电化学原理-第二章-电化学热力学.
电化学的热力学和动力学

电化学的热力学和动力学电化学是研究电荷转移和化学反应之间相互关系的学科,是化学、物理、电工学、材料科学、环境科学等学科的交叉领域。
本文将介绍电化学中的热力学和动力学方面的内容,探讨它们的基本原理、应用和近年来的研究进展。
一、电化学热力学1. 基本原理电化学热力学是研究电化学系统中热力学性质和热力学过程的理论。
在电化学反应中,正负电荷之间的相互作用会释放能量,在热力学上相当于系统的内能发生了变化。
因此,电化学热力学主要研究电化学反应中的能量转移和变化机制,包括电势、电动势、电化学平衡和反应热等。
2. 应用电化学热力学是电化学分析和电化学加工的重要基础。
在电化学分析中,通过测量电极电势和电化学反应的热效应,可以快速、准确地确定化学物质的性质和浓度。
在电化学加工中,电化学反应中的热效应可以用于控制和调节反应过程,提高反应效率和纯度。
3. 进展近年来,随着电化学技术的发展和应用范围的拓展,电化学热力学研究也取得了一些新进展。
例如,在锂离子电池、柔性电子器件、人工光合成等领域,电化学热力学研究的应用越来越广泛。
此外,一些新型电化学催化剂和电极材料的研究也对电化学热力学的发展带来了一些新的思路和方法。
二、电化学动力学1. 基本原理电化学动力学是研究电化学反应速率和反应动力学的理论。
在电化学中,化学反应和电荷转移是同时进行的,因此反应速率不仅受到化学反应条件的影响,还受到电荷转移过程的影响。
电化学动力学研究的主要问题是如何确定电化学反应的速率、速率常数和反应机理等。
2. 应用电化学动力学研究是电化学催化、电池、腐蚀等方面的重要基础。
在电化学催化中,通过研究催化剂表面的电化学反应速率和反应动力学,可以优化反应条件、提高催化剂效率、研发新型高效催化剂等。
在电池领域,电化学反应速率和反应动力学的研究则有助于探究电池的容量、循环寿命和性能等。
3. 进展电化学动力学是电化学研究的重要方向之一,近年来也取得了一些新进展。
第二章 电化学热力学

氧化反应
阴极(+) Cu片: Cu2+ + 2e = Cu 还原反应
c.偶极子层
溶液一侧
M
S
偶极子层
相间电位的形成原因及双电层种类
4、金属自身偶极子 的排列(金属表面因 各种短程力作用而形 成的表面电位差,例 如金属表面偶极化的 原子在界面金属一侧 定向排列所形成的双 电层)。
d.金属表面电位
金属一侧
M
S
金属表面电位
双电层的种类
双电层:由符号相反的两个电荷层构成的界
定义:相互接触的两个组成不同的电解质溶液之 间存在的相间电位。
形成的原因:由于两溶液相组成或浓度不同, 溶质粒子将自发的从高浓度向低浓度的相迁移, 就是扩散的作用。正负离子运动速度不同在相 界面形成的双电层,产生一定的电位差。
特点:相对稳定;无法测量;不可逆;尽量消除。 消除方法:在两种溶液之间接盐桥。
原电池 galvanic cells
原电池定义:凡是能将化学能直接转化为电能 的电化学装置。
原电池的重要特征之一是通过电极反应产生电 流供给外线路中的负载使用。如:
()Zn ZnSO4 Zn2 1 CuSO4 Cu2 1 Cu ()
原电池 Primary cell
它是由于电子在两种金属中化学位-电子逸出 功不同引起的。
电极电位
electrode potential
电极电位:电极体系中,两类导体接触界面所形 成的相间电位,金属/溶液之间的相间电位,即 电极材料和离子导体(溶液)的内电位差。
电极电位是稳定的:
M S M S ii e
热力学和电化学的原理

热力学和电化学的原理热力学和电化学是物理学的两个分支,分别研究热量和电量的转化和分配。
这两个领域互相关联,相互影响,是科学研究的重要组成部分。
本文将从热力学和电化学的原理两方面进行探讨。
一、热力学的原理热力学从宏观的角度研究热量的转化和分配规律。
它的核心概念是热力学第一定律和热力学第二定律。
热力学第一定律表明了热量可以与其他形式的能量相互转化,但总能量守恒。
即系统吸收的热量等于外界对系统所做的功与系统内部能量的变化之和。
举个例子,当我们把手插进温水中时,手会感觉到热,这是因为温水把热量传递给了手,我们的身体就把这些能量变成了热能或动能,但总能量守恒。
热力学第二定律则表明了热量的自发流动方向。
它指出热量永远不能从低温物体传递到高温物体,这是因为热量自发流动的方向是从高温物体流向低温物体,直到达到热平衡。
这个定律被称为熵增定律,表明了任何自发过程熵都增加。
理解热力学的原理可以帮助我们更好地利用和控制热量的转化和分配,从而发挥能量的最大效用。
二、电化学的原理电化学研究电荷在化学反应中的转移和分配规律。
它主要探讨电化学反应的动力学和热力学特性,包括电解和电化学腐蚀等。
在电化学反应中,电子是电荷的主要载体。
例如,当我们在用电池时,正极会释放电子,负极会吸收电子,电子在电路中传输,从而实现能量的转化和分配。
电化学反应的动力学特性可以用电位和电流强度来描述,而热力学特性则可以用电势差和熵变来描述。
电化学反应的热力学特性可以用化学反应热和物质的热力学性质来计算。
例如,当我们在制备氧气时,可以通过电解水来分离氢氧离子,生成氧气和氢气。
这个反应的热力学特性可以用热化学方程式来计算。
电化学反应的研究可以帮助我们更好地理解化学反应的机理,控制化学反应的速度和方向,以及设计和制造更高效的电池和电化学器件。
总结热力学和电化学是相互关联的两个领域,两者都涉及能量的转化和分配规律。
热力学研究热量的转化和分配,电化学研究电荷的转移和分配。
920611-电化学原理-电化学填空题及选择题

第一章绪论⒈第一类导体的载流子是自由电子,第二类导体的载流子是离子,两类导体导电方式的转化是通过电极上的氧化还原反应实现的。
⒉电解池回路是由第一类(或电子)导体和第二类(或离子)导体串联组成。
⒊电导率是边长为1cm的立方体溶液所具有的电导。
⒋影响溶液电导率的主要因素是离子浓度与离子运动速度。
⒌在两个相距为1cm面积相等的平行板电极之间,含有1 克当量电解质的溶液时,溶液所具有的电导称为该电解质溶液的当量电导(率)。
⒍某种离子迁移的电量在溶液中各种离子迁移的总电量中所占的百分数称为离子迁移数。
⒎下列哪个因素不一定能使溶液离子运动速度加快()。
A减小离子半径;B升温;C减小溶剂粘度;D增大溶液总浓度。
⒏查表得0.02 mol/Kg Pb(NO3)2溶液的平均活度系数γ±=0.60,计算0.02 mol/Kg Pb(NO3)2溶液的平均活度()。
A 0.024;B 0.018;C 0.012;D 0.019。
第二章 电化学热力学⒈相对于标准氢电极的电极电位称为 氢标电位 ,如果给定电极上发生还原反应,则给定电极的氢标电位为 正值 (填正值或负值),给定电极的绝对电位 不能 测量(填能或不能)。
⒉常见的相间电位的类型:相互接触的两个金属相之间的外电位差是 金属接触电位 ;电极材料和离子导体的内电位差称为 电极电位 ;相互接触的两个组成或浓度不同的电解质溶液相之间存在的相间电位叫做 液体接界电位 。
⒊测定原电池Hg ︱Hg 2Cl 2, KCl(饱和)‖CuSO 4(α=1)︱Cu 的电动势,用 NH4NO3(或KNO3)做盐桥,电极反应式为:阳极 2Hg+2Cl --2e=Hg 2Cl 2 , 阴极 Cu 2++2e=Cu 。
⒋可逆电池必须具备的两个条件: 电池中的化学变化(物质变化)是可逆的 、 电池中能量转化是可逆的 。
⒌原电池电动势 不能 用一般的伏特计测量。
因为用伏特计测量时,有电流通过原电池,电流流经原电池内阻时将产生欧姆降(Ir ),导致从伏特计上读出的电池端电压(V )不等于电池电动势(E )(E=V+ Ir )。
第二章电化学热力学

根据电位差公式,可得:
则有: 可把与参比电极有关的第二项看成是参比电极的相对电 位,把与被测电极有关的第一项看成是被测电极的相对 电位,上式可简化为: 如果规定参比电极的相对电位为零,则: 而且有:
2.2.3 绝对电位的符号规定
根据绝对电位的定义,通把溶液深处看作是距离金属溶 液界面无穷远处,认为溶液深处的电位为零,把金属与 溶液的内电位差看成是金属相对于溶液的电位降。
2.1.2 出现相间电势的原因 界面层中带电粒子或偶极子的非均匀分布,导致一侧有过剩的 正电荷,另一侧有过剩的负电荷,形成双电层。 (1)剩余电荷层:由于带电粒子(电子或离子)在两相间转移, 导致两相中都出现了剩余电荷,这些剩余电荷或多或少地集中 在界面两侧,就形成了双电层; ( 2)吸附双电层:带有不同符号电荷的粒子(阳离子和阴离子) 在表面层中的吸附量不同,因而在界面层与溶液本体中出现了 符号相反的电荷; (3)偶极子层:偶极分子在界面层中的定向排列; (4)金属表面电位:金属表面因各种 短程力作用而形成的表 面电位差。
相间:两相界面上不同于基体性质的过度层。
相间电位:两相接触时,在两相界面层中存在 的电位差。
产生电位差的原因:荷电粒子(含偶极子) 的非均匀分布 。
2.1.1 相间电势差
两相接触时,由于种种 原因,在两相之间的界 面上,就会产生电势差: (1)金属接触电势 (2)金属-溶液间电势 (电极电势) (3)液体接界电势 (扩散电势) (-) Cu(s) Zn(s)ZnSO4(aq) , CuSO4(aq) Cu(s)Cu(s) (+) 金属-金属 溶液-溶液 金属-溶液
2.1.5 粒子的逸出功(Wi) 将该粒子从实物相内部逸出至表面近处真空中所需要作的 功.逸出功的数值和实物相以及脱出粒子的化学本质有关。 粒子逸出功: 电子逸出功:
(二)电化学热力学与可逆电池电动势

(二) 电化学热力学与可逆电池电动势将锌板浸入硫酸锌溶液,将铜板浸入硫酸铜溶液,中间用多孔陶瓷隔开,就构成了丹尼尔(Daniell )电池。
该电池中发生的反应Zn + Cu 2+ −→ Zn 2+ + Cu 是一个典型的氧化还原反应(redox reaction ),当其在电池中发生时,则可在正负极间形成约1.5 V 的电势差,并对外输出电能。
化学反应与电化学反应两者为什么不同?如何将一个反应设计成电池而使之对外输出电功?电极间的电势差是如何形成的?输出的电功与体系化学能变化之间有何关系?这些问题都要由电化学来回答。
所谓电化学(electrochemistry)就是研究化学现象与电现象之间的关系,以及电能与化学能之间相互转化规律的科学。
电化学反应需在电化学装置中才能发生。
将化学能转化为电能的装置称为原电池(galvanic cell),将电能转化成电能的装置称为电解池(electrolytic cell)。
无论原电池还是电解池通常的均由2个电极和对应的电解质溶液构成。
电极的命名有2种,即正负极和阴阳极。
其中,电势高的一极称为正极,电势低的为负极;发生氧化反应的一极是阳极,而发生还原反应的是负极。
例如,图7.15中,Zn 电极电势低,为负极,发生氧化反应Zn −→ Zn 2+ +2e -,是阳极;而Cu 电极电势高,是正极,发生还原反应Cu 2+ +2e -−→ Cu ,所以是阴极。
对于原电池和电解池,电极名称的对应关系如表7.7 所示。
表7.7 原电池和电解池的电极名称对应关系原电池 电解池 电势 高低 高 低 正极负极 正极 负极 反应 还原氧化 氧化 还原 阴极 阳极 阳极 阴极§7.6 可逆电池的设计1.原电池设计的原理通常的氧化还原反应在电池中发生时,会拆成单纯的氧化反应(oxidation reaction )和还原反应(reduction reaction )在两个电极上分别发生,如上例:负 极:Zn −→ Zn 2+ + e 2-正 极:Cu 2+ + e 2-−→ Cu总反应:Zn + Cu 2+ −→ Zn 2+ + Cu在电极上发生的反应称为电极反应(electrode reaction ),也称半反应(half reaction),因为它们仅是完整氧化还原反应的一半。
《电化学原理第二章》PPT课件

溶液(1)
§2.2 电化学体系
电化学体系有三类 1.原电池:电化学反应自发进行并能对外做功,自发将电流送到外电 路中做功。 2.电解池:与外电源组成回路,强迫电流在电化学体系中通过并促使 电化学反应发生。 3.腐蚀电池:电化学反应自发进行,但不对外做功,仅起金属破坏作 用。
16:23:07
一、 原电池
例2: 2Ag + Hg2Cl2 2Hg + AgCl
阳极:Ag + Cl- - e → AgCl 阴极:Hg2Cl2 + 2e → 2Hg + 2Cl原电池表示为: Ag∣AgCl(s), Cl-(α1)‖Cl-(α2), Hg2Cl2(s)∣Hg(
16:23:07
例3:
H2 (P1) + Cl2 (P2)
阳极
16:23:07
E
电池电动势:
E = c - a+液接 = 右 - 左+液接
阴极
例1: Zn + CuSO4(α2) ZnSO4(α1)+Cu
阳极 Zn – 2e → Zn2+ 阴极 Cu2+ + 2e → Cu 原电池表示: Zn∣ZnSO4(α1)‖CuSO4(α2)∣Cu
16:23:07
16:23:07
二、金属接触电位
相互接触的两金属相之间的外电位差称为金属接触电位。 不同金属对电子亲和力不同,故在不同金属相中电子的电化学位不相等,电子逸出难易不同。 电子逸出功:金属电子离开金属逸出真空中所需要的最低能量来衡量电子逸出金属的难易程度,这一能量 叫电子逸出功。 其电子逸出功不同,相互逸入的电子数目将不等,故在界面形成双电子层结构。电子逸出功高的相带负 电,电子逸出功低的相带正电。两相间双电子层的电位差即为金属接触电位。
电化学原理第二章

23:40:27
原电池表示法: (1)负极在左边,正极在右边,中间溶液。注明活度、浓度、 分压等物态 (2)两相用“|”或“,”表示;盐桥用“||” (3)注明惰性金属种类 (4)上述写法可注明电池反应温度,电极正、负极性,且自发 进行时电池电动势为正值。
• (-) 电极a 溶液(a1) 溶液(a2) 电极b (+) • 阳极 E • 电池电动势: 阴极
ф称为M相的 内电位
23:40:27
(2)为克服试验电荷与组成M相的物质之间的短程力作用 (化学作用)所作化学功。 进入M相的不是单位正电荷,而是1摩尔带电粒子,其 所做化学功为其在M相中的化学位 i。若该粒子荷电量为 ne0,则一摩尔粒子所做电功为nF ф ,F为法拉第常数,则 有
i i nF
在298.15 K 时,以水为溶剂,当氧化态和还原态的活度等 于1 时的电极电位称为:标准电极电位。
23:40:27
23:40:27
标准电极电势表
利用上述方法,可以测得各个电对的标准电极电势,构成 标准电极电势表。
电 对
电 极 反 应
电极电势(V)
K+/K K++e- K Zn2+/Zn Zn2++2e- Zn H2 H+/H 2H++2eCu2+/Cu Cu2++2e- Cu F2/F F2+2e- 2F23:40:27
-2.931 -0.7618 0.0000 +0.3419 +2.866
23:40:27
五、液体接界电位与盐桥
液体接界电位:在两种不同离子的溶液或两种不同浓度的溶 液接触界面上,存在着微小的电位差,称之为液体接界电 位。 液体接界电位产生的原因:正、负离子不同的扩散速度使 界面处形成双电层,产生一定电位差, 液界电位也可叫做扩 散电位。用符号j表示,见图。