汽车数据集(cars dataset)_数据挖掘_科研数据集

合集下载

uscar2解读 -回复

uscar2解读 -回复

uscar2解读-回复UsCar2解读UsCar2是一种车辆行为数据集,该数据集记录了多辆车辆在城市环境中的行驶过程。

通过分析这些数据,我们可以深入理解车辆行为、交通流量和道路安全等方面。

本文将以UsCar2为主题,一步一步解析数据集,并探讨其应用和对交通领域的影响。

第一步:了解UsCar2数据集UsCar2数据集由德国诺伊豪斯大学的智能交通系统研究小组创建。

该数据集是通过模拟城市环境中的车辆行驶而获得的,每辆车都有自己的特定行为模式。

数据集中包含了车辆的位置、速度、加速度以及其他相关信息。

这些数据以实时序列的方式呈现,可以用来研究车辆行为和交通流量等问题。

第二步:数据集的应用与意义UsCar2数据集的应用范围广泛,主要体现在以下几个方面:1.交通规划与道路设计:通过分析UsCar2数据集,可以获得真实车辆行为的数据,为交通规划和道路设计提供参考。

例如,可以根据数据集中的交通流量和车辆速度等信息,优化道路布局、信号灯设置和车道规划,提高道路的通行效率和安全性。

2.智能驾驶技术:UsCar2数据集可以为智能驾驶技术的开发和优化提供有价值的参考。

通过分析数据集中的车辆行为模式和交通状况,可以改进自动驾驶系统的决策和控制策略,提高智能车辆的安全性和性能。

3.交通安全与风险评估:利用UsCar2数据集,可以对道路上的交通安全进行评估和风险分析。

通过分析数据集中的车辆行为数据,可以识别出潜在的交通事故风险区域,并提出相应的安全措施。

此外,还可以通过模拟不同交通场景,预测交通事故的发生概率,进一步优化交通安全管理。

4.交通行为研究与预测:UsCar2数据集为研究人员提供了研究车辆行为和交通流量的宝贵资源。

通过分析数据集中的车辆行为模式、速度分布和加速度等信息,可以深入研究车辆行为的规律和驾驶模式,为交通行为预测和交通流量管理提供理论支持和数据支持。

第三步:数据集解析与分析在对UsCar2数据集进行解析和分析时,可以采取以下步骤:1.数据清洗与格式化:首先,对数据集进行清洗和格式化,去除不完整或错误的数据,并将数据格式统一,以方便后续的分析和处理。

自动驾驶相关数据集研究综述

自动驾驶相关数据集研究综述

255中国设备工程C h i n a P l a n t E n g i n e e r i ng中国设备工程 2021.01 (上)自动驾驶是当今热门研究领域,面临许多技术挑战。

无人车在行驶时需要依赖感知识别系统对周围的环境(道路、行人、车辆等)进行感知,为接下来的基于深度学习及人工智能的驾驶决策及控制提供依据。

系统要感知检测的事物种类繁多,且容易受到天气、环境等因素的干扰。

如果自动驾驶的算法不能在大量可靠的数据上进行适量的、有效的训练,那么,当其被投入实际使用后,就可能造成不可预估的后果。

因此,为了推动这一领域的后续研究与发展,自动驾驶相关数据集应运而生,科研工作者围绕众多数据集做了很多开创性的工作。

本文在现有文献基础上,从数据集内容、采集方法、是否进行标注和标注方法等方面,针对不同的自动驾驶数据集进行总结与对比,为研究自动驾驶场景感知、行为决策及控制算法奠定基础。

1 数据集介绍从采集内容、采集设备及方法、标注及标注方法等方面对数据集进行介绍。

典型数据集包括KITTI、Apollo、BDD100K、nuScenes 、CityScapes 和HDD 等。

1.1 数据集内容KITTI 数据集包含市区、乡村和高速公路等场景采集的真实图像数据,每张图像中最多达15辆车和30个行人。

整个数据集由389对立体图像和光流图(包括194对训练图像和195对测试图像),39.2km 视觉测距序列以及超过200k 的3D 标注物体的图像组成,采样频率为10Hz,总共约3TB 。

Apollo 为百度推出的交通场景解析数据集,包括上万帧的高分辨率RGB 视频和与其对应的逐像素语义标注。

26个语义类提供了总共17062张图像和相对应的语义标注与深度信息,用于设计算法和训练模型。

BDD100K 为目前规模最大、兼具内容复杂性与多样性的公开驾驶数据集,包含了10万段高清视频,每段视频约40s 时长,分辨率为720p ,帧率为30fps 。

数据挖掘_Epinions datasets(Epinions数据集)

数据挖掘_Epinions datasets(Epinions数据集)

Epinions datasets(Epinions数据集)数据摘要:it contains the ratings given by users to items and the trust statements issued by users.中文关键词:Epinions,数据集,信息,信任度,等级,英文关键词:Epinions,datasets,information,trust metrics,ratings,数据格式:TEXT数据用途:Social Network AnalysisInformation ProcessingClassification数据详细介绍:Epinions datasetsThe dataset was collected by Paolo Massa in a 5-week crawl (November/December 2003) from the Web site.The dataset contains49,290 users who rated a total of139,738 different items at least once, writing664,824 reviews.487,181 issued trust statements.Users and Items are represented by anonimized numeric identifiers.The dataset consists of 2 files.Contents1 Files1.1 Ratings data1.2 Trust data1.3 Data collection procedure2 Papers analyzing Epinions datasetRatings dataratings_data.txt.bz2 (2.5 Megabytes): it contains the ratings given by users to items. Every line has the following format:user_id item_id rating_valueFor example,23 387 5represents the fact "user 23 has rated item 387 as 5"Ranges:user_id is in [1,49290]item_id is in [1,139738]rating_value is in [1,5]Trust datatrust_data.txt.bz2 (1.7 Megabytes): it contains the trust statements issued by users. Every line has the following format:source_user_id target_user_id trust_statement_valueFor example, the line22605 18420 1represents the fact "user 22605 has expressed a positive trust statement on user 18420"Ranges:source_user_id and target_user_id are in [1,49290]trust_statement_value is always 1 (since in the dataset there are only positive trust statements and not negative ones (distrust)).Note: there are no distrust statements in the dataset (block list) but only trust statements (web of trust), because the block list is kept private and not shown on the site.Data collection procedureThe data were collected using a crawler, written in Perl.It was the first program I (Paolo Massa) ever wrote in Perl (and an excuse for learning Perl) so the code is probably very ugly. Anyway I release the code under the GNU Generic Public Licence (GPL) so that other people might be use the code if they so wish.epinionsRobot_pl.txt is the version I used, this version parses the HTML and saves minimal information as perl objects. Later on, I saw this was not a wise choice (for example, I didn't save demographic information about users which might have been useful for testing, for example, is users trusted by user A comes from the same city or region). So later on I created a version that saves the original HTML pages(epinionsRobot_downloadHtml_pl.txt) but I didn't test it. Feel free to let me know if it works. Both Perl files are released under GNU Generic Public Licence (GPL), see first lines of the files. --PaoloMassaBe aware that the script was working in 2003, I didn't check but it is very likely that the format of HTML pages has changed significantly in the meantime so the script might needsome adjustments. Luckily, the code is released as open source so you can modify it. --Paolo Massa 11:34, 16 July 2010 (UTC)Papers analyzing Epinions datasetTrust-aware Recommender Systemsadd another paper!Retrieved from "/wiki/Downloaded_Epinions_dataset"数据预览:点此下载完整数据集。

数据挖掘

数据挖掘

基于聚类分析的孤立点挖掘方法1、数据挖掘数据挖掘是应用一系列技术从大型数据库或者数据仓库的数据中提取人感兴趣的,隐含的、事先未知而潜在有用的,提取的知识表示为概念、规则、模式等形式的信息和知识。

简言之,据挖掘就是从大量的、不完全的、有噪声的、模糊的、随的数据中,提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息知识的过程。

因此,数据挖掘事实上是知识发现的一个特定步骤,它是一种智能化的、综合应用各种统计分析、数据库、智能语言来分析庞大数据资料的技术,或者说是对大容量数据及数据间系进行考察和建模的方法集。

数据挖掘的目标是将大容量数据转化为有用知识和信息。

它的目的,就是拓展更加有效的利用已有数据,拓展应用。

数据开采技术的目标是从大量数据中,发现隐藏于其后的规律或数据间的关系,从而服务于决策。

因此,数据挖掘一般有以下5类主要任务:( 1 ) 数据总结:数据总结目的是对数据进行浓缩,给出它的总体综合描述。

过对数据的总结,数据挖掘能够将数据库中的有关数据从较低的个体层次抽总结到较高的总体层次上,从而实现对原始基本数据的总体把握。

( 2 ) 分类:分类即分析数据的各种属性,并找出数据的属性模型,确定哪些据属于哪些组。

这样我们就可以利用该模型来分析已有数据,并预测新数据属于哪一个组。

( 3 ) 关联分析:数据库中的数据一般都存在着关联关系,也就是说,两个或多个变量的取值之间存在某种规律性,包括关联关系有简单关联和时序关联两。

( 4 ) 聚类:聚类分析是按照某种相近程度度量方法,将用户数据分成一系列有意义的子集合。

( 5 ) 偏差的检测:对分析对象的少数的、极端的特例的描述,揭示内在的原因。

目前,研究数据挖掘的方法有很多,这些数据挖掘工具采用的主要方法包括传统统计方法,可视化技术,决策树、相关规则、神经元网络、遗传算法等。

下面分类阐述。

( 1 ) 传统统计方法:包括:抽样技术,多元统计分析,统计预测方法等。

对斯坦福汽车数据集的认识

对斯坦福汽车数据集的认识

对斯坦福汽车数据集的认识
斯坦福汽车数据集(Stanford Cars Dataset)是由斯坦福大学的计算机视觉实验室提供的一个被广泛使用的汽车图像数据集。

该数据集收集了来自不同角度和位置的16,185张汽车图像,并且涵盖了196种不同的汽车品牌。

每张图像都配有对应的汽车品牌和型号的标注。

这个数据集在计算机视觉领域的研究中经常被用于目标检测、图像分类和图像识别等任务。

研究人员可以使用这个数据集训练和测试他们的算法和模型,并评估它们在汽车图像处理方面的性能。

斯坦福汽车数据集的特点包括:
1. 大规模数据集:数据集包含了数万张汽车图像,可以提供充足的样本用于训练和测试。

2. 多样性:数据集包含了不同角度和位置拍摄的汽车图像,涵盖了各种汽车品牌和型号,具有较好的代表性。

3. 标注信息:每张图像都有对应的汽车品牌和型号的标注,这对于进行有监督学习非常有用。

斯坦福汽车数据集的使用使得研究者能够开展汽车图像相关的机器学习和深度学习研究,推动了计算机视觉领域在汽车识别和相关应用方向的发展。

巴文彤(汽车市场信息数据挖掘探索与研究)

巴文彤(汽车市场信息数据挖掘探索与研究)

汽车市场信息数据挖掘探索与研究一、数据挖掘技术概述随着信息技术的迅速发展,数据库的规模不断扩大,从而产生了大量的数据。

为了给决策者提供一个统一的全局视角,在许多领域建立了数据仓库,但大量的数据往往使人们无法辨别隐藏在其中的能对决策提供支持的信息,而传统的查询、报表工具无法满足挖掘这些信息的需求。

因此,需要一种新的数据分析技术处理大量数据,并从中抽取有价值的潜在知识,数据挖掘技术由此应运而生,数据挖掘技术也正是伴随着数据仓库技术的发展而逐步完善起来的。

但是并非所有的信息发现任务都被视为数据挖掘,例如,使用数据库管理系统查找个别的记录,或通过因特网的搜索引擎查找特定的Web页面,则是信息检索(information retrieval)领域的任务。

数据挖掘是一个以数据库、人工智能、数理统计、可视化四大支柱技术为基础,我们知道,描述或说明一个算法设计分为三个部分:输入、输出和处理过程。

数据挖掘算法的输入是数据库,算法的输出是要发现的知识或模式,算法的处理过程则设计具体的搜索方法。

从算法的输入、输出和处理过程三个角度分,可以确定数据挖掘主要涉及三个方面:挖掘对象、挖掘任务、挖掘方法。

挖掘对象包括若干种数据库或数据源,例如关系数据库、面向对象数据库、空间数据库、时态数据库、文本数据库、多媒体数据库、历史数据库,以及万维网(WEB)等。

挖掘方法可以粗分为:统计方法、机器学习方法、神经网络方法和数据库方法。

统计方法可细分为:回归分析、判别分析等。

机器学习可细分为:遗传算法等。

神经网络方法可细分为:前向神经网络、自组织神经网络等。

数据库方法主要是多维数据分析方法等。

数据挖掘是指从数据集合中自动抽取隐藏在数据中的那些有用信息的非平凡过程,这些信息的表现形式为:规则、概念、规律及模式等。

它可帮助决策者分析历史数据及当前数据,并从中发现隐藏的关系和模式,进而预测未来可能发生的行为。

数据挖掘的过程也叫知识发现的过程,它是一门涉及面很广的交叉性新兴学科,涉及到数据库、人工智能、数理统计、可视化、并行计算等领域。

汽车CPS大数据若干关键技术

汽车CPS大数据若干关键技术
2023-11-11
汽车cps大数据若干关键技术
contents
目录
• CPS数据采集与预处理 • CPS数据存储与管理 • CPS数据挖掘与分析 • CPS数据可视化与交互式探索 • CPS大数据安全与隐私保护 • CPS大数据应用案例分享
01
CPS数据采集与预处理
数据采集技术
传感器数据采集
哈希索引
利用哈希函数将关键字映射到索引中,支持快速查找。
数据查询优化
查询优化算法
利用统计信息和其他优化方法,选择最优的查询 执行计划,提高查询效率。
索引优化
根据查询需求选择合适的索引类型,优化索引结 构,提高查询速度。
数据压缩
对数据进行压缩,减少存储空间占用和网络传输 量,提高数据处理效率。
03
基于图标的可视化技术
使用图形元素(如柱状图、折线图、饼图等 )展示数据,便于用户直观理解数据。
基于3D技术的可视化技术
利用3D建模和渲染技术,创建逼真的数据场景和模 型,提供沉浸式的数据体验。
交互式可视化技术
允许用户通过鼠标、键盘或其他交互设备与 数据展示进行交互,实现数据的探索和分析 。
可视化交互设计
数据归一化
将数据的尺度进行统一,以避免因数据尺度不同而导 致的分析偏差。
数据离散化
将连续型数据进行离散化处理,以方便后续的分类与 聚类分析。
02
CPS数据存储与管理
分布式存储系统ຫໍສະໝຸດ 010203分布式文件系统
利用网络资源,将数据分 散存储在多台独立的设备 上,实现数据的冗余备份 和负载均衡。
分布式数据库
通过对车辆行驶数据和驾驶员操作数据的分析, 对驾驶行为进行评估和优化,帮助驾驶员提高驾 驶技能和安全意识。

KDD CUP 2004_数据挖掘_科研数据集

KDD CUP 2004_数据挖掘_科研数据集

KDD CUP 2004英文关键词:KDD CUP 2004,performance criteria,bioinformatics,quantum physics,中文关键词:KDD 杯2004 年业绩标准、生物信息学、量子物理,数据格式:TEXT数据介绍:This year's competition focuses on data-mining for a variety of performance criteria such as Accuracy, Squared Error, Cross Entropy, and ROC Area. As described on this WWW-site, there are two main tasks based on two datasets from the areas of bioinformatics and quantum physics.The file you downloaded is a TAR archive that is compressed with GZIP. Most decompression programs (e.g. winzip) can decompress these formats. If you run into problems, send us email. The archive shouldcontain four files:phy_train.dat: Training data for the quantum physics task (50,000 train cases)phy_test.dat: Test data for the quantum physics task (100,000 test cases) bio_train.dat: Training data for the protein homology task (145,751 lines) bio_test.dat: Test data for the protein homology task (139,658 lines)The file formats for the two tasks are as follows.Format of the Quantum Physics DatasetEach line in the training and the test file describes one example. The structure of each line is as follows:The first element of each line is an EXAMPLE ID that uniquely describes the example. You will need this EXAMPLE ID when you submit results. The second element is the class of the example. Positive examples are denoted by 1, negative examples by 0. Test examples have a "?" in this position. This is a balanced problem so the target values are roughly half 0's and 1's.All following elements are feature values. There are 78 feature values in each line.Missing values: columns 22,23,24 and 46,47,48 use a value of "999" to denote "not available", and columns 31 and 57 use "9999" to denote "not available". These are the column numbers in the data tables starting with 1 for the first column (the case ID numbers). If you remove the first twocolumns (the case ID numbers and the targets), and start numbering the columns at the first attribute, these are attributes 20,21,22, and 44,45,46, and 29 and 55, respectively. You may treat missing values any way you want, including coding them as a unique value, imputing missing values, using learning methods that can handle missing values, ignoring these attributes, etc.The elements in each line are separated by whitespace.Format of the Protein Homology DatasetEach line in the training and the test file describes one example. The structure of each line is as follows:The first element of each line is a BLOCK ID that denotes to which native sequence this example belongs. There is a unique BLOCK ID for each native sequence. BLOCK IDs are integers running from 1 to 303 (one for each native sequence, i.e. for each query). BLOCK IDs were assigned before the blocks were split into the train and test sets, so they do not run consecutively in either file.The second element of each line is an EXAMPLE ID that uniquely describes the example. You will need this EXAMPLE ID and the BLOCK ID when you submit results.The third element is the class of the example. Proteins that are homologous to the native sequence are denoted by 1, non-homologous proteins (i.e. decoys) by 0. Test examples have a "?" in this position.All following elements are feature values. There are 74 feature values in each line. The features describe the match (e.g. the score of a sequence alignment) between the native protein sequence and the sequence that is tested for homology.There are no missing values (that we know of) in the protein data.To give an example, the first line in bio_train.dat looks like this:279 261532 0 52.00 32.69 ... -0.350 0.26 0.76279 is the BLOCK ID. 261532 is the EXAMPLE ID. The "0" in the third column is the target value. This indicates that this protein is not homologous to the native sequence (it is a decoy). If this protein was homologous the target would be "1". Columns 4-77 are the input attributes.The elements in each line are separated by whitespace.[以下内容来由机器自动翻译]今年的比赛重点的性能标准精度、平方错误、交叉熵和中华民国区等各种数据挖掘。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

汽车数据集(cars dataset)数据介绍:This was the 1983 ASA Data Exposition dataset. The dataset was collected by Ernesto Ramos and David Donoho and dealt with automobiles. Data on mpg, cylinders, displacement, etc. (8 variables) for 406 different cars. The dataset includes the names of the cars.关键词:汽车,缸,排气量,名字,展览会,automobile,cylinder,displacement,name,exposition,数据格式:TEXT数据详细介绍:Cars datasetThe Committee on Statistical Graphics of the American Statistical Association (ASA) invites you to participate in its Second (1983) Exposition of Statistical Graphics Technology. The purposes of the Exposition are (l) to provide a forum in which users and providers of statistical graphics technology can exchange information and ideas and (2) to expose those members of the ASA community who are less familiar with statistical graphics to its capabilities and potential benefits to them. The Exposition wil1 be held in conjunction with the Annual Meetings in Toronto, August 15-18, 1983 and is tentatively scheduled for the afternoon of Wednesday, August 17.Seven providers of statistical graphics technology participated in the l982 Exposition. By all accounts, the Exposition was well received by the ASA community and was a worthwhile experience for the participants. We hope to have those seven involved again this year, along with as many new participants as we can muster. The 1982 Exposition was summarized in a paper to appear in the Proceeding of the Statistical Computing Section. A copy of that paper is enclosed for your information.The basic format of the 1983 Exposition will be similar to that of 1982. However, based upon comments received and experience gained, there are some changes. The basic structure, intended to be simpler and more flexible than last year, is as follows:A fixed data set is to be analyzed. This data set is a version of the CRCARS data set ofDonoho, David and Ramos, Ernesto (1982), ``PRIMDATA: ata Sets for Use With PRIM-H'' (DRAFT).Because of the Committee's limited (zero) budget for the Exposition, we are forced to provide the data in hardcopy form only (enclosed). (Sorry!)There are 406 observations on the following 8 variables: MPG (miles per gallon), # cylinders, engine displacement (cu. inches), horsepower, vehicle weight (lbs.), time to accelerate from O to 60 mph (sec.), model year (modulo 100), and origin of car (1. American, 2. European,3. Japanese). These data appear on seven pages. Also provided are the car labels (types) in the same order as the 8 variables on seven separate pages. Missing data values are marked by series of question marks.You are asked to analyze these data using your statistical graphics software. Your objective should be to achieve graphical displays which will be meaningful to the viewers and highlight relevant aspects of the data. If you can best achieve this using simple graphical formats,fine. If you choose to illustrate some of the more sophisticated capabilities of your software and can do so without losing relevancy to the data, that is fine, too. This year, there will be no Committee commentary on the individual presentations, so you are not competingwith other presenters. The role of each presenter is to do his/her best job of presenting their statistical graphics technology to the viewers.Each participant will be provided with a 6'(long) by 4'(tall) posterboard on which to display the results of their analyses. This is the same format as last year. You are encouraged to remain by your presentation during the Exposition to answer viewers' questions. Threecopies of your presentation must be submitted to me by July 1. Movie or slide show presentations cannot be accommodated (sorry). The Committee will prepare its own poster presentation which will orient the viewers to the data and the purposes of the Exposition.The ASA has asked us to remind all participants that the Exposition is intended for educational and scientific purposes and is not a marketing activity. Even though last year's participants did an excellent job of maintaining that distinction, a cautionary note at this point is appropriate.Those of us who were involved with the 1982 Exposition found it worthwhile and fun to do. We would very much like to have you participate this year. For planning purposes, please RSVP (to me, in writing please) by April 15 as to whether you plan to accept the Committee's invitation.If you have any questions about the Exposition, please call me on(301/763-5350). If you have specific questions about the data, or the analysis, please call Karen Kafadar on (301/921-3651). If you cannot participate but know of another person or group in your organization who can, please pass this invitation along to them.Sincerely,LAWRENCE H. COXStatistical Research DivisionBureau of the CensusRoom 3524-3Washington, DC 20233数据预览:点此下载完整数据集。

相关文档
最新文档