.解析:11lim )(lim 11==++→→x x x f119 21)1(1)(lim ,1lim )(lim 111=≠===→→→--f x f x x f x x x 即f (x )在x =1点不连续,显知f (x )在(0,1)和(1,2)连续.答案:C 二、3.解析:利用函数的连续性,即)()(lim 00x f x f x x =→,π=--=--∴→11arctan 4)12sin(11arctan 4)2sin(lim 221x x x 答案:π1 21,0)(lim )(lim 21111lim 11lim )(lim :.400000=∴=+==-+=--=++---→→→→→a bx a x f x x x x f x x x x x 解析 答案:21 三、5.解:f (x )=⎪⎩⎪⎨⎧=≠+-)0(1)0(12111x x x(1) lim 10-→x f (x )=-1, lim 0+→x f (x )=1,所以lim 0→x f (x )不存在,故f (x )在x =0处不连续. (2)f (x )在(-∞,+∞)上除x =0外,再无间断点,由(1)知f (x )在x =0处右连续,所以f (x )在[-1,0]上是不连续函数,在[0,1]上是连续函数.6.解:(1)f (-x )=⎪⎩⎪⎨⎧≥-<-+)0( )0( 11x bx a x x x (2)要使f (x )在(-∞,+∞)内处处连续,只要f (x )在x =0连续,lim 0-→x f (x ) = lim 0-→x x x --11=21111lim )11(lim 00=-+=-+--→→xx x x x x lim 0+→x f (x )=lim 0+→x (a +bx )=a ,因为要f (x )在x =0处连续,只要lim 0+→x f (x )= lim 0+→x f (x ) = lim 0+→x f (x )=f (0),所以a =21 7.证明:设f (x )=a 0x 3+a 1x 2+a 2x +a 3,函数f (x )在(-∞,+∞)连续,且x →+∞时,f (x )→+∞;x →-∞时,f (x )→-∞,所以必存在a ∈(-∞,+∞),b ∈(-∞, +∞),使f (a )·f (b )<0,所以f (x )的图象至少在(a ,b )上穿过x 轴一次,即f (x )=0至少有一实根.8.解:不连续点是x =1,连续区间是(-∞,1),(1,+∞)。