6第六章表面改性技术1
《表面改性技术》课件

表面改性技术的实 例分析
热处理:通过加热和冷却,改变金属材料的表面性能 涂层:在金属表面涂覆一层保护层,提高耐磨性、耐腐蚀性和抗氧化性 电化学处理:通过电化学反应,改变金属表面的化学成分和结构 激光处理:利用激光束照射金属表面,改变其表面性能和微观结构
实例:聚四氟乙烯(PTFE)表面改性 目的:提高耐磨性、耐腐蚀性和耐热性 方法:化学气相沉积(CVD)、等离子体增强化学气相沉积(PECVD)等 应用:航空航天、汽车、电子等领域
原理:利用高能粒子轰 击材料表面,使其发生 化学反应或物理变化, 形成新的表面层
特点:可以在低温 下进行,对材料表 面无破坏,可形成 多种表面层
应用:广泛应用于 金属、陶瓷、塑料 等材料的表面改性
优点:可以提高材 料的耐磨性、耐腐 蚀性、导电性等性 能
原理:利用电化学反应,在表 面形成一层具有特定性质的薄 膜
添加标题
表面改性:通过改变复合材料表面的物理、化学性质, 提高其性能
添加标题
表面改性方法:化学气相沉积(CVD)、等离子体增强化 学气相沉积(PECVD)、激光表面处理等
表面改性技术的发 展趋势和未来展望
环保型表面改性技 术:减少有害物质 排放,提高环保性 能
纳米表面改性技术: 提高表面性能,增 强表面功能
改性目的:提高材料的耐磨性、 耐腐蚀性、抗老化性等性能
改性方法:化学改性、物理改 性、复合改性等
改性效果:提高材料的表面性 能,延长使用寿命
应用领域:汽车、电子、建筑、 医疗等行业
添加标题
复合材料:由两种或两种以上不同性质的材料组成的材 料
添加标题
实例:碳纤维增强复合材料(CFRP)
添加标题
表面改性效果:提高复合材料的耐磨性、耐腐蚀性、导 电性等性能
表面改性技术培训课件(ppt 39页)

第六章 表面改性技术 6.1 金属表面形变强化
金属表面形变强化方法及其应用
常用的金属材料表面形变强化方法主要有喷丸、滚压和内孔
挤压等强化工艺。
表面滚压强化示意图。对于圆角、沟槽等皆可通过该方法获
得表层形变强化,并引进残余压应力。
内孔挤压是使孔的内表面获得形变强化的工艺措施,效果显
著。
表面滚压
第六章 表面改性技术 6.1 金属表面形变强化
一般来说,黑色金属制件可以用铸铁丸、钢丸和玻璃丸。 有色金属和不锈钢制件则需采用不锈钢丸或玻璃丸。
第六章 表面改性技术 6.1 金属表面形变强化 喷丸强化设备主要有两类: (1)机械离心式喷丸机,适用于要求喷丸强度高、 品种少、批量大、形状简单、尺寸较大的零件。
第六章 表面改性技术 6.1 金属表面形变强化
第六章 表面改性技术 6.1 金属表面形变强化
3)表面粗糙度的影响因素:零件材料的强度和硬度、弹丸直径、喷射 角度及速度、零件的原始表面粗糙度。
在其他条件相同的情况下,零件材料的强度和表面硬度值越高,塑 性变形越困难,弹坑越浅,表面粗糙度值越小;
第六章 表面改性技术 6.1 金属表面形变强化 阿尔门试验
弧高度测试时采用标准化的弧高度试片,也称 Almen试片。试片 分N、A、C三种 ,其材料和硬度都有规定,长度和宽度也固定,只是厚 度不同。其中应用较多的为A试片(厚1.27mm),适用于中等喷丸强度。
试片在专用的夹具中,接受在一组选定的工艺参数条件下进行的喷 射,然后测量其变形后凸弧的高度作为喷丸强度的量度。弧高度单位用 mm表示。例如,30A表示 A试片弧高度为0.3mm。
弹丸直径越大,速度越快,弹丸与工件碰撞的动量越大,喷丸的强 度就越大。
材料科学中的表面改性技术

材料科学中的表面改性技术表面改性技术是材料科学中一项重要的技术。
它通过改变材料表面的化学、物理特性来改变其性能。
目前,表面改性技术在国家经济、环保、卫生、医疗、能源和其他应用领域中发挥着越来越重要的作用。
表面改性技术可以分为化学表面改性和物理表面改性两类。
化学表面改性是指通过在表面上化学反应形成一层分子膜,改变其化学性质,从而改变其表面特性和性能的方法。
物理表面改性则是指通过物理方法如激光处理,电子束处理等来改变表面的形态和结构。
在实际应用中,表面改性技术的方法有很多种。
其中最常见的有等离子体表面改性、复合离子束表面改性、离子交换等技术。
等离子体表面改性技术是通过等离子体的作用使表面产生化学反应,形成一层分子膜以改善材料的表面性质。
等离子体表面改性技术在橡胶、塑料、陶瓷、金属等材料的加工过程中,并能有效改善表面的性能。
复合离子束表面改性技术是指将合适的离子束等方法在材料表面强制打入一些异质原子,从而改变其表面的结构、相位和化学性质,改善其特性和性能。
该技术可广泛应用于新材料的开发,在纳米材料、催化材料、涂料和涂层领域中具有广泛的应用前景。
离子交换技术是指通过离子交换树脂或石墨等材料在表面吸附与离子交换,改变材料表面离子分解的能力和酸碱性质,改善其性能的方法。
离子交换技术被广泛应用于环保、通讯和新能源等领域的新型材料的开发和生产过程中。
表面改性技术不仅可以改善材料本身的特性和性能,从而改善其应用的关键技术,而且还有利于新型材料的开发。
同时,表面改性技术在环保、卫生和医疗等领域应用也日益增多。
通过表面改性技术,材料的应用范围将会更加广泛,为社会和人类的发展做出更大的贡献。
总之,表面改性技术作为一项重要技术,不仅在材料科学领域有着广泛的应用前景,还对人类的工业生产和社会发展具有极其重要的意义。
随着新型材料的不断涌现,我们相信表面改性技术在未来的发展中将会有更广泛的应用和发展前景。
材料表面改性技术简介

材料表面改性技术简介作为材料科学领域的一项重要技术手段,表面改性技术旨在通过改变材料表面的组成、结构和性能,从而使其能够满足特定的应用需求。
材料表面改性技术可以广泛应用于电子、光电、生物、医药、环保等领域,例如:防腐、耐磨、抗氧化、润滑、防晒等,同时也可以改善材料的光学、电学、磁学、热学等性能。
本文将从表面改性技术的基础原理、应用范围及实现方法进行阐述。
表面改性技术的基础原理材料的表面改性是一种通过改变材料表面的化学成分、微观结构、形貌和尺寸分布等方式,来改变材料表面性质的技术。
基于不同的目的,常用的表面改性技术包括:物理方法、化学方法、生物方法和化学物理方法等。
物理方法主要包括物理气相沉积、物理溅射、电子束熔化、激光熔化、爆炸喷涂、电化学沉积等;化学方法主要包括化学气相沉积、化学溅射、化学还原、化学水解、电化学氧化等;生物方法主要是指利用生物体系合成和表征蛋白质、DNA、RNA等物质的方法;而化学物理方法主要是通过物理和化学相互作用来改变材料表面的性质。
不同的表面改性方法可以实现不同的表面改性效果,例如,物理气相沉积可以制备出薄膜和纳米结构,化学溅射可以制备出纳米材料及其复合材料,并且这些制备方法也可以相互结合使用。
表面改性技术的应用范围表面改性技术可以广泛应用于各种材料,如金属、陶瓷、复合材料、涂料、塑料和橡胶等。
在电子、光电、生物、医药、环保等领域中,表面改性技术有着各自独特的应用。
例如,在医疗领域,通过表面改性可以制备出具有生物相容性和生物活性的医疗材料,提高医疗器械的性能和安全性。
在环保领域,表面改性技术可以制备出具有高稳定性和高选择性的环境污染控制材料,如水处理材料、气体膜材料等。
在光电领域,通过表面改性可以制备出具有纳米结构的光电材料,如太阳能电池、光触媒、SPR传感器等。
表面改性技术的实现方法表面改性技术的实现方法可以根据不同的应用目标和材料特性选择不同的技术路线。
在表面改性前,需要对材料的表面性质进行详细的分析,确定表面改性的目标和方法。
第6章 生物材料表面改性

材料表面改性方法包括化学和物理方 法,通常化学方法较为繁琐,应用大量有 毒化学试剂,对环境造成污染,对人体也 有极大危害。物理方法具有工艺简单、操 作方便、对环境无污染等优点,日益受到 重视。
UHMWPE接枝丙烯酸的红外光谱图
XPS分析
a: PE,C的XPS峰
b: PE-AA,C的XPS峰
聚乙烯的C1s主要由两个峰组成,分别归属于C1和C2峰,其结合能分别为285ev 和289ev。结合图和表可以看出,未接枝聚乙烯表面有C2电子峰,但是含量很少, 可能是聚乙烯表面的杂质,可忽略,接枝聚乙烯表面碳原子的结合形式发生了变化 ,即C1含量降低,C2含量增加,C2/C1由0.068增加到0.297,增加了337%,说 明接枝聚乙烯表面碳元素产生了新的官能团。光敏剂二苯甲酮受紫外光引发,从 PE大分子链上夺取氢,产生大分子自由基,从而引发丙烯酸(AA)单体的接枝聚 合,因此,接枝链末端应有-COOH存在,而O=C-O的结合能为289ev,从而证明 了丙烯酸已经被成功接枝到聚乙烯表面。
通常辐射接枝的接枝率正比于吸收剂量,但超过某一剂量 范围时接枝率的增加趋于缓慢。
单体浓度过高会阻碍单体的接枝,。
反应温度对接枝共聚的影响是复杂的,多方面的,如反应 在高粘度介质中进行时常产生凝胶效应、能量转移与链转 移、侧链长度变化、单体扩散速度改变以及相分离等,对 辐射接枝来说提高反应温度通常对提高接枝率有利。
上述方法现已发展为可控自由基聚合(CRP),又 称为活性自由基聚合。
第六章 表面改性技术-表面热处理

缺点: 缺点: 设备投资大,只适用于外形简单的零件, 设备投资大,只适用于外形简单的零件, 形状复杂的零件,感应器不易制造。 形状复杂的零件,感应器不易制造。 (5)表面淬火的预热处理 ) 为了保证淬火质量,改善零件心部机械性能, 为了保证淬火质量,改善零件心部机械性能, 表面淬火前,可进行正火或调质预热处理。 表面淬火前,可进行正火或调质预热处理。 正火 预热处理
4、化学热处理的基本过程 、
a、将钢材和介质加热到高温,以提高对活性 、将钢材和介质加热到高温, 原子的溶解度,提高活性原子扩散能力; 原子的溶解度,提高活性原子扩散能力; 同时介质在高温下分解,产生活性原子。 同时介质在高温下分解,产生活性原子。 b、活性原子被钢吸收,并由表及里扩散,在 、活性原子被钢吸收,并由表及里扩散, 表层(扩散层)形成固溶体 固溶体或 表层(扩散层)形成固溶体或化合物
c、渗碳后的热处理 、
零件渗碳后,应进行热处理“淬火 低温回火 低温回火” 零件渗碳后,应进行热处理“淬火+低温回火”
6、固体渗碳 、
采用固体渗碳剂:碳粒 碳酸盐 采用固体渗碳剂:碳粒+碳酸盐
原理: 原理: 900~950℃ ~ ℃ BaCO3 BaO+CO2 C(碳粒)+CO2 (碳粒) 2CO 2CO [C]+CO2
二、钢的渗碳
1、渗碳:是向钢表层渗入碳原子的过程。 、渗碳:是向钢表层渗入碳原子的过程。 2、渗碳目的: 、渗碳目的: 提高钢表层的含碳量, 热处理后 提高钢表层的含碳量,经热处理后, 使表层具有高硬度,高耐磨性, 使表层具有高硬度,高耐磨性,而心部 仍保持一定的强度,较高的塑、韧性。 仍保持一定的强度,较高的塑、韧性。
要解决这一问题, 要解决这一问题,可以采用化学热处理的 方法。 方法。 化学热处理与物理热处理最大的区别是前 改变了钢的化学成分。 者改变了钢的化学成分。
表面改性技术

表面改性技术班级:材料092姓名:朱光辉学号:109012042 课程: 现代表面技术表面改性技术概述:表面技术是指采用某种工艺手段使材料表面获得与其基体材料的组织结构、性能不同的一种技术。
材料经表面改性处理后,既能发挥基体材料的力学性能,又能使材料表面获得各种特殊性能(如耐磨,耐高温,合适的射线吸收、辐射和反射能力,超导性能,润滑,绝缘,储氢等)表面改性技术可以掩盖基体材料表面的缺陷,延长材料和构件的使用寿命,节约稀、贵材料,节约能源,改善环境,并对各种高薪技术的发展具有重要作用。
表面改性技术的研究和应用已有多年。
70年代中期以来,国际上出现了表面改性热,表面改性技术越来越受到人们的重视。
表面改性的特点是:(1)不必整体改善材料,只需进行表面改性或强化,可以节约材料。
(2)可以获得特殊的表面层,如果超细晶粒、非晶态、过饱和固溶体,多层结构层等,其性能远非一般整体材料可比。
(3)表面层很薄,涂层用料少,为了保证涂层的性能、质量,可以采用贵重稀缺元素而不会显著增加成本。
(4)不但可以制造性能优异的零部件产品,而且可以用于修复已经损坏、失效的零件。
表面改性技术应用:表面改性技术广泛应用于机械工业、国防工业及航空航天领域,通过表面改性可以使材料性能提高,产品质量提高,降低企业成本。
表面技术的应用,在提高零部件的使用寿命和可靠性,提高产品质量,增加产品的竞争力,以及节约材料,节约能源,促进高科技技术的发展等方面都有着十分重要的意义。
表面改性技术方法:1、金属表面形变强化方法及其应用常用的金属材料表面形变强化方法主要有喷九、滚压和内孔挤压等强化工艺。
喷丸强化是当前国内外广泛应用的一种表面强化方法,即利用高速弹丸强烈冲击零件表面,使之产生形变硬化层并引进残余压应力。
已广泛用于弹簧、齿轮、链条、铀、叶片、火车轮等零部件,可显著提高金属的抗疲劳,抗应力腐蚀破裂、抗腐蚀疲劳、抗微动磨损、耐点蚀等的能力。
喷丸强化原理:(1)形成形变硬化层,在此层内产生两种变化:一是亚晶粒极大的细化,位错密度增高,晶格畸变增大;二是形成了高的宏观残余压应力。
技能培训 材料表面工程学 表面改性方法原始(一)

技能培训材料表面工程学表面改性方法原始(一)随着科技的不断发展,表面工程技术的应用范围越来越广泛。
其在化工、机械、材料等领域中的应用,促进了工业的发展,提高了产品的质量和表现。
作为表面工程学专业的学生,学习材料表面工程学和表面改性方法原理是非常必要的。
在本文中,我将分步介绍技能培训、材料表面工程学以及表面改性方法原理。
一、技能培训首先,技能培训是学习材料表面工程学和表面改性方法原理的基础。
这是因为学习这两方面需要学生具备一定的基本技能。
比如,如何锯割、磨削和调度表面等基本技能。
这些技能不但有助于掌握表面工程学和表面改性方法原理,还能够在实际操作和实践中发挥作用。
二、材料表面工程学其次,材料表面工程学是表面工程学的关键。
学习表面工程学,需要掌握表面物理、表面化学和表面热力学相关基础知识,了解表面物理、表面化学和表面热力学的基本概念、表面电化学性质、表面渗透性质等。
掌握这些知识,有利于理解材料表面工程学的原理,进一步透视表面材料的形成机制和特性。
三、表面改性方法原理最后,学习表面改性方法原理至关重要。
对于表面工程学专业的学生来说,表面改性方法指的是为了改变材料表面的性质而采用的一系列方法。
如化学改性、物理改性、电化学改性、热力学改性等。
此外,还有增强表面活性的方法、增强表面粘附能的方法等。
学生需要了解表面改性的基本原理、方法和影响等方面的知识,以为应用作出贡献。
总之,学习技能培训、材料表面工程学和表面改性方法原理,不仅能够掌握表面工程学和表面改性技术,还能为未来的工作中发挥重要作用。
对于表面工程的广泛应用,也需要学生们提高相关知识和技能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章 表面改性技术 6.1 金属表面形变强化
零件在服役过程中往往由于表面强度不足, 或者耐腐蚀性能差,而疲劳破损失效。因此,改 善和提高材料的表面性能,就成为提高疲劳强度、 延长使用寿命的重要工艺措施。表面形变强化就 是近年来国内外广泛研究应用的工艺之一,金属 表面喷丸强化工程就是其代表性技术。
图为不同弹丸速度和喷丸时间的弧高度值曲 线。当喷丸时间延长时, 弧高度先增大,之后逐渐平 稳,呈饱和趋势。弹丸速度提高(喷丸机叶轮 转速提 高),则弧高度全面增大。生产实际中以弧高度的饱和 值作为喷丸 强度。
第六章 表面改性技术 6.1 金属表面形变强化
2)所谓覆盖率是指强化后表面弹坑占据的面积与总强化表面的比值。 喷丸覆盖率的影响因素:零件材料的硬度、弹丸直径、喷射角度及距离、 喷丸时间等。
喷丸强化用的弹丸,常用的有三种:
1) 铸铁弹丸 碳质量分数物为2.75-3.60%,硬度约为 HRC58-65,退火后硬度为HRC30-57 。铸铁弹丸的价格低廉。
2) 钢弹丸 当前使用的钢弹丸一般是将含碳量为0.7%的 弹簧钢丝(或不锈钢丝),切制成段,经磨圆加工制成,直径 为0.4-1.2mm。硬度HRC45-50为最适宜。钢弹丸的组织最 好为回火马氏体或贝氏体。
表面强化层的组织:
第六章 表面改性技术 6.1 金属表面形变强化
强化后残余应力的分布规律 表面为残余压应力,心部为残余拉应力,最表 面层由于应力松驰,其残余应力稍有降低,故曲 线上有“抬头”现象。
第六章 表面改性技术 6.1 金属表面形变强化
疲劳强度随表面残余压应力的增加而增加
第六章 表面改性技术 6.1 金属表面形变强化
第六章 表面改性技术 6.1 金属表面形变强化
3)表面粗糙度的影响因素:零件材料的强度和硬度、弹丸直径、喷射 角度及速度、零件的原始表面粗糙度。
在其他条件相同的情况下,零件材料的强度和表面硬度值越高,塑 性变形越困难,弹坑越浅,表面粗糙度值越小;
3) 玻璃弹丸 其应用是在近十几年发展起来的,已在国防 工业中获得应用。玻璃弹丸的直径为0.05—0.40 mm范围,硬 度HRC46-50。
此章 表面改性技术 6.1 金属表面形变强化
喷丸强化
强化用的弹丸与清理、成型、校形用的弹丸不同,必须 是因球形,切忌有棱角,以免损伤零件表面。
喷丸强化是当前国内外广泛应用的一种表面强化 方法,即利用高速弹丸强烈冲击零件表面,使之产 生形变硬化层并引进残余压应力。已广泛用于弹簧、 齿轮、链条、铀、叶片、火车轮等零部件,可显著 提高金属的抗疲劳,抗应力腐蚀破裂、抗腐蚀疲劳、 抗微动磨损、耐点蚀等的能力。
第六章 表面改性技术 6.1 金属表面形变强化
喷丸强化设备主要有两类:
(2)气动式喷丸机适用于要求喷丸强度较低、 品种多、批量小、形状复杂、尺寸较小的零件。
第六章 表面改性技术 6.1 金属表面形变强化
(2)气动式喷丸机 压缩空气式
第六章 表面改性技术 6.1 金属表面形变强化
重力式喷丸机结构 比吸入式复杂,适合 使用比重、直径较大 的金属弹丸。
弹丸直径越大,速度越快,弹丸与工件碰撞的动量越大,喷丸的强 度就越大。
喷丸形成的残余压应力可以达到零件材料抗拉强度的60%,残余压 应力层的深度通常可达0.25mm,最大极限值为1mm左右。
喷丸强度需要一定的喷丸时间来保证,经过一定时间,喷丸强度达 到饱和后,再延长喷丸时间,强度不再明显增加。
在喷丸强度的阿尔门试验中,喷丸强度的表征为试片变形的拱高。
喷丸强化原理:
1)形成形变硬化层,在 此层内产生两种变化:
一是亚晶粒极大的细化, 位错密度增高,晶格畸变增 大;
二是形成了高的宏观残余 压应力。
2)表面粗糙度略有增大, 但却使切削加工的尖锐刀痕 圆滑。
第六章 表面改性技术 6.1 金属表面形变强化
表面强化层的组织 变化:
第六章 表面改性技术 6.1 金属表面形变强化
一般来说,黑色金属制件可以用铸铁丸、钢丸和玻璃丸。 有色金属和不锈钢制件则需采用不锈钢丸或玻璃丸。
第六章 表面改性技术 6.1 金属表面形变强化 喷丸强化设备主要有两类: (1)机械离心式喷丸机,适用于要求喷丸强度高、 品种少、批量大、形状简单、尺寸较大的零件。
第六章 表面改性技术 6.1 金属表面形变强化
第六章 表面改性技术 6.1 金属表面形变强化
直接加压式喷丸 机
第六章 表面改性技术 6.1 金属表面形变强化
表示喷丸强化质量的三个参数:喷丸强度、覆盖率、 表面粗糙度。
第六章 表面改性技术 6.1 金属表面形变强化
1)影响喷丸强度的工艺参数主要有:弹丸直径、弹流速度、弹丸流量、 喷丸时间等。
在规定的喷丸强度条件下,零件的硬度低于或等于标准试片硬度时, 覆盖率能达到100%;反之,覆盖率会下降。
在相同的弹丸流量下,喷嘴与工件的距离越长、喷射的角度越小、 弹丸直径越小,达到覆盖率要求的时间就越短。
喷丸强化时,应选择大小合适的弹丸、喷射角度及距离,使喷丸 强度和覆盖率同时达到要求值。
通常覆盖率要求在100% - 200%,有些零件,如曲轴应用可能要求覆 盖率高于200%。
第六章 表面改性技术 6.1 金属表面形变强化
金属表面形变强化方法及其应用
常用的金属材料表面形变强化方法主要有喷丸、滚压和内孔
挤压等强化工艺。
表面滚压强化示意图。对于圆角、沟槽等皆可通过该方法获
得表层形变强化,并引进残余压应力。
内孔挤压是使孔的内表面获得形变强化的工艺措施,效果显
著。
表面滚压
第六章 表面改性技术 6.1 金属表面形变强化
第六章 表面改性技术 6.1 金属表面形变强化 阿尔门试验
弧高度测试时采用标准化的弧高度试片,也称 Almen试片。试片 分N、A、C三种 ,其材料和硬度都有规定,长度和宽度也固定,只是厚 度不同。其中应用较多的为A试片(厚1.27mm),适用于中等喷丸强度。
试片在专用的夹具中,接受在一组选定的工艺参数条件下进行的喷 射,然后测量其变形后凸弧的高度作为喷丸强度的量度。弧高度单位用 mm表示。例如,30A表示 A试片弧高度为0.3mm。