高考数学难点突破_难点21__直线方程及其应用

高考数学难点突破_难点21__直线方程及其应用
高考数学难点突破_难点21__直线方程及其应用

难点21 直线方程及其应用

直线是最简单的几何图形,是解析几何最基础的部分,本章的基本概念;基本公式;直线方程的各种形式以及两直线平行、垂直、重合的判定都是解析几何重要的基础内容.应达到熟练掌握、灵活运用的程度,线性规划是直线方程一个方面的应用,属教材新增内容,高考中单纯的直线方程问题不难,但将直线方程与其他知识综合的问题是学生比较棘手的.

●难点磁场

(★★★★★)已知|a |<1,|b |<1,|c |<1,求证:abc +2>a +b +c .

●案例探究

[例1]某校一年级为配合素质教育,利用一间教室作为学生绘画成果展览室,为节约经费,他们利用课桌作为展台,将装画的镜框放置桌上,斜靠展出,已知镜框对桌面的倾斜角为α(90°≤α<180°)镜框中,画的上、下边缘与镜框下边缘分别相距a m,b m,(a >b ).问学生距离镜框下缘多远看画的效果最佳?

命题意图:本题是一个非常实际的数学问题,它不仅考查了直线的有关概念以及对三角知识的综合运用,而且更重要的是考查了把实际问题转化为数学问题的能力,属★★★★★级题目.

知识依托:三角函数的定义,两点连线的斜率公式,不等式法求最值.

错解分析:解决本题有几处至关重要,一是建立恰当的坐标系,使问题转化成解析几何问题求解;二是把问题进一步转化成求tan ACB 的最大值.如果坐标系选择不当,或选择求sin ACB 的最大值.都将使问题变得复杂起来.

技巧与方法:欲使看画的效果最佳,应使∠ACB 取最大值,欲求角的最值,又需求角的一个三角函数值.

解:建立如图所示的直角坐标系,AO 为镜框边,AB 为画的宽度,

O 为下边缘上的一点,在x 轴的正半轴上找一点C (x ,0)(x >0),欲使看

画的效果最佳,应使∠ACB 取得最大值.

由三角函数的定义知:A 、B 两点坐标分别为(a cos α,a sin α)、

(b cos α,b sin α),于是直线AC 、BC 的斜率分别为:

k AC =tan xCA =x

a a -ααcos sin , .cos sin tan x

b b xCB k BC -==αα 于是tan ACB =AC BC AC BC k k k k ?+-1ααααcos )(sin )(cos )(sin )(2?+-+?-=++-?-=b a x x

b a x x b a ab x b a 由于∠ACB 为锐角,且x >0,则tan ACB ≤αα

cos )(2sin )(b a ab b a +-?-,当且仅当x

ab =x ,即x =ab 时,等号成立,此时∠ACB 取最大值,对应的点为C (ab ,0),因此,学生距离镜框下缘ab cm 处时,视角最大,即看画效果最佳.

[例2]预算用2000元购买单件为50元的桌子和20元的椅子,希望使桌椅的总数尽可能的多,但椅子不少于桌子数,且不多于桌子数的1.5倍,问桌、椅各买多少才行?

命题意图:利用线性规划的思想方法解决某些实际问题属于直线方程的一个应用,本题主要考查找出约束条件与目标函数、准确地描画可行域,

再利用图形直观求得满足题设的最

优解,属★★★★★级题目.

知识依托:约束条件,目标函数,可行域,最优解.

错解分析:解题中应当注意到问题中的桌、椅张数应是自然数这个隐含条件,若从图形直观上得出的最优解不满足题设时,应作出相应地调整,直至满足题设.

技巧与方法:先设出桌、椅的变数后,目标函数即为这两个变数之和,再由此在可行域内求出最优解.

解:设桌椅分别买x ,y 张,把所给的条件表示成不等式组,即约束条件

为???????≥≥≤≥≤+0

,05.120002050y x x y x y y x 由???????==???==+72007200,20002050y x x y y x 解得 ∴A 点的坐标为(7200,7

200) 由??

???==???==+27525,5.120002050y x x y y x 解得 ∴B 点的坐标为(25,2

75) 所以满足约束条件的可行域是以A (

7200,7200),B (25,275),O (0,0)为顶点的三角形区域(如右图)

由图形直观可知,目标函数z =x +y 在可行域内的最优解为(25,

2

75),但注意到x ∈N ,y ∈N *,故取y =37. 故有买桌子25张,椅子37张是最好选择.

[例3]抛物线有光学性质:由其焦点射出的光线经抛物线折射后,沿平行于抛物线对称轴的方向射出,今有抛物线y 2=2px (p >0).一光源在点M (4

41,4)处,由其发出的光线沿平行于抛物线的轴的方向射向抛物线上的点P ,折射后又射向抛物线上的点Q ,再折射后,又沿平行于抛物线的轴的方向射出,途中遇到直线l :2x -4y -17=0上的点N ,再折射后又射回点M (如下图所示

)

(1)设P 、Q 两点坐标分别为(x 1,y 1)、(x 2,y 2),证明:y 12y 2=-p 2;

(2)求抛物线的方程;

(3)试判断在抛物线上是否存在一点,使该点与点M 关于PN 所在的直线对称?若存在,请求出此点的坐标;若不存在,请说明理由.

命题意图:对称问题是直线方程的又一个重要应用.

本题是一道与物理中的光学知识相

结合的综合性题目,考查了学生理解问题、分析问题、解决问题的能力,属★★★★★★级题目.

知识依托:韦达定理,点关于直线对称,直线关于直线对称,直线的点斜式方程,两点式方程.

错解分析:在证明第(1)问题,注意讨论直线PQ 的斜率不存在时.

技巧与方法:点关于直线对称是解决第(2)、第(3)问的关键.

(1)证明:由抛物线的光学性质及题意知

光线PQ 必过抛物线的焦点F (

2p ,0), 设直线PQ 的方程为y =k (x -

2p ) ① 由①式得x =

k 1y +2p ,将其代入抛物线方程y 2=2px 中,整理,得y 2-k p 2y -p 2=0,由韦达定理,y 1y 2=-p 2.

当直线PQ 的斜率角为90°时,将x =2

p 代入抛物线方程,得y =±p ,同样得到y 12y 2= -p 2.

(2)解:因为光线QN 经直线l 反射后又射向M 点,所以直线MN 与直线QN 关于直线l 对称,设点M (4

41,4)关于l 的对称点为M ′(x ′,y ′),则 ????

?????=-+'?-+'?-=?-'-'017244244121214414y x x y 解得?????-='='1451y x 直线QN 的方程为y =-1,Q 点的纵坐标y 2=-1,

由题设P 点的纵坐标y 1=4,且由(1)知:y 12y 2=-p 2,则42(-1)=-p 2,

得p =2,故所求抛物线方程为y 2=4x .

(3)解:将y =4代入y 2=4x ,得x =4,故P 点坐标为(4,4)

将y =-1代入直线l 的方程为2x -4y -17=0,得x =

213, 故N 点坐标为(2

13,-1) 由P 、N 两点坐标得直线PN 的方程为2x +y -12=0,

设M 点关于直线NP 的对称点M 1(x 1,y 1)

?????-==????

?????=-+++?-=-?--14101224244121)2(4414111111y x y x x y 解得则

又M 1(41,-1)的坐标是抛物线方程y 2=4x 的解,故抛物线上存在一点(4

1,-1)与点M

关于直线PN 对称.

●锦囊妙计

1.对直线方程中的基本概念,要重点掌握好直线方程的特征值(主要指斜率、截距)等问题;直线平行和垂直的条件;与距离有关的问题等.

2.对称问题是直线方程的一个重要应用,中学里面所涉及到的对称一般都可转化为点关于点或点关于直线的对称.中点坐标公式和两条直线垂直的条件是解决对称问题的重要工具.

3.线性规划是直线方程的又一应用.线性规划中的可行域,实际上是二元一次不等式(组)表示的平面区域.求线性目标函数z =ax +by 的最大值或最小值时,设t =ax +by ,则此直线往右(或左)平移时,t 值随之增大(或减小),要会在可行域中确定最优解.

4.由于一次函数的图象是一条直线,因此有关函数、数列、不等式、复数等代数问题往往借助直线方程进行,考查学生的综合能力及创新能力.

●歼灭难点训练

一、选择题

1.(★★★★★)设M =1

20110,1101102002200120012000++=++N ,则M 与N 的大小关系为( ) A.M >N B.M =N C.M <N D.无法判断

2.(★★★★★)三边均为整数且最大边的长为11的三角形的个数为( )

A.15

B.30

C.36

D.以上都不对

二、填空题

3.(★★★★)直线2x -y -4=0上有一点P ,它与两定点A (4,-1),B (3,4)的距离之差最大,则P 点坐标是_________.

4.(★★★★)自点A (-3,3)发出的光线l 射到x 轴上,被x 轴反射,其反射光线所在直线与圆x 2+y 2-4x -4y +7=0相切,则光线l 所在直线方程为_________.

5.(★★★★)函数f (θ)=2

cos 1sin --θθ的最大值为_________,最小值为_________. 6.(★★★★★)设不等式2x -1>m (x 2-1)对一切满足|m |≤2的值均成立,则x 的范围为_________.

三、解答题

7.(★★★★★)已知过原点O 的一条直线与函数y =log 8x 的图象交于A 、B 两点,分别过点A 、B 作y 轴的平行线与函数y =log 2x 的图象交于C 、D 两点.

(1)证明:点C 、D 和原点O 在同一直线上.

(2)当BC 平行于x 轴时,求点A 的坐标.

8.(★★★★★)设数列{a n }的前n 项和S n =na +n (n -1)b ,(n =1,2,…),a 、b 是常数且b ≠0.

(1)证明:{a n }是等差数列.

(2)证明:以(a n ,

n S n -1)为坐标的点P n (n =1,2,…)都落在同一条直线上,并写出此直线的方程. (3)设a =1,b =2

1,C 是以(r ,r )为圆心,r 为半径的圆(r >0),求使得点P 1、P 2、P 3都落在圆C 外时,r 的取值范围.

参考答案 难点磁场

证明:设线段的方程为y =f (x )=(bc -1)x +2-b -c ,其中|b |<1,|c |<1,|x |<1,且-1<b <1. ∵f (-1)=1-bc +2-b -c =(1-bc )+(1-b )+(1-c )>0

f (1)=bc -1+2-b -c =(1-b )(1-c )>0

∴线段y =(bc -1)x +2-b -c (-1<x <1)在x 轴上方,这就是说,当|a |<1,|b |<1,|c |<1时,恒有abc +2>a +b +c .

歼灭难点训练

一、1.解析:将问题转化为比较A (-1,-1)与B (102001,102000)及C (102002,102001)连线的斜率大小,因为B 、C 两点的直线方程为y =

10

1x ,点A 在直线的下方,∴k AB >k AC ,即M >N .

答案:A

2.解析:设三角形的另外两边长为x ,y ,则 ??

???>+≤<≤<11110110y x y x

点(x ,y )应在如右图所示区域内

当x =1时,y =11;当x =2时,y =10,11;

当x =3时,y =9,10,11;当x =4时,y =8,9,10,11;

当x =5时,y =7,8,9,10,11.

以上共有15个,x ,y 对调又有15个,再加上(6,6),(7,7),

(8,8),(9,9),(10,10)、(11,11)六组,所以共有36个.

答案:C

二、3.解析:找A 关于l 的对称点A ′,A ′B 与直线l 的交

点即为所求的P 点.

答案:P (5,6)

4.解析:光线l 所在的直线与圆x 2+y 2-4x -4y +7=0关于x 轴对称的圆相切.

答案:3x +4y -3=0或4x +3y +3=0

5.解析:f (θ)=

2cos 1sin --θθ表示两点(cos θ,sin θ)与(2,1)连线的斜率. 答案:3

4 0 6.解析:原不等式变为(x 2-1)m +(1-2x )<0,构造线段f (m )=(x 2-1)m +1-2x ,-2≤m ≤2,则f (-2)<0,且f (2)<0. 答案:

2

13217+<<-x 三、7.(1)证明:设A 、B 的横坐标分别为x 1、x 2,由题设知x 1>1,x 2>1,

点A (x 1,log 8x 1),B (x 2,log 8x 2). 因为A 、B 在过点O 的直线上,所以2

28118log log x x x x =,又点C 、D 的坐标分别为(x 1,log 2x 1)、(x 2,log 2x 2).

由于log 2x 1=3log 8x 1,log 2x 2=3log 8x 2,则

2

28222118112log 3log ,log 3log x x x x k x x x x k OD OC ====

由此得k OC =k OD ,即O 、C 、D 在同一直线上.

(2)解:由BC 平行于x 轴,有log 2x 1=log 8x 2,又log 2x 1=3log 8x 1

∴x 2=x 13 将其代入2

28118log log x x x x =,得x 13log 8x 1=3x 1log 8x 1, 由于x 1>1知log 8x 1≠0,故x 13=3x 1x 2=3,于是A (3,log 83).

9.(1)证明:由条件,得a 1=S 1=a ,当n ≥2时,

有a n =S n -S n -1=[na +n (n -1)b ]-[(n -1)a +(n -1)(n -2)b ]=a +2(n -1)b . 因此,当n ≥2时,有a n -a n -1=[a +2(n -1)b ]-[a +2(n -2)b ]=2b .

所以{a n }是以a 为首项,2b 为公差的等差数列.

(2)证明:∵b ≠0,对于n ≥2,有21)1(2)1()1(2)1()11()1(

11=--=--+--+=----b n b n a b n a a a b n n na a a S n S n n ∴所有的点P n (a n ,

n

S n -1)(n =1,2,…)都落在通过P 1(a ,a -1)且以21为斜率的直线上.此直线方程为y -(a -1)= 2

1 (x -a ),即x -2y +a -2=0. (3)解:当a =1,b =21时,P n 的坐标为(n ,22-n ),使P 1(1,0)、P 2(2, 21)、P 3(3,1)都落在圆C 外的条件是

???????>-+->-+->+-222222222)1()3()21()1()1(r r r r r r r r r ???

????>+->+->-010*******)1(222r r r r r 即 由不等式①,得r ≠1

由不等式②,得r <25-2或r >2

5+2 由不等式③,得r <4-6或r >4+6

再注意到r >0,1<25-2<4-6=2

5+2<4+6 故使P 1、P 2、P 3都落在圆C 外时,r 的取值范围是(0,1)∪(1,

25-2)∪(4+6,+∞). ① ② ③

直线方程的应用(习题及答案)

2 2 2 2 2 ? 例题示范 扫一扫 对答案 直线方程的应用(习题) 例 1:若过点 A (4,0)的直线 l 与圆(x -2)2+y 2=1 有公共点,则直线 l 的斜率的取值范围是 . 思路分析: 根据圆的标准方程,画出符合题意的图形.直线与圆有公共点, 说明直线与圆的位置关系为相切或相交,其中相切为临界状态. 计算直线与圆相切时直线的斜率: 如图,设圆心为点 B ,直线 AM ,AN 分别与圆相切于点 M ,N , 则 BM ⊥AM ,BN ⊥AN ,且 BM =BN =1,AB =2, 所以∠MAB =∠NAB =30°, 进而可得k AM = - 3 ,k = 3 , 3 AN 3 结合图形易得直线 l 的斜率的取值范围是[- 3 , 3 ] . 3 3 例 2:在平面直角坐标系 xOy 中,圆 C 的方程为 x 2+y 2-4x =0.若直线 l :y =k (x +1)上存在一点 P ,使过 P 所作的圆的两条切线相互垂直,则实数 k 的取值范围是 . 思路分析: 由题意,圆 C :(x -2)2+y 2=4,圆心 C (2,0),半径 r =2. ∵过点 P 的两条切线相互垂直, ∴过点 P ,C 以及两切点组成的四边形是正方形, ∴对角线 PC = 2r = 2 , 即 l 上存在一点到圆心的距离等于2 , ∴圆心 C 到直线 l :kx -y +k =0 的距离小于或等于2 , 2k + k 即 ≤ 2 , k 2 +1 解得-2 ≤ k ≤ 2 . 2

1

3 ? 巩固练习 1. 若直线l :y = kx - 与直线2x +3y -6=0 的交点位于第一象限, 则直线 l 的倾斜角的取值范围是( ) A .[30°,60°) B .[30°,90°] C .(60°,90°) D .(30°,90°) 2. 已知点 M (2,-3),N (-3,-2),若直线 l :y =ax -a +1 与线段 MN 相交,则实数 a 的取值范围是( ) A . a ≥ 3 或 a ≤ - 4 4 C . 3 ≤ a ≤ 4 4 B . - 4 ≤ a ≤ 3 4 D . - 3 ≤ a ≤ 4 4 3. 若点 P (x ,y )在以 A (-3,1),B (-1,0),C (-2,0)为顶点的 △ABC 的内部(不包括边界),则 y - 2 的取值范围是( ) x -1 A .[ 1 ,1] 2 B . ( 1 ,1) 2 C .[ 1 ,1] 4 D . ( 1 ,1) 4 4. 过点 A (2,1)以及两直线 x -2y -3=0 与 2x -3y -2=0 的交点的直线方程是( ) A .2x +y -5=0 B .5x -7y -3=0 C .x -3y +5=0 D .7x -2y -4=0 5. 过点(2,3),且到原点的距离最大的直线方程是( ) A .3x +2y -12=0 B .2x +3y -13=0 C .x =2 D .x +y -5=0 2

2018浙江高考数学知识点

2018高考数学知识点总结 1. 对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。 {}{}{}如:集合,,,、、A x y x B y y x C x y y x A B C ======|lg |lg (,)|lg 中元素各表示什么? 2. 2. 进行集合的交、并、补运算时,不要忘记集合本身和空集的特殊情况。? 注重借助于数轴和文氏图解集合问题。 空集是一切集合的子集,是一切非空集合的真子集。 {} {}如:集合,A x x x B x ax =--===||22301 若,则实数的值构成的集合为B A a ? (答:,,)-??? ??? 1013 3. 注意下列性质: {}()集合,,……,的所有子集的个数是; 1212a a a n n , 22,12,12---n n n 非空真子集个数是真子集个数是非空子集个数是 4. 你会用补集思想解决问题吗?(排除法、间接法) 的取值围。 ()),,·∴ ,∵·∴ ,∵(259351055 55035 332 2 ?? ? ???∈?≥--?<--∈a a a M a a M 5. 可以判断真假的语句叫做命题,逻辑连接词有“或”,“且”和()()∨∧“非”().? 若为真,当且仅当、均为真p q p q ∧ 至少有一个为真、为真,当且仅当若q p q p ∨ 若为真,当且仅当为假?p p 6. 命题的四种形式及其相互关系是什么? (互为逆否关系的命题是等价命题。) 原命题与逆否命题同真、同假;逆命题与否命题同真同假。 7. 对映射的概念了解吗?映射f :A →B ,是否注意到A 中元素的任意性和B 中与之对应元素的唯一性,哪几种对应能 构成映射? (一对一,多对一,A 中元素不可剩余,允许B 中有元素剩余。) 8. 函数的三要素是什么?如何比较两个函数是否相同? (定义域、对应法则、值域) 9. 求函数的定义域有哪些常见类型?

高考数学难点突破_难点41__应用问题

难点41 应用性问题 数学应用题是指利用数学知识解决其他领域中的问题.高考对应用题的考查已逐步成熟,大体是三道左右的小题和一道大题,注重问题及方法的新颖性,提高了适应陌生情境的能力要求. ●难点磁场 1.(★★★★★)一只小船以10 m/s 的速度由 南向北匀速驶过湖面,在离湖面高20米的桥上, 一辆汽车由西向东以20 m/s 的速度前进(如图), 现在小船在水平P 点以南的40米处,汽车在桥上 以西Q 点30米处(其中PQ ⊥水面),则小船与汽车间的最短距离为 .(不考虑汽车与小船本 身的大小). 2.(★★★★★)小宁中午放学回家自己煮面条吃,有下面几道工序:(1)洗锅盛水2分钟;(2)洗菜6分钟;(3)准备面条及佐料2分钟;(4)用锅把水烧开10分钟;(5)煮面条和菜共3分钟.以上各道工序除(4)之外,一次只能进行一道工序,小宁要将面条煮好,最少用分钟. 3.(★★★★★)某产品生产厂家根据以往的生产销售经验得到下面有关销售的统计规律:每生产产品x (百台),其总成本为G (x )万元,其中固定成本为2万元,并且每生产100台的生产成本为1万元(总成本=固定成本+生产成本),销售收入R (x )满足 R (x )=???>≤≤-+-)5( 2.10)50( 8.02.44.02x x x x .假定该产品销售平衡,那么根据上述统计规律. (1)要使工厂有盈利,产品x 应控制在什么范围? (2)工厂生产多少台产品时赢利最大?并求此时每台产品的售价为多少? ●案例探究 [例1]为处理含有某种杂质的污水,要制造一个底宽为2 米的无盖长方体沉淀箱(如图),污水从A 孔流入,经沉淀后从 B 孔流出,设箱体的长度为a 米,高度为b 米,已知流出的水 中该杂质的质量分数与a 、b 的乘积ab 成反比,现有制箱材料 60平方米,问当a 、b 各为多少米时,经沉淀后流出的水中该 杂质的质量分数最小(A 、B 孔的面积忽略不计)? 命题意图:本题考查建立函数关系、不等式性质、最值求法等基本知识及综合应用数学知识、思想与方法解决实际问题能力,属★★★★级题目. 知识依托:重要不等式、导数的应用、建立函数关系式. 错解分析:不能理解题意而导致关系式列不出来,或a 与b 间的等量关系找不到. 技巧与方法:关键在于如何求出函数最小值,条件最值可应用重要不等式或利用导数解决. 解法一:设经沉淀后流出的水中该杂质的质量分数为y ,则由条件y = ab k (k >0为比例系数)其中a 、b 满足2a +4b +2ab =60 ① 要求y 的最小值,只须求ab 的最大值. 由①(a +2)(b +1)=32(a >0,b >0)且ab =30–(a +2b )

直线的参数方程及其应用举例

直线的参数方程及应用 问题1:(直线由点和方向确定) 求经过点P 0(00,y x ),倾斜角为α的直线l 设点P(y x ,)是直线l 上任意一点,方向为直线L 的正方向)过点P 作y P 0作x 轴的平行线,两条直线相交于Q 点. 1)当P P 0与直线l 同方向或P 0和P 重合时, P 0P =|P 0P | 则P 0Q =P 0Pcos α Q P =P 02)当P P 0与直线l 反方向时,P 0P 、P 0Q 、Q P P 0P =-|P 0P | P 0Q =P 0Pcos α Q P =P 0Psin α 设P 0P =t ,t 为参数, 又∵P 0Q =0x x -, 0x x -=tcos α Q P =0y y - ∴ 0y y -=t sin α 即? ??+=+=αα sin cos 00t y y t x x 是所求的直线l 的参数方程 ∵P 0P =t ,t 为参数,t 的几何意义是:有向直线l 上从已知点P 0(00,y x )到点 P(y x ,)的有向线段的数量,且|P 0P |=|t| ① 当t>0时,点P 在点P 0的上方; ② 当t =0时,点P 与点P 0重合; ③ 当t<0时,点P 在点P 0的下方; 特别地,若直线l 的倾斜角α=0时,直线?+=0t x x ④ 当t>0时,点P 在点P 0的右侧; ⑤ 当t =0时,点P 与点P 0重合; ⑥ 当t<0时,点P 在点P 0的左侧; 问题2:直线l 上的点与对应的参数t 是不是一 对应关系? 我们把直线l 看作是实数轴, 以直线l 向上的方向为正方向,以定点 这样参数t 便和这条实数轴上的点P 一一对应关系. 问题3:P 1、P 2为直线l 上两点所对应的参数分别为t 1、t 2 , x x

2018浙江高考数学知识点

1 2018高考数学知识点总结 1. 对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。 {}{}{}如:集合,,,、、A x y x B y y x C x y y x A B C ======|lg |lg (,)|lg 中元素各表示什么? 2. 2. 进行集合的交、并、补运算时,不要忘记集合本身和空集的特殊情况。? 注重借助于数轴和文氏图解集合问题。 空集是一切集合的子集,是一切非空集合的真子集。 {} {}如:集合,A x x x B x ax =--===||22301 若,则实数的值构成的集合为B A a ? (答:,,)-??? ??? 1013 3. 注意下列性质: {}()集合,,……,的所有子集的个数是; 1212a a a n n , 22,12,12---n n n 非空真子集个数是真子集个数是非空子集个数是 4. 你会用补集思想解决问题吗?(排除法、间接法) 的取值范围。 ()) ,,·∴ ,∵·∴ ,∵(259351055 55035 332 2 ?? ? ???∈?≥--?<--∈a a a M a a M 5. 可以判断真假的语句叫做命题,逻辑连接词有“或”,“且”和()()∨∧“非”().? 若为真,当且仅当、均为真p q p q ∧ 至少有一个为真、为真,当且仅当若q p q p ∨ 若为真,当且仅当为假?p p 6. 命题的四种形式及其相互关系是什么? (互为逆否关系的命题是等价命题。) 原命题与逆否命题同真、同假;逆命题与否命题同真同假。 7. 对映射的概念了解吗?映射f :A →B ,是否注意到A 中元素的任意性和B 中与之对应元素的唯一性,哪几种对应能 构成映射? (一对一,多对一,A 中元素不可剩余,允许B 中有元素剩余。) 8. 函数的三要素是什么?如何比较两个函数是否相同? (定义域、对应法则、值域) 9. 求函数的定义域有哪些常见类型?

高三数学知识点重难点梳理最新5篇

高三数学知识点重难点梳理最新5篇 与高一高二不同之处在于,高三复习知识是为了更好的与高考考纲相结合,尤其水平中等或中等偏下的学生,此时需要进行查漏补缺,但也需要同时提升能力,填补知识、技能的空白。 高三数学知识点总结1 1.等差数列的定义 如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示. 2.等差数列的通项公式 若等差数列{an}的首项是a1,公差是d,则其通项公式为an=a1+(n-1)d. 3.等差中项 如果A=(a+b)/2,那么A叫做a与b的等差中项. 4.等差数列的常用性质 (1)通项公式的推广:an=am+(n-m)d(n,m∈N_. (2)若{an}为等差数列,且m+n=p+q, 则am+an=ap+aq(m,n,p,q∈N_. (3)若{an}是等差数列,公差为d,则ak,ak+m,ak+2m,…(k,m∈N_是公差为md的等差数列. (4)数列Sm,S2m-Sm,S3m-S2m,…也是等差数列.

(5)S2n-1=(2n-1)an. (6)若n为偶数,则S偶-S奇=nd/2; 若n为奇数,则S奇-S偶=a中(中间项). 注意: 一个推导 利用倒序相加法推导等差数列的前n项和公式: Sn=a1+a2+a3+…+an,① Sn=an+an-1+…+a1,② ①+②得:Sn=n(a1+an)/2 两个技巧 已知三个或四个数组成等差数列的一类问题,要善于设元. (1)若奇数个数成等差数列且和为定值时,可设为…,a-2d,a-d,a,a+d,a+2d,…. (2)若偶数个数成等差数列且和为定值时,可设为…,a-3d,a-d,a+d,a+3d,…,其余各项再依据等差数列的定义进行对称设元. 四种方法 等差数列的判断方法 (1)定义法:对于n≥2的任意自然数,验证an-an-1为同一常数; (2)等差中项法:验证2an-1=an+an-2(n≥3,n∈N_都成立; (3)通项公式法:验证an=pn+q; (4)前n项和公式法:验证Sn=An2+Bn. 注:后两种方法只能用来判断是否为等差数列,而不能用来证明

高考数学难点突破_难点34__导数的运算法则及基本公式应用

难点34 导数的运算法则及基本公式应用 导数是中学限选内容中较为重要的知识,本节内容主要是在导数的定义,常用求等公式.四则运算求导法则和复合函数求导法则等问题上对考生进行训练与指导. ●难点磁场 (★★★★★)已知曲线C :y =x 3-3x 2+2x ,直线l :y =kx ,且l 与C 切于点(x 0,y 0)(x 0≠0),求直线l 的方程及切点坐标. ●案例探究 [例1]求函数的导数: )1()3( )sin ()2( cos )1(1)1(2322+=-=+-= x f y x b ax y x x x y ω 命题意图:本题3个小题分别考查了导数的四则运算法则,复合函数求导的方法,以及抽象函数求导的思想方法.这是导数中比较典型的求导类型,属于★★★★级题目. 知识依托:解答本题的闪光点是要分析函数的结构和特征,挖掘量的隐含条件,将问题转化为基本函数的导数. 错解分析:本题难点在求导过程中符号判断不清,复合函数的结构分解为基本函数出差错. 技巧与方法:先分析函数式结构,找准复合函数的式子特征,按照求导法则进行求导.

x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x y 2222222222 22222222222cos )1(sin )1)(1(cos )12(cos )1(]sin )1(cos 2)[1(cos )1(cos )1(] ))(cos 1(cos )1)[(1(cos )1(cos )1(]cos )1)[(1(cos )1()1(:)1(++-+--=++---+-=+'++'+--+-=-+' +--+'-='解 (2)解:y =μ3,μ=ax -b sin 2ωx ,μ=av -by v =x ,y =sin γ γ=ωx y ′=(μ3)′=3μ2·μ′=3μ2(av -by )′ =3μ2(av ′-by ′)=3μ2(av ′-by ′γ′) =3(ax -b sin 2ωx )2(a -b ωsin2ωx ) (3)解法一:设y =f (μ),μ=v ,v =x 2+1,则 y ′x =y ′μμ′v ·v ′x =f ′(μ)·21 v -21·2x =f ′(12+x )·211 1 2+x ·2x =),1(122+'+x f x x 解法二:y ′=[f (12+x )]′=f ′(12+x )·(12+x )′ =f ′(12+x )·21(x 2+1)21- ·(x 2+1)′

直线的参数方程及其应用举例

直线的参数方程及应用 问题1:(直线由点和方向确定) 求经过点P 0(00,y x ),倾斜角为α的直线l 设点P(y x ,)是直线l 上任意一点,方向为直线L 的正方向)过点P 作y P 0作x 轴的平行线,两条直线相交于Q 点. 1)当P P 0与直线l 同方向或P 0和P 重合时, P 0P =|P 0P| 则P 0Q =P 0Pcos α Q P =P 02)当P P 0与直线l 反方向时,P 0P 、P 0Q 、Q P P 0P =-|P 0P| P 0Q =P 0Pcos α Q P =P 0Psin α 设P 0P =t ,t 为参数, 又∵P 0Q =0x x -, 0x x -=tcos α Q P =0y y - ∴ 0y y -=t sin α 即? ??+=+=ααsin cos 00t y y t x x 是所求的直线l 的参数方程 ∵P 0P =t ,t 为参数,t 的几何意义是:有向直线l 上从已知点P 0(00,y x )到点 P(y x ,)的有向线段的数量,且|P 0P|=|t| ① 当t>0时,点P 在点P 0的上方; ② 当t =0时,点P 与点P 0重合; ③ 当t<0时,点P 在点P 0的下方; 特别地,若直线l 的倾斜角α=0时,直线?+=0t x x ④ 当t>0时,点P 在点P 0的右侧; ⑤ 当t =0时,点P 与点P 0重合; ⑥ 当t<0时,点P 在点P 0的左侧; 问题2:直线l 上的点与对应的参数t 是不是一 对应关系? 我们把直线l 看作是实数轴, 以直线l 向上的方向为正方向,以定点 这样参数t 便和这条实数轴上的点P 一一对应关系. 问题3:P 1、P 2为直线l 则P 1P 2=?,∣P 1P 2∣=? x x

上海高考数学知识点重点详解

{}{}{}如:集合,,,、、A x y x B y y x C x y y x A B C ======|lg |lg (,)|lg 高考前数学知识点总结 1. 对于集合,一定要抓住集合的元素一般属性,及元素的“确定性、互异性、无序性”。 中元素各表示什么? 2.数形结合是解集合问题的常用方法:解题时要尽可能地借助数轴、直角坐标系或文氏图等工具,将抽象的代数问题具体化、形象化、直观化,然后利用数形结合的思想方法解决; 3.已知集合A 、B ,当A B ?=?时,你是否注意到“极端”情况:A =?或B =?; 4. 注意下列性质:(1) 对于含有n 个元素的有限集合M, 其子集、真子集、非空子集、非空真子集的个数依次为n 2,n 21-, n 21-, n 2 2.- ()若,;2A B A B A A B B ??== (3):空集是任何集合的子集,任何非空集合的真子集。 5. 学会用补集思想解决问题吗?(排除法、间接法) 6.可以判断真假的语句叫做命题。 若为真,当且仅当、均为真p q p q ∧若为真,当且仅当、至少有一个为真p q p q ∨ 7. 命题的四种形式及其相互关系是什么?(互为逆否关系的命题是等价命题。) 原命题与逆否命题同真、同假;逆命题与否命题同真同假。 8.注意四种条件,判断清楚谁是条件,谁是结论; 9. 函数的三要素是什么?如何比较两个函数是否相同?(定义域、对应法则、值域) 10. 求函数的定义域有哪些常见类型? 11. 如何求复合函数的定义域? 12. 求一个函数的解析式或一个函数的反函数时,需注明函数的定义域。 13. 反函数存在的条件是什么?(一一对应函数) 求反函数的步骤掌握了吗?(①反解x ,注意正负的取舍;②互换x 、y ;③反函数的定义域是原函数的值域) 14. 反函数的性质有哪些? ①互为反函数的图象关于直线y =x 对称;②保存了原来函数的单调性、奇函数性;

高考数学难点突破 难点22 轨迹方程的求法

难点22 轨迹方程的求法 求曲线的轨迹方程是解析几何的两个基本问题之一.求符合某种条件的动点的轨迹方程,其实质就是利用题设中的几何条件,用“坐标化”将其转化为寻求变量间的关系.这类问题除了考查学生对圆锥曲线的定义,性质等基础知识的掌握,还充分考查了各种数学思想方法及一定的推理能力和运算能力,因此这类问题成为高考命题的热点,也是同学们的一大难点. ●难点磁场 (★★★★)已知A 、B 为两定点,动点M 到A 与到B 的距离比为常数λ,求点M 的轨迹方程,并注明轨迹是什么曲线. ●案例探究 [例1]如图所示,已知P (4,0)是圆x 2+y 2=36内的一点,A 、B 是圆上两动点,且满足∠APB =90°,求矩形APBQ 的顶点Q 的轨迹方程. 命题意图:本题主要考查利用“相关点代入法”求曲线的轨迹方程,属★★★★★级题目. 知识依托:利用平面几何的基本知识和两点间的距离公式建立线段AB 中点的轨迹方程. 错解分析:欲求Q 的轨迹方程,应先求R 的轨迹方程,若学生思考不深刻,发现不了问题的实质,很难解决此题. 技巧与方法:对某些较复杂的探求轨迹方程的问题,可先确定一个较易于求得的点的轨迹方程,再以此点作为主动点,所求的轨迹上的点为相关点,求得轨迹方程. 解:设AB 的中点为R ,坐标为(x ,y ),则在Rt △ABP 中,|AR |=|PR |. 又因为R 是弦AB 的中点,依垂径定理:在Rt △OAR 中,|AR |2=|AO |2-|OR |2=36-(x 2+y 2) 又|AR |=|PR |=22)4(y x +- 所以有(x -4)2+y 2=36-(x 2+y 2),即x 2+y 2-4x -10=0 因此点R 在一个圆上,而当R 在此圆上运动时,Q 点即在所求的轨迹上运动. 设Q (x ,y ),R (x 1,y 1),因为R 是PQ 的中点,所以x 1=2 ,241+= +y y x , 代入方程x 2+y 2-4x -10=0,得 2 4 4)2()24( 22+? -++x y x -10=0 整理得:x 2+y 2=56,这就是所求的轨迹方程. [例2]设点A 和B 为抛物线 y 2=4px (p >0)上原点以外的两个动点,已知OA ⊥OB ,OM ⊥AB ,求点M 的轨迹方程,并说明它表示什么曲线.(2000年北京、安徽春招) 命题意图:本题主要考查“参数法”求曲线的轨迹方程,属★★★★★级题目. 知识依托:直线与抛物线的位置关系. 错解分析:当设A 、B 两点的坐标分别为(x 1,y 1),(x 2,y 2)时,注意对“x 1=x 2”的讨论. 技巧与方法:将动点的坐标x 、y 用其他相关的量表示出来,然后再消掉这些量,从而就建立了关于x 、y 的关系. 解法一:设A (x 1,y 1),B (x 2,y 2),M (x ,y )依题意,有

直线的参数方程及其应用举例

直线的参数方程及应用 问题1:(直线由点与方向确定) 求经过点P 0(00,y x ),倾斜角为α的直线l 设点P(y x ,)就是直线l 上任意一点,(方向为直线L 的正方向)过点P 作y 轴的平行线,P 0作x 轴的平行线,两条直线相交于Q 点、 1)当P P 0与直线l 同方向或P 0与P 重合时, P 0P =|P 0P | 则P 0Q =P 0Pcos α Q P =P 02)当P P 0与直线l 反方向时,P 0P 、P 0Q 、Q P P 0P =-|P 0P | P 0Q =P 0Pcos α Q P =P 0Psin α 设P 0P =t,t 为参数, 又∵P 0Q =0x x -, 0x x -=tcos α Q P =0y y - ∴ 0y y -=t sin α 即???+=+=α αsin cos 00t y y t x x 就是所求的直线l 的参数方程 ∵P 0P =t,t 为参数,t 的几何意义就是:有向直线l 上从已知点P 0(00,y x )到点 P(y x ,)的有向线段的数量,且|P 0P |=|t| ① 当t>0时,点P 在点P 0的上方; ② 当t =0时,点P 与点P 0重合; ③ 当t<0时,点P 在点P 0的下方; 特别地,若直线l 的倾斜角α=0时,直线l ?+=0t x x ④ 当t>0时,点P 在点P 0的右侧; ⑤ 当t =0时,点P 与点P 0重合; ⑥ 当t<0时,点P 在点P 0的左侧; 问题2:直线l 上的点与对应的参数t 对应关系? 我们把直线l 瞧作就是实数轴, 以直线l 向上的方向为正方向,以定点P 0 为原点,以原坐标系的单位长为单位长, 这样参数t 便与这条实数轴上的点P 一一对应关系、 问题3:P 1、P 2为直线l 则P 1P 2=?,∣P 1P 2∣=? P 1P 2=P 1P 0+P 0P 2=-t 1+t 2=t 2-t 1,∣P 1P 2∣=∣ t 2-t 1∣ x x

(浙江专用)2021版新高考数学一轮复习第七章不等式1第1讲不等关系与不等式教学案

第七章不等式 知识点 最新考纲 不等关系与不等式了解不等关系,掌握不等式的基本性质. 一元二次不等式及其解法了解一元二次函数、一元二次方程、一元二次不等式之间的联系,会解一元二次不等式. 二元一次不等式(组)与简单的线性 规划问题了解二元一次不等式的几何意义,掌握平面区域与二元一次不等式组之间的关系,并会求解简单的二元线性规划问题. 基本不等式 ab≤a+b 2 (a,b>0) 掌握基本不等式ab≤ a+b 2 (a,b>0)及其应用. 绝对值不等式 会解|x+b|≤c,|x+b|≥c,|x-a|+|x-b|≥c,|x-a|+|x-b|≤c型不等式. 了解不等式||a|-|b||≤|a+b|≤|a|+|b|. 1.实数大小顺序与运算性质之间的关系 a-b>0?a>b;a-b=0?a=b;a-b<0?ab,ab>0?1 a < 1 b .

②a <0b >0,0b d . ④0b >0,m >0,则 ①b a b -m a -m (b -m >0). ②a b > a +m b +m ;a b 0). [疑误辨析] 判断正误(正确的打“√”,错误的打“×”) (1)两个实数a ,b 之间,有且只有a >b ,a =b ,a 1,则a >b .( ) (3)一个不等式的两边同加上或同乘以同一个数,不等号方向不变.( ) (4)一个非零实数越大,则其倒数就越小.( ) (5)同向不等式具有可加性和可乘性.( ) (6)两个数的比值大于1,则分子不一定大于分母.( ) 答案:(1)√ (2)× (3)× (4)× (5)× (6)√ [教材衍化] 1.(必修5P74练习T3改编)若a ,b 都是实数,则“a -b >0”是“a 2 -b 2 >0”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 解析:选A.a -b >0?a >b ?a >b ?a 2 >b 2 , 但由a 2 -b 2 >0?/ a -b >0. 2.(必修5P75A 组T2改编) 1 5-2______1 6-5(填“>”“<”或“=”). 解析:分母有理化有 1 5-2=5+2,1 6-5 =6+5,显然5+2<6+5,所以

全国百强名校 ”2020-2021学年高三数学重难点训练 (91)

第一讲 等差数列、等比数列 [高考导航] 1.对等差、等比数列基本量的考查,常以客观题的形式出现,考查利用通项公式、前n 项和公式建立方程组求解. 2.对等差、等比数列性质的考查主要以客观题出现,具有“新、巧、活”的特点,考查利用性质解决有关计算问题. 3.对等差、等比数列的判断与证明,主要出现在解答题的第一问,是为求数列的通项公式而准备的,因此是解决问题的关键环节. 考点一 等差、等比数列的基本运算 1.等差数列的通项公式及前n 项和公式 a n =a 1+(n -1)d ; S n =n (a 1+a n )2 =na 1+n (n -1)2d . 2.等比数列的通项公式及前n 项和公式 a n =a 1q n -1(q ≠0); S n =????? na 1(q =1),a 1(1-q n )1-q =a 1-a n q 1-q (q ≠1).

1.(2019·大连模拟)记S n 为等差数列{a n }的前n 项和.若a 4+a 5 =24,S 6=48,则{a n }的公差为( ) A .1 B .2 C .4 D .8 [解析] 由已知条件和等差数列的通项公式与前n 项和公式可列 方程组,得????? 2a 1+7d =24, 6a 1+6×5 2d =48, 即?? ? 2a 1+7d =24,2a 1+5d =16, 解得?? ? a 1=-2,d =4, 故选C . [答案] C 2.(2019·济南一中1月检测)在各项为正数的等比数列{a n }中,S 2=9,S 3=21,则a 5+a 6=( ) A .144 B .121 C .169 D .148 [解析] 由题意可知, ?? ? a 1+a 2=9,a 1+a 2+a 3=21,即?? ? a 1(1+q )=9,a 1(1+q +q 2)=21, 解得?? ? q =2,a 1=3 或????? q =-23, a 1=27 (舍). ∴a 5+a 6=a 1q 4(1+q )=144.故选A . [答案] A 3.(2019·广东珠海3月联考)等差数列{a n }的前n 项和为S n ,若a 2+a 7+a 9=15,则S 8-S 3=( ) A .30 B .25

高考数学难点突破__函数中的综合问题含答案

高考数学难点突破 函数中的综合问题 函数综合问题是历年高考的热点和重点内容之一,一般难度较大,考查内容和形式灵活多样.本节课主要帮助考生在掌握有关函数知识的基础上进一步深化综合运用知识的能力,掌握基本解题技巧和方法,并培养考生的思维和创新能力. ●难点磁场 (★★★★★)设函数f (x )的定义域为R ,对任意实数x 、y 都有f (x +y )=f (x )+f (y ),当x >0时f (x )<0且f (3)=-4. (1)求证:f (x )为奇函数; (2)在区间[-9,9]上,求f (x )的最值. ●案例探究 [例1]设f (x )是定义在R 上的偶函数,其图象关于直线x =1对称,对任意x 1、x 2∈[0,2 1 ],都有f (x 1+x 2)=f (x 1)·f (x 2),且f (1)=a >0. (1)求f ( 21)、f (4 1); (2)证明f (x )是周期函数; (3)记a n =f (n +n 21 ),求).(ln lim n n a ∞→ 命题意图:本题主要考查函数概念,图象函数的奇偶性和周期性以及数列极限等知识,还考查运算能力和逻辑思维能力. 知识依托:认真分析处理好各知识的相互联系,抓住条件f (x 1+x 2)=f (x 1)·f (x 2)找到问题的突破口. 错解分析:不会利用f (x 1+x 2)=f (x 1)·f (x 2)进行合理变形. 技巧与方法:由f (x 1+x 2)=f (x 1)·f (x 2)变形为) 2 ()2()2()22()(x f x f x f x x f x f ??=+=是解决问题的关键. (1) 解:因为对x 1,x 2∈[0,21],都有f (x 1+x 2)=f (x 1)·f (x 2),所以f (x )=)2 ()22(x f x x f =+≥ 0, x ∈[0,1] 又因为f (1)=f (21+21)=f (21)·f (21)=[f (2 1 )]2 f (21)=f (41+41)=f (41)·f (41)=[f (41)]2 又f (1)=a >0 ∴f (21)=a 21 ,f (4 1)=a 41 (2)证明:依题意设y =f (x )关于直线x =1对称,故f (x )=f (1+1-x ),即f (x )=f (2-x ),x ∈R . 又由f (x )是偶函数知f (-x )=f (x ),x ∈R ∴f (-x )=f (2-x ),x ∈R .

直线方程的一般式及应用

§1.2.2直线方程的一般式及应用 班级姓名组号分值 学法指导: 1、利用10分钟阅读教材65~67页,并完成本节导学案的预习案, 2、认真限时完成,规范书写,课上小组合作探究,答疑解惑。 学习目标: 1、知识与技能 (1)掌握直线方程的一般式0=++C By Ax (,A B 不同时为)理解直线方程的一般式包含的两方面的含义:①直线的方程是都是关于,x y 的二元一次方程;②关于,x y 的二元一次方程的图形是直线. (2)掌握直线方程的各种形式之间的互相转化. 2、过程与方法 学会用分类讨论的思想方法解决问题。体会坐标法的数形结合思想。 3、情态态度与价值观 认识事物之间普遍联系与相互转化,用联系的观点看问题,感受数学文化的价值和底蕴。 学习重、难点: 1、重点:直线方程的一般式及各种形式之间的互相转化和数形结合思想的应用。 2、难点:对直线方程一般式的理解与应用,灵活应用直线的各种形式方程。 【预习案】 (一)直线方程的一般式: 在平面直角坐标系中,直线可分为两类:一类是与轴不垂直的;另一类是与轴垂直的,它们的方程可以分别写为直线y kx b =+和1x x =两种形式,它们又都可以变形为0Ax By C ++=(A 、B 不同时为0)的形式,我们把形如关于,x y 的二元一次方程0Ax By C ++=(A 、B 不同时为0)称为直线方程的一般形式。 (二)直线和二元一次方程的对应关系: 在平面直角坐标系中的每一条直线都可以用一个关于,x y 的二元一次方程来表示,反过来,每一个关于,x y 的二元一次方程都表示直线。

事实上,对于任意一个关于,x y 的二元一次方程0Ax By C ++=(A 、B 不同时为0): 当0B ≠时,可变为A C y x B B =- -,它表示一条与轴不垂直的直线,其中A B -为直线的斜率;当0B =时,则0A ≠,所以可变为C x A =-,它表示一条与轴垂直的直线。 【结论】 1.在平面直角坐标系中,任何一条直线都可以用关于,x y 的二元一次方程 0Ax By C ++=(A 、B 不同时为0)来表示。 2.直线和二元一次方程是一一对应关系; 3.一般情况下,如果题中不作特别说明,所求直线方程都要化成一般形式。 (三)写出下列直线的方程: 1.经过点(4,0),(0,3)A B -; 2.斜率为 2 ,在轴上的截距为; 3.经过点(1,2),(3,1)M N - 【我的疑问】 【探案究】

浙江省高考数学历年真题重点难点知识总结

1. 对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。 {}{}{}如:集合,,,、、A x y x B y y x C x y y x A B C ======|lg |lg (,)|lg 中元素各表示什么? 2. 进行集合的交、并、补运算时,不要忘记集合本身和空集的特殊情况。? 注重借助于数轴和文氏图解集合问题。 空集是一切集合的子集,是一切非空集合的真子集。 {} {}如:集合,A x x x B x ax =--===||22301 若,则实数的值构成的集合为B A a ? (答:,,)-??? ??? 1013 3. 注意下列性质: {} ()集合,,……,的所有子集的个数是;1212a a a n n ()若,;2A B A B A A B B ??==I Y (3)德摩根定律: ()()()()()()C C C C C C U U U U U U A B A B A B A B Y I I Y ==, 4. 你会用补集思想解决问题吗?(排除法、间接法) 如:已知关于的不等式的解集为,若且,求实数x ax x a M M M a --<∈?5 0352 的取值范围。 ()(∵,∴ ·∵,∴ ·,,)335 30555 50 1539252 2∈--

若为真,当且仅当、均为真p q p q ∧ 若为真,当且仅当、至少有一个为真p q p q ∨ 若为真,当且仅当为假?p p 6. 命题的四种形式及其相互关系是什么? (互为逆否关系的命题是等价命题。) 原命题与逆否命题同真、同假;逆命题与否命题同真同假。 7. 对映射的概念了解吗?映射f :A →B ,是否注意到A 中元素的任意性和B 中与之对应元素的唯一性,哪几种对应能构成映射? (一对一,多对一,允许B 中有元素无原象。) 8. 函数的三要素是什么?如何比较两个函数是否相同? (定义域、对应法则、值域) 9. 求函数的定义域有哪些常见类型? ()() 例:函数的定义域是 y x x x = --432 lg ()()() (答:,,,)022334Y Y 10. 如何求复合函数的定义域? [] 如:函数的定义域是,,,则函数的定f x a b b a F(x f x f x ())()()>->=+-0 义域是_____________。 [] (答:,)a a - 11. 求一个函数的解析式或一个函数的反函数时,注明函数的定义域了吗? ( ) ).(1x f x e x f x ,求如:+=+ 令,则t x t = +≥10 ∴x t =-2 1

(完整版)高考数学高考必备知识点总结精华版

高考前重点知识回顾 第一章-集合 (一)、集合:集合元素的特征:确定性、互异性、无序性. 1、集合的性质:①任何一个集合是它本身的子集,记为A A ?; ②空集是任何集合的子集,记为A ?φ; ③空集是任何非空集合的真子集; ①n 个元素的子集有2n 个. n 个元素的真子集有2n -1个. n 个元素的非空真子集有2n -2个. [注]①一个命题的否命题为真,它的逆命题一定为真.否命题?逆命题. ②一个命题为真,则它的逆否命题一定为真. 原命题?逆否命题. 2、集合运算:交、并、补.{|,} {|}{,} A B x x A x B A B x x A x B A x U x A ?∈∈?∈∈?∈?I U U 交:且并:或补:且C (三)简易逻辑 构成复合命题的形式:p 或q(记作“p ∨q ” );p 且q(记作“p ∧q ” );非p(记作“┑q ” ) 。 1、“或”、 “且”、 “非”的真假判断 4、四种命题的形式及相互关系: 原命题:若P 则q ; 逆命题:若q 则p ; 否命题:若┑P 则┑q ;逆否命题:若┑q 则┑p 。 ①、原命题为真,它的逆命题不一定为真。 ②、原命题为真,它的否命题不一定为真。

③、原命题为真,它的逆否命题一定为真。 6、如果已知p ?q 那么我们说,p 是q 的充分条件,q 是p 的必要条件。 若p ?q 且q ?p,则称p 是q 的充要条件,记为p ?q. 第二章-函数 一、函数的性质 (1)定义域: (2)值域: (3)奇偶性:(在整个定义域内考虑) ①定义:①偶函数:)()(x f x f =-,②奇函数:)()(x f x f -=- ②判断方法步骤:a.求出定义域;b.判断定义域是否关于原点对称;c.求)(x f -;d.比较)()(x f x f 与-或)()(x f x f --与的关系。 (4)函数的单调性 定义:对于函数f(x)的定义域I 内某个区间上的任意两个自变量的值x 1,x 2, ⑴若当x 1f(x 2),则说f(x) 在这个区间上是减函数. 二、指数函数与对数函数 指数函数)10(≠>=a a a y x 且的图象和性质

高考数学难点突破 难点38 分类讨论思想

难点38 分类讨论思想 分类讨论思想就是根据所研究对象的性质差异,分各种不同的情况予以分析解决.分类讨论题覆盖知识点较多,利于考查学生的知识面、分类思想和技巧;同时方式多样,具有较高的逻辑性及很强的综合性,树立分类讨论思想,应注重理解和掌握分类的原则、方法与技巧、做到“确定对象的全体,明确分类的标准,分层别类不重复、不遗漏的分析讨论.” ●难点磁场 1.(★★★★★)若函数514121)1(31)(23+-+-= x ax x a x f 在其定义域内有极值点,则a 的取值为 . 2.(★★★★★)设函数f (x )=x 2+|x –a |+1,x ∈R . (1)判断函数f (x )的奇偶性; (2)求函数f (x )的最小值. ●案例探究 [例1]已知{a n }是首项为2,公比为 21的等比数列,S n 为它的前n 项和. (1)用S n 表示S n +1; (2)是否存在自然数c 和k ,使得21>--+c S c S k k 成立. 命题意图:本题主要考查等比数列、不等式知识以及探索和论证存在性问题的能力,属★★★★★级题目. 知识依托:解决本题依据不等式的分析法转化,放缩、解简单的分式不等式;数列的基本性质. 错解分析:第2问中不等式的等价转化为学生的易错点,不能确定出k k S c S <<-22 3. 技巧与方法:本题属于探索性题型,是高考试题的热点题型.在探讨第2问的解法时,采取优化结论的策略,并灵活运用分类讨论的思想:即对双参数k ,c 轮流分类讨论,从而获得答案. 解:(1)由S n =4(1–n 21),得 221)2 11(411+=-=++n n n S S ,(n ∈N *) (2)要使21>--+c S c S k k ,只要0)223(<---k k S c S c 因为4)211(4<-=k k S 所以0212)223(>- =--k k k S S S ,(k ∈N *) 故只要2 3S k –2<c <S k ,(k ∈N *)

相关文档
最新文档