大学线性代数复习题(48课时)

合集下载

线性代数期末复习题及参考答案

线性代数期末复习题及参考答案

线性代数期末复习题及参考答案复习题之判断题(√)1. 若行列式的每一行元素之和全为零,则行列式的值等于零. ( )2. 设A ,B 为n 阶矩阵,则22))((B A B A B A −=−+. (√)3. 方阵A 可逆的充要条件是A E ~.( )4. 若n 阶矩阵A 相似于对角矩阵,则A 必有n 个互不相同的特征值. (√)5. 二次型222123123(,,)4f x x x x x x =++是正定二次型. (√ )6. 若B A 、为n 阶方阵,则AB BA =. ( )7. 设A 为任意n 阶矩阵,则A —A T 为对称阵. ( )8. 若n 阶矩阵A 能对角化, 则A 必有n 个不同的特征值. (√)9. 实对称矩阵A 对应不同特征值的特征向量必正交. (√)10. 设AB=0,若A 为列满秩矩阵,则B=0.( )11. 对于任何矩阵Amxn ,不能经过有限次初等列变换把它变为列阶梯形矩阵和列最简形矩阵.( )12. 奇排列变成标准排列的对换次数为偶数.( )13. 在秩是r 的矩阵中,存在等于0的r-1阶子式,但是不存在等于0的r+1阶子式.复习题之填空题1.设向量()1,0,3,Tαλ=−,()4,2,0,1Tβ=−−,若α与β正交,则λ= - 4 . 2. 当A 为任意的n 阶矩阵时,下列矩阵A A T +;T A A −;T AA ;A A T 中, 对称矩阵是T T T A A AA A A +,,,反对称矩阵是T A A −. 3. 设00B A C⎛⎫=⎪⎝⎭,B ,C 均为可逆矩阵,则1A −=1100C B−−⎛⎫⎪⎝⎭.4.设A 是n 阶矩阵(2n ≥),且A 的行列式det 2A =, 则它的伴随矩阵*A 的行列式*det A =12n −5.矩阵⎪⎪⎪⎭⎫⎝⎛−−−=466353331A 的所有特征值之和等于0.6. 设,A B 为n 阶对称矩阵,则AB 是对称矩阵的充分必要条件AB=BA.7.设向量11,,0,132Tα⎛⎫=−− ⎪⎝⎭,()3,2,1,1T β=−−,则α与β的内积为 1 .8.设方阵A 满足2240A A E −+=,且A E +可逆,则1()A E −+=37A E−−. 9. 设n 阶矩阵A 的伴随矩阵为*A ,若0A =,则*A =0.10.设向量()1,2,0,1T α=−,()3,1,1,2Tβ=−−,则α与β的内积为 -1 . 11.设方阵A 满足220A A E −−=,且A 可逆,则1A −=2A E−.12.矩阵⎪⎪⎪⎭⎫ ⎝⎛−−−=269643932A 的所有特征值之和等于0 .13.2103111113423122−−−−的代数余子式之和31323334-2A A A A ++= -33 ___ .14. 设n 阶矩阵A 满足0322=+−E A A ,则()12−−E A=3A −15. 若4阶方阵A 的行列式A =3, *A 是A 的伴随矩阵,则*A = 27 ___ . 16 向量α=()1,1,1,5T−−−与()4,2,1,Tβλ=−−正交,则λ=-1.17. 二次型2221231231223(,,)4324f x x x x x x x x x x =−+−+−对应的对称矩阵是110142023A −⎛⎫ ⎪=− ⎪ ⎪−−⎝⎭_________________.18.3023111110560122−−−−−的代数余子式之和31323334A A A A +++= 0 .19. 设n 阶矩阵A 满足02A 2=−−E A ,则1)3(A −−E =2A E +−.20. 设A 是4阶方阵,4A =−,则*A =-64.21. 向量(2,2,3),(3,3,)T T t αβ=−=−−与正交,则t = 0 .22. 二次型22123131223(,,)224f x x x x x x x x x =++−对应的对称矩阵是110102022A ⎛⎫ ⎪=− ⎪ ⎪−⎝⎭.复习题之计算题1a .设3111131111311113A ⎛⎫⎪⎪= ⎪ ⎪⎝⎭, 122212221B ⎛⎫ ⎪=− ⎪ ⎪−⎝⎭.(1)计算矩阵A 的行列式.(2)求矩阵B 的逆. 1a.(1)解:=D 31111311113111136111631161316113=11111311611311113=11110200600200002==48.(2).解:()122100************A E ⎛⎫ ⎪=− ⎪ ⎪−⎝⎭122100036210063201⎛⎫⎪→−−− ⎪ ⎪−−−⎝⎭122100036210009221⎛⎫ ⎪→−−− ⎪ ⎪−⎝⎭12211021012033221001999⎛⎫ ⎪⎪→− ⎪⎪ ⎪−⎝⎭122100999212010999221001999⎛⎫⎪ ⎪→− ⎪ ⎪ ⎪−⎝⎭ 从而有112212129221A −⎛⎫ ⎪=− ⎪ ⎪−⎝⎭。

《线性代数》复习要点及练习

《线性代数》复习要点及练习

第一章 行列式复习要点:1. 会计算逆序数,余子式,代数余子式2. 熟练掌握行列式的性质,并能利用性质计算行列式3. 掌握克莱姆法则练习题:1. 排列1 6 5 3 4 2的逆序数是( ).A. 8 B .9 C .7 D . 62122.431235-的代数余子式12A 是( ).A 2143-- B2143- C 4125--D4125-3. 排列32514的逆序数是( ).A. 3B. 4C. 5D. 64.关于行列式,下列命题错误的是( ).A. 行列式第一行乘以2,同时第二列除以2,行列式的值不变 B .互换行列式的第一行和第三行,行列式的值不变 C .互换行列式的任意两列,行列式仅仅改变符号 D . 行列式可以按任意一行展开 5. 关于行列式,下列命题正确的是( ).A. 任何一个行列式都与它的转置行列式相等B .互换行列式的任意两行所得到的行列式一定与原行列式相等C .如果行列式有一行的所有元素都是1,则这个行列式等于零D . 以上命题都不对6. 关于行列式,下列正确的是( ).A. 如果行列式有一行的所有元素都是1,则这个行列式等于零.B. 互换行列式的任意两行所得到的行列式一定与原行列式相等.C. 行列式中有两行对应成比例,则此行列式为零.D. 行列式与它的转置行列式互为相反数.7. 下列命题错误的是( ).A. 如果线性方程组的系数行列式不等于零,则该方程组有唯一解 B .如果线性方程组的系数行列式不等于零,则该方程组无解 C .如果齐次线性方程组的系数行列式等于零,则该方程组有非零解 D .如果齐次线性方程组的系数行列式不等于零,则该方程组只有零解8212431235-的余子式32M =————,代数余子式32A =—————— 9. 已知k341k 000k 1-=,则k =__________.10. 若52k 74356=,则k =__________.11. 计算行列式|12345006|=_________ 12. 计算行列式|1111123413610141020| 13.计算行列式53-120172520-23100-4-14002350D =14. 计算行列式1234248737124088D =15.计算行列式x yyxx x y y yx x y+++第二章 矩阵复习要点:1. 掌握矩阵的线性运算,矩阵乘法运算律,转置矩阵的运算律,2. 掌握矩阵的初等变换3. 掌握方阵行列式的性质,转置矩阵的性质,逆矩阵的性质4. 会求逆矩阵.了解待定系数法和伴随矩阵法,掌握用初等变换求解逆矩阵相关问题.能够证明矩阵的可逆性.5. 会用初等行变换求矩阵的秩6. 会求解矩阵方程练习题:1. 设A ,B 均为n 阶可逆阵,则下列公式成立的是( ). A T T T B A AB =)( B T T T B A B A +=+)( C 111)(---=B A AB D 111)(---+=+B A B A2. A,B 均为n 阶方阵,若要22(A B)(A B)A B +-=-不成立,需满足( ).A. A=E B .B=O C .A=B D . AB ≠BA 3. 若方阵2A A,=A 不是单位方阵,则( ).A. A 0= B . A 0≠ C .A O = D .A O ≠4.若矩阵111A 121231⎛⎫ ⎪= ⎪ ⎪λ+⎝⎭的秩为2,则λ=( ). A. 0 B . 2 C .1 D . -15.矩阵⎪⎪⎭⎫⎝⎛=32015431A 的秩是( ) 6. 110201211344⎛⎫⎪-- ⎪ ⎪-⎝⎭ 的秩是( )7. 设矩阵⎪⎪⎪⎭⎫ ⎝⎛=321212113A ,⎪⎪⎪⎭⎫ ⎝⎛---=111012111B 求AB 和BA8. 设矩阵,⎪⎪⎭⎫ ⎝⎛=1021A 求32A A ,. 9. 设矩阵521320A ,B 341201--⎛⎫⎛⎫== ⎪ ⎪--⎝⎭⎝⎭,求T T T(1)AB ;(2)B A;(3)A A.10.⎪⎪⎪⎭⎫⎝⎛--=210111121A ,求逆矩阵11. 223110121⎛⎫ ⎪- ⎪ ⎪-⎝⎭.,求逆矩阵 12. 求矩阵X , 使B AX =, 其中.341352,343122321⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=B A13. 求解矩阵方程,X A AX += 其中.010312022⎪⎪⎪⎭⎫⎝⎛=A.B AX X ,B ,A . 132231 11312221414=⎪⎪⎪⎭⎫⎝⎛--=⎪⎪⎪⎭⎫⎝⎛--=使求设15. 已知n 阶方阵A 满足矩阵方程2A 3A 2E O --=,其中A 给定,E 为n 阶单位矩阵,证明A 可逆,并求1A -. 16. 设A 、B 为n 阶矩阵,2A B AB E --=,2A A =,其中E 为n 阶单位矩阵.证明:A B -为可逆矩阵,并求()1A B --.17. 设方阵A 满足22A A E O --=,证明A 及2A E +都可逆.第三章 线性方程组复习要点:1. 熟练掌握方程组解无解/有解/有唯一解/有无穷多解的充要条件2. 会求向量组的秩;能够验证向量组的线性相关性;会求向量组的极大线性无关组,并可以将其他向量用极大无关组线性表示.3. 熟练掌握基础解系的求解3. 会求解齐次线性方程组的通解,会求非齐次线性方程组的通解和特解练习题:1. 若线性方程组Ax b =的增广矩阵为B 23124010012⎛⎫ ⎪→λλ ⎪ ⎪λ-λ-⎝⎭,当常数λ=( )时,此线性方程组有唯一解.A. -1 B .0 C .1 D . 22. 已知n 元线性方程组b Ax =,其增广矩阵为B ,当( )时,线性方程组有解.A. ()n B r =B. ()n B r ≠C. ()()B r A r =D. ()()B r A r ≠3. 若线性方程组Ax b =的增广矩阵为B 23124010012⎛⎫ ⎪→λλ ⎪ ⎪λ-λ-⎝⎭,当常数λ=( )时,此线性方程组有唯一解.A. -1 B .0 C .1 D . 24. 设A 为m×n 矩阵,齐次线性方程组Ax =0仅有零解的充分必要条件是 系数矩阵的秩r (A )( )A. 小于mB. 小于nC. 等于mD. 等于n5. 已知向量组1,,m αα线性相关,则( ).A 、该向量组的任何部分组必线性相关.B 、该向量组的任何部分组必线性无关.C 、该向量组的秩小于m .D 、该向量组的最大线性无关组是唯一的.6. 如果齐次线性方程组有非零解,则它的系数行列式D _____0. ( = 或 ≠)7. 已知线性方程组Ax b =有解,若系数矩阵A 的秩r(A)=4,则增广矩阵B 的r(B)=__________.8. 若线性方程组Ax b =的增广矩阵为B 312400120012⎛⎫⎪→ ⎪ ⎪λ⎝⎭,则当常数λ=__________时,此线性方程组有无穷多解.9. 若线性方程组Ax b =的增广矩阵为B 300200a 11⎛⎫→ ⎪+⎝⎭,则当常数a =__________时,此线性方程组无解.10.λ取何值时,非齐次线性方程组 1231232123+1++x x x x x x x x x λλλλλ⎧+=⎪+=⎨⎪+=⎩(1)有唯一解(2)无解(3)有无穷多解? 取何值时,线性方程组当 11..λ ()()()()⎪⎩⎪⎨⎧=++++=+-+=+++3313123321321321x λλx x λλx x λλx λx x x λ 有唯一解、无解、无穷多解?当方程组有无穷多解时求出它的解.12.求下列方程组的通解.236222323754325432154321⎪⎩⎪⎨⎧=+++-=-+++=++++x x x x x x x x x x x x x x13. 判断下列向量组的线性相关性:(1)1234=-1,3,2,5=3-1,0-4=2,2,2,2=1,5,4,6αααα(),(,,),(),()(2)1234=1,1,3,1=10,00=2,2,7,-1=3,-1,2,4αααα(),(,,),(),() 14. 已知向量组()()()()T4T3T2T13 2 10 0 10 1 11 1 1α-====,,α,,,α,,,α,,,,求向量组的一个极大无关组,并将其余向量用此极大无关组线性表示.15. 求矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛---140113*********12211的列向量组()54321α,α,α,α,α的一个极大无关组,并把不属于极大无关组的列向量用极大无关组线性表示.16. 试证若向量组γβα,,线性无关, 则向量组,βα+,γβ+αγ+亦线性无关. 17. 已知向量321ααα,,线性无关,证明向量11232βααα=+-,2123312βαααβαα=--=+,也是线性无关的。

线性代数考试题及答案

线性代数考试题及答案

线性代数考试题及答案一、选择题(每题2分,共20分)1. 向量空间中,线性无关的向量集合的最小维度是:A. 1B. 2C. 3D. 向量的数量答案:D2. 矩阵A的行列式为0,这意味着:A. A是可逆矩阵B. A不是可逆矩阵C. A的所有行向量线性相关D. A的所有列向量线性无关答案:B3. 线性变换T: R^3 → R^3,由矩阵[1 2 3; 4 5 6; 7 8 9]表示,其特征值是:A. 1, 2, 3B. 0, 1, 2C. -1, 1, 2D. 0, 3, 6答案:D4. 矩阵A与矩阵B相乘,结果矩阵的秩最多是:A. A的秩B. B的秩C. A和B的秩之和D. A的秩和B的列数中较小的一个答案:D5. 给定两个向量v1和v2,它们的点积v1·v2 > 0,这意味着:A. v1和v2垂直B. v1和v2平行或共线C. v1和v2的夹角小于90度D. v1和v2的夹角大于90度答案:C6. 对于任意矩阵A,下列哪个矩阵总是存在的:A. 伴随矩阵B. 逆矩阵C. 转置矩阵D. 特征矩阵答案:C7. 线性方程组AX=B有唯一解的充分必要条件是:A. A是方阵B. A的行列式不为0C. B是零向量D. A是可逆矩阵答案:D8. 矩阵的特征值和特征向量之间的关系是:A. 特征向量对应于特征值B. 特征值对应于特征向量C. 特征向量是矩阵的行向量D. 特征值是矩阵的对角元素答案:A9. 一个矩阵的迹(trace)是:A. 所有元素的和B. 主对角线上元素的和C. 所有行的和D. 所有列的和答案:B10. 矩阵的范数有很多种,其中最常见的是:A. L1范数B. L2范数C. 无穷范数D. 所有上述范数答案:D二、简答题(每题10分,共20分)1. 请解释什么是基(Basis)以及它在向量空间中的作用是什么?答:基是向量空间中的一组线性无关的向量,它们通过线性组合可以表示空间中的任何向量。

防灾科技学院2014-2015期末线性代数(48课时)

防灾科技学院2014-2015期末线性代数(48课时)

5、向量 1, 2, x 1, 4 、 2, y 1, 6,8 线性相关,则 x
B. ( A B )( A B ) A B
D. ( A B ) 2 A2 AB BA B 2 ) D. R ( AB ) R ( A) )
2、对任意 n 阶方阵 A、B ,下列结论正确的是( B.
证明题(本大题共 2 小题,每小题 7 分,共 14 分)
2
| | | | | | | | |
1.设方阵 A 满足 A 2 A 3E O ,证明 A 及 A 2 E 都可逆,并求 A1 及 ( A 2 E ) 1 .
试卷序号:
A.若向量组 A0 线性无关,则向量组 A 线性无关 B.若向量组 A0 线性相关,则向量组 A 线性相关 C.向量组 A 能由向量组 A0 线性表示 D.向量组 A0 与向量组 A 等价
姓名:
| | | | | | | |

二、
阅卷教师 得分
防灾科技学院
2014 ~ 2015 学年 第二学期期末考试
答题时间 120 分钟 线性代数(48 学时)试卷(A)
填空题(本大题共 6 小题,每小题 4 分,共 24 分)
使用班级:理工类相关专业
1 1 1 2 1 5 7 4 1、设 D ,则 A21 A22 3 A23 2 A24 0 0 1 1 1 5 3 3
2
五、
阅卷教师 得分
计算题(本大题共 2 小题,每小题 10 分,共 20 分)
( 1) x1 x2 x3 0 2、问 取何值时,线性方程组 x1 ( 1) x2 x3 ,(1)有唯一解; (2)无解;(3) 2 x1 x2 ( 1) x3

线性代数大学试题及答案

线性代数大学试题及答案

线性代数大学试题及答案一、选择题(每题2分,共20分)1. 向量空间的基是该空间的一组向量,它们满足以下哪些条件?A. 线性无关B. 向量空间中的任何向量都可以由基向量线性组合得到C. 向量空间中的任何向量都可以由基向量线性表示D. 所有选项答案:D2. 矩阵A的秩是指:A. A的行向量组的秩B. A的列向量组的秩C. A的转置矩阵的秩D. 所有选项答案:D3. 下列哪个矩阵是可逆的?A. 零矩阵B. 任何2x2的对角矩阵,对角线上的元素不全为零C. 任何3x3的单位矩阵D. 任何4x4的对称矩阵答案:B4. 线性变换可以用矩阵表示,当且仅当:A. 该变换是线性的B. 该变换是可逆的C. 变换的基向量线性无关D. 变换的输出空间是有限维的答案:C5. 特征值和特征向量是线性变换的基本概念,其中特征向量是指:A. 变换后长度不变的向量B. 变换后方向不变的向量C. 变换后保持不变的向量D. 变换后与原向量成比例的向量答案:D6. 矩阵的迹是:A. 矩阵主对角线上元素的和B. 矩阵的行列式的值C. 矩阵的秩D. 矩阵的逆的转置答案:A7. 以下哪个矩阵是正交矩阵?A. 单位矩阵B. 任何对称矩阵C. 任何对角矩阵D. 任何行列式为1的方阵答案:A8. 矩阵的行列式可以用于判断矩阵的:A. 可逆性B. 秩C. 特征值D. 迹答案:A9. 线性方程组有唯一解的条件是:A. 系数矩阵是可逆的B. 系数矩阵的秩等于增广矩阵的秩C. 方程的个数等于未知数的个数D. 所有选项答案:B10. 以下哪个矩阵是对称矩阵?A. 单位矩阵B. 对角矩阵C. 任何方阵的转置D. 任何方阵与其转置的乘积答案:D二、填空题(每题2分,共10分)1. 矩阵的______是矩阵中所有行(或列)向量生成的子空间的维数。

答案:秩2. 如果矩阵A和B可交换,即AB=BA,则称矩阵A和B是______的。

答案:可交换3. 一个向量空间的维数是指该空间的______的个数。

大学线性代数与解析几何习题

大学线性代数与解析几何习题
(2)detA≠0→A可逆
→齐次线性方程组Ax=0只有零解
AB=0→B的列向量是齐次线性方程组Ax=0的解→B=0
或:A可逆,即A-1存在→根据AB=0→A-1A B= A-10→B= A-1
三、空间解析几何部分
(一)填空题
1.已知 ,则 .
提示:a0=a/|a|
2.设 则 =.
提示:|a×b|=|a||b|sin→cos→a.b=|a||b|cos
2.
(A) (B)
(C) (D)
提示:|AB|=|A||B|=|BA|
3.设 阶矩阵 ,若矩阵 的秩为 ,则 必为
()
提示:参见书本及作业上的例子。
4.
提示:参见前面的内容。
5. ()
提示:(AB)2=I→ABAB=I→A(BAB)=I→A-1=BAB
(AB)2=I→ABAB=I→(ABA)B=I→B-1=ABA
4.设 ,则 .
提示:对矩阵A施行初等行变换,非零行的行数即为矩阵A的秩。
5.设 ,则当 满足条件时, 可逆.
提示:矩阵A的行列式detA≠0时,矩阵可逆。
(二)选择题
1.设 阶矩阵 ,则必有()
(A) (B) (C) (D)
提示:A的逆矩阵为BC
2. ()
提示:P的列为齐次线性方程组Qx=0的解,P非零,Qx=0有非零解,故Q的行列式detQ=0
2.设向量 ( )
提示:Prjba=|a|cos,|a|=3→cos→cosa.b)/(|a||b|)
3. ( )
提示:向量平行,对应坐标分量成比例。
4.设向量 且 ( )
提示:向量混合积的计算方法。
5. ( )
提示:根据向量乘法运算律展开,并考察向量积的方向特性。

线性代数试题(完整试题与详细答案)

线性代数试题(完整试题与详细答案)

线性代数试题(完整试题与详细答案)一、单项选择题(本大题共10小题,每小题2分,共20分)1.行列式111101111011110------第二行第一列元素的代数余子式21A =( )A .-2B .-1C .1D .22.设A 为2阶矩阵,若A 3=3,则=A 2( ) A .21 B .1 C .34 D .23.设n 阶矩阵A 、B 、C 满足E ABC =,则=-1C ( ) A .AB B .BA C .11--B AD .11--A B4.已知2阶矩阵⎪⎪⎭⎫ ⎝⎛=d c b a A 的行列式1-=A ,则=-1*)(A ( ) A .⎪⎪⎭⎫⎝⎛----d c b aB .⎪⎪⎭⎫⎝⎛--a c b dC .⎪⎪⎭⎫ ⎝⎛--a cb d D .⎪⎪⎭⎫ ⎝⎛d c b a5.向量组)2(,,,21≥s s ααα 的秩不为零的充分必要条件是( ) A .s ααα,,,21 中没有线性相关的部分组 B .s ααα,,,21 中至少有一个非零向量 C .s ααα,,,21 全是非零向量D .s ααα,,,21 全是零向量6.设A 为n m ⨯矩阵,则n 元齐次线性方程组0=Ax 有非零解的充分必要条件是( )A .n r =)(AB .m r =)(AC .n r <)(AD .m r <)(A 7.已知3阶矩阵A 的特征值为-1,0,1,则下列矩阵中可逆的是( ) A .A B .AE - C .A E -- D .A E -2 8.下列矩阵中不是..初等矩阵的为( )A .⎪⎪⎪⎭⎫ ⎝⎛101010001B .⎪⎪⎪⎭⎫⎝⎛-101010001C .⎪⎪⎪⎭⎫⎝⎛100020001D .⎪⎪⎪⎭⎫⎝⎛1010110019.4元二次型4332412143212222),,,(x x x x x x x x x x x x f +++=的秩为( ) A .1B .2C .3D .410.设矩阵⎪⎪⎪⎭⎫ ⎝⎛=001010100A ,则二次型Ax x T 的规范形为( )A .232221z z z ++ B .232221z z z ---C .232221z z z --D .232221z z z -+二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。

线性代数大学试题及答案

线性代数大学试题及答案

线性代数大学试题及答案一、选择题(每题5分,共20分)1. 设A是一个3阶方阵,且满足A^2 = A,则下列说法正确的是:A. A是可逆矩阵B. A是幂等矩阵C. A是正交矩阵D. A是单位矩阵答案:B2. 若矩阵A的特征值为1,则下列说法正确的是:A. 1是A的迹B. 1是A的行列式C. 1是A的一个特征值D. 1是A的秩答案:C3. 设向量组α1, α2, ..., αn线性无关,则下列说法正确的是:A. 向量组中任意向量都可以用其他向量线性表示B. 向量组中任意向量都不可以被其他向量线性表示C. 向量组中任意向量都可以被其他向量线性表示D. 向量组中任意向量都不可以被其他向量线性表示,除非它们线性相关答案:B4. 若矩阵A的秩为2,则下列说法正确的是:A. A的行向量组线性无关B. A的列向量组线性无关C. A的行向量组线性相关D. A的列向量组线性相关答案:A二、填空题(每题5分,共30分)1. 若矩阵A的行列式为0,则A的______。

答案:秩小于矩阵的阶数2. 设向量空间V的一组基为{v1, v2, ..., vn},则任意向量v∈V可以唯一地表示为______。

答案:v = c1v1 + c2v2 + ... + cnn,其中ci为标量3. 设矩阵A和B可交换,即AB = BA,则A和B的______。

答案:特征值相同4. 若线性变换T: R^n → R^m,且T是可逆的,则T的______。

答案:行列式不为零5. 设A为n阶方阵,若A的特征多项式为f(λ) = (λ-1)^2(λ-2),则A的特征值为______。

答案:1, 1, 26. 若向量组α1, α2, ..., αn线性无关,则向量组α1, α2, ..., αn, α1+α2也是______。

答案:线性相关三、简答题(每题10分,共20分)1. 简述什么是矩阵的秩,并给出如何计算矩阵的秩的方法。

答案:矩阵的秩是指矩阵行向量或列向量组中线性无关向量的最大个数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一(1).选择题1. 设A ,B 为n 阶矩阵,则必有( )A.222()2+=++A B A AB BB.22()()+-=-A B A B A B C.()()()()-+=+-A E A E A E A E D.222()=AB A B 2.对于n 元齐次线性方程组0=Ax ,以下命题中,正确的是( )(A) 若A 的列向量组线性无关,则0=Ax 有非零解;(B) 若A 的行向量组线性无关,则0=Ax 有非零解;(C) 若A 的行向量组线性相关,则0=Ax 有非零解(D) 若A 的列向量组线性相关,则0=Ax 有非零解;3.若齐次线性方程组⎪⎩⎪⎨⎧=++=-+=+-0002321321321x x kx x kx x x x x 有非零解,则k 必须满足( )。

(A )4=k (B )1-=k (C )1-≠k 且4≠k (D )1-=k 或4=k4.若存在可逆矩阵C ,使1B C AC -=,则A 与B( )(A) 相等 (B) 相似 (C) 合同 (D) 可交换5. 向量组r ααα,,,21 线性相关且秩为s ,则( )(A )s r = (B) s r ≤ (C) r s ≤ (D) r s <6.矩阵A 与B 相似的充分条件是( )。

(A )B A = (B ))()(B r A r =(C )A 与B 有相同的特征多项式(D )n 阶矩阵A 与B 有相同的特征值且n 个特征值互不相同。

一(2).选择题1. 设A ,B 为n 阶矩阵,则必有( )A.222()2+=++A B A AB BB.22()()+-=-A B A B A B C.()()()()-+=+-A E A E A E A E D.222()=AB A B 2、设有n 维向量组(Ⅰ):12,,,r ααα和(Ⅱ):12,,,()m m r ααα>,则( ).(A) 向量组(Ⅰ)线性无关时,向量组(Ⅱ)线性无关;(B) 向量组(Ⅰ)线性相关时,向量组(Ⅱ)线性相关;(C) 向量组(Ⅱ)线性相关时,向量组(Ⅰ)线性相关;(D) 向量组(Ⅱ)线性无关时,向量组(Ⅰ)线性相关.3.设A 是n 阶矩阵,O 是n 阶零矩阵,且A 2-E =O ,则必有( )A. A =EB. A =-E C . A =A -1 D .|A |=14.已知向量组()()()2,5,4,0,0,,0,2,1,1,2,1321--==-=αααt 的秩为2,则=t ( )。

(A )3(B )3-(C )2 (D )2-5.矩阵A 与B 相似的充分条件是( )。

(A )B A = (B ))()(B r A r =(C )A 与B 有相同的特征多项式(D )n 阶矩阵A 与B 有相同的特征值且n 个特征值互不相同。

6..设n m ⨯矩阵A 的秩等于n ,则必有( )。

(A )n m =(B )n m <(C )n m >(D )n m ≥一(3)、选择题:1.已知B 为可逆矩阵,则11{[()]}T T B --=_____(A)B (B)T B (C)1B - (D)1()T B -2. 若齐次线性方程组⎪⎩⎪⎨⎧=λ++=+λ+=++λ000321321321x x x x x x x x x 有非零解,则=λ( )A .1或-2B . -1或-2C .1或2D .-1或2.3. ,A B 均为n 阶方阵,且()0A B E -=,则( )(A) A BA = (B) ||0|B |1A ==或 (C) ||0|B-E |0A ==或 (D)0A B E ==或4. 设A 是s n ⨯矩阵,则齐次线性方程组0Ax =有非零解的充要条件( ).A. A 的行向量组线性无关B. A 的列向量组线性无关C. A 的行向量组线性相关D. A 的列向量组线性相关5. 设2326219321862131-=D ,则=+++42322212A A A A ( )。

(A) 1 (B) -1 (C) 0 (D) 2一(4)、选择题:1. 设n 阶矩阵A 的行列式等于D ,则()kA *等于 ( ). )(A *kA )(B *A k n )(C *-A k n 1 )(D *A2. 设向量组A 能由向量组B 线性表示,则( ).(A) )()(A R B R ≤ (B) )()(A R B R < (C) )()(A R B R = (D))()(A R B R ≥3. 设n 阶矩阵A ,B 和C ,则下列说法正确的是( ).)(A AC AB = 则 C B = )(B 0=AB ,则0=A 或0=B)(C T T T B A AB =)( )(D 22))((B A B A B A -=-+4.向量组)0,1,1(,)0,0,0(,)0,1,0(),0,0,1(4321====αααα的最大无关组为( )(A )21,αα (B) 421,,ααα (C) 43,αα (D )321,,ααα5. n 阶方阵A 与对角矩阵相似的充分必要条件是 .(A) 矩阵A 有n 个特征值 (B) 矩阵A 有n 个线性无关的特征向量(C) 矩阵A 的行列式0A ≠ (D) 矩阵A 的特征方程没有重根一(5)、单项选择题1、若1333231232221131211=a a a a a a a a a ,则=---333231312322212113121111232323a a a a a a a a a a a a ( ) A 、0 B 、3 C 、1 D 、-32、设A 、B 为n 阶方阵,I 为n 阶单位阵,则下列等式正确的是( )A 、AB B A B A 2)(222++=+ B 、))((22B A B A B A -+=-C 、A B A B A A )()(+=+D 、I A A I A ++=+2)(223、设n m ⨯矩阵A 的秩等于n ,则必有( )。

A 、n m =B 、n m <C 、n m >D 、n m ≥4、设A 、B 为n 阶方阵,则下列说法正确的是( )A. 若O AB =,则0=A 或0=BB. 若O AB =,则O A =或O B =C. 若0=AB ,则O A =或O B =D. 若0=AB ,则O A =且O B =5、设2326219321862131-=D ,则=+++42322212A A A A ( )。

A 、1 B 、-1 C 、0 D 、26、向量组n ααα,,,21⋅⋅⋅线性无关的充要条件是( )A 、任意i α不为零向量B 、n ααα,,,21⋅⋅⋅中任两个向量的对应分量不成比例C 、n ααα,,,21⋅⋅⋅中有部分向量线性无关D 、n ααα,,,21⋅⋅⋅中任一向量均不能由其余n-1个向量线性表示7、设A 为n 阶方阵,且秩().,A n a a =-112是非齐次方程组AX B =的两个不同的解向量,则AX =0的通解为( )A 、1αkB 、2αkC 、)(21αα-kD 、)(21αα+k8、已知2),,(321=αααR ,3),,(432=αααR ,则 ( )A 、321,,ααα线性无关B 、432,,ααα线性相关C 、1α能由32,αα线性表示D 、4α能由321,,ααα线性表示一(6)、1、行列式333222111321321321a a a a a a a a a D +++++++++=的值为( )A 、0B 、1C 、2D 、32、设A 、B 、C 为n 阶方阵,则下列说法正确的是( )A 、若O AB =,则0=A 或0=B B 、AB B A B A 2)(222++=+ C 、111)(---+=+B A B A D 、若AC AB =,则C B =3、满足矩阵方程⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛-200112101211021X 的矩阵=X ( )A 、⎪⎪⎪⎭⎫ ⎝⎛023 B 、⎪⎪⎪⎭⎫ ⎝⎛-113102 C 、⎪⎪⎪⎭⎫ ⎝⎛-011410321 D 、⎪⎪⎪⎭⎫ ⎝⎛---5433744、设n m ⨯矩阵A 的秩等于n ,则必有( ).A 、n m =B 、n m <C 、n m >D 、n m ≥5、已知,,A B C 均为n 阶可逆矩阵,且ABC I =,则下列结论必然成立的是( ).A 、BCA I =B 、ACB I =C 、BAC I =D 、CBA I =6、设A 为n 阶方阵,n r A R <=)(,则A 的行向量中( )A 、必有r 个行向量线性无关B 、任意r 个行向量构成极大线性无关组C 、任意r 个行向量线性相关D 、任一行都可由其余r 个行向量线性表示7、设A 为n 阶方阵,且1)(-=n A r , 21,αα是AX=0的两个不同解,则21αα,一定( )A 、线性相关B 、线性无关C 、不能相互线性表示D 、有一个为零向量8、设有n 维向量组(Ⅰ):12,,,r ααα和(Ⅱ):12,,,()m m r ααα>,则( ).A 、向量组(Ⅰ)线性无关时,向量组(Ⅱ)线性无关B 、向量组(Ⅰ)线性相关时,向量组(Ⅱ)线性相关C 、向量组(Ⅱ)线性相关时,向量组(Ⅰ)线性相关D 、 向量组(Ⅱ)线性无关时,向量组(Ⅰ)线性相关一(7)选择题1.设A 为n 阶方阵, 则正确的结论是 ( )(A) 如果2,A O =那么A =O (B) 如果2,A A = 那么 A =O 或 A =E(C) 如果,A O ≠那么 0A ≠ (D) 如果0,A ≠那么A O ≠2. 设1234x x ⎛⎫ ⎪-⎝⎭1232y y -⎛⎫ ⎪⎝⎭105,12⎛⎫= ⎪-⎝⎭则()12,y y =( ) (A)(1,2) (B) (1,1) (C) (2,1) (D)(1,-1)3.在矩阵A 中增加一列而得到矩阵B ,设A 、B 的秩分别为1r , 2r ,则它们之间的关系必为:( )(A)12 r r = (B)12 1r r =- (C) 12 r r ≤ (D) 12 r r >4.A ,B 均为n 阶矩阵,且22()()A B A B A B +-=-,则必有( )(A)B E = (B) A E = (C) AB BA = (D) A B =5. 已知向量组A 线性相关, 则在这个向量组中( )(A)必有一个零向量 .(B)必有两个向量成比例 .(C)必有一个向量是其余向量的线性组合 .(D)任一个向量是其余向量的线性组合 .6. 设A 为n 阶方阵,且秩()1R A n =-,12,a a 是非齐次方程组 Ax b =的两个不同的解向量, 则Ax=0的通解为 ( )(A)12()k a a + (B) 12()k a a - (C) 1ka (D) 2ka一. (8)选择题1.设(.....)τ 表示排列的逆序数, 则(51324)τ= ( )(A) 1 (B) 5 (C) 3 (D) 22. 设 123,,ααα是四元非齐次线性方程组Ax=b 的三个解向量, 且系数矩阵A 的秩等于3,1 (1,2,3,4),T α=23 (0,1,2,3),T αα+= C 表示任意常数,则方程组Ax=b 的通解 x = ( )(A)1121 ;3141C ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭(B)1021 ;3244C ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ (C)1223 ;3445C ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ (D)1324 .3546C ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ 3. 已知向量组1,,m ααK 线性相关, 则( )(A) 该向量组的任何部分组必线性相关(B) 该向量组的任何部分组必线性无关(C) 该向量组的秩小于m(D) 该向量组的最大线性无关组是唯一的4.设有矩阵,,,m l l n m n A B C ⨯⨯⨯则下列运算可行的是 ( )(A)ABC (B)T A CB (C)T ABC (D)T CB A5.n 阶矩阵A 可对角化,则( )(A) A 的秩为n (B) A 必有n 个不同的特征值(C) A 有n 个线性无关的特征向量 (D) A 有n 个两两正交的特征向量6. 若有 1133016,02135k k k ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪= ⎪⎪ ⎪ ⎪⎪ ⎪--⎝⎭⎝⎭⎝⎭则k 等于(A) 1 (B) 2 (C) 3 (D) 4二(!).填空题1.设矩阵21100413a -⎛⎫ ⎪= ⎪ ⎪-⎝⎭A 有一个特征值2,λ=对应的特征向量为12,2x ⎛⎫ ⎪= ⎪ ⎪⎝⎭则数a =__________.2..若3阶方阵A 的三个特征根分别是1,2,3则方阵A 的行列式A =3.设矩阵A=102010⎛⎫ ⎪⎝⎭,B =301010-⎛⎫ ⎪⎝⎭,则AB T =________. 4.行列式333222111321321321a a a a a a a a a D +++++++++=的值为5.设矩阵A =110 1 001 2 0000 ⎛⎫ ⎪ ⎪ ⎪⎝⎭,则齐次线性方程组0A x =的基础解系的向量个数为 ;6.设向量组T T T a )2,,1,1(,)1,2,1,2(,)2,6,3,1(321--=-==ααα线性相关,则=a 二(2).填空题1.设矩阵21100413a -⎛⎫ ⎪= ⎪ ⎪-⎝⎭A 有一个特征值2,λ=对应的特征向量为12,2x ⎛⎫ ⎪= ⎪ ⎪⎝⎭则数a =_____. 2..若n 阶矩阵A 有一个特征根为2。

相关文档
最新文档