车牌识别综合实验报告大作业
图像处理车牌识别系统设计实验报告

图像处理班别:11医学应用(2)班组长:组员:指导老师:目录一、摘要 -------------------------------------------------------------------------------------- 3二、设计原理------------------------------------------------------------------------------- 31、车牌的定位研究----------------------------------------------------------------------- 32、字符分割的研究----------------------------------------------------------------------- 43、字符识别的研究----------------------------------------------------------------------- 4三、详细设计步骤------------------------------------------------------------------------- 41、车牌定位-------------------------------------------------------------------------------- 41.1图像的预处理----------------------------------------------------------------------- 41.2车牌定位------------------------------------------------------------------------------ 82、字符分割-------------------------------------------------------------------------------- 92.1对读入图像进行预处理操作----------------------------------------------------- 102.2图像校正----------------------------------------------------------------------------- 112.3去除水平方向上的边框----------------------------------------------------------- 122.4去除垂直方向上的边框----------------------------------------------------------- 142.5去除车牌上的圆点----------------------------------------------------------------- 163、字符识别------------------------------------------------------------------------------- 193.1建立字符模板数据库-------------------------------------------------------------- 193.2对分割字符进行匹配-------------------------------------------------------------- 214、系统界面的实现---------------------------------------------------------------------- 24四、设计结果分析------------------------------------------------------------------------ 29五、设计体会------------------------------------------------------------------------------ 29车牌识别系统的设计一、摘要车牌是一辆汽车独一无二的信息,因此,对车辆牌照的识别技术可以作为辨识一辆车最为有效的方法。
车牌识别实验报告

车牌识别实验报告车牌识别实验报告一、引言车牌识别技术是近年来快速发展的一项重要技术,它在交通管理、安全监控等领域具有广泛的应用前景。
本文将介绍一次车牌识别实验的过程和结果,以及对该技术的评估和展望。
二、实验目的本次实验的目的是通过使用计算机视觉技术,实现对车辆车牌的自动识别。
通过该实验,我们希望验证车牌识别技术的准确性和可行性,并评估其在实际应用中的效果。
三、实验方法1. 数据收集我们采集了一组包含不同类型和风格的车牌图像数据,包括普通车辆、摩托车和电动车等。
这些数据来源于不同的场景,包括白天、夜晚和恶劣天气等条件下的拍摄。
2. 图像预处理为了提高车牌识别的准确性,我们对采集到的图像进行了预处理。
首先,我们使用图像处理算法对图像进行了去噪处理,去除了图像中的干扰信息。
然后,我们对图像进行了灰度化处理,将彩色图像转化为灰度图像,以便后续的处理。
3. 特征提取在进行车牌识别之前,我们需要从图像中提取出车牌的特征。
我们使用了一种基于边缘检测的方法,通过检测图像中的边缘来提取车牌的轮廓。
然后,我们根据车牌的形状和大小,进一步筛选出可能的车牌区域。
4. 字符分割在车牌识别中,字符分割是非常关键的一步。
我们使用了一种基于连通区域的方法,将车牌图像中的字符分割出来。
通过分析字符之间的间隔和相对位置,我们可以更准确地识别出每个字符。
5. 字符识别最后一步是对分割出的字符进行识别。
我们使用了一种基于深度学习的方法,训练了一个字符识别模型。
通过将字符图像输入到模型中,我们可以得到对应的字符标签,从而实现对车牌的识别。
四、实验结果经过实验,我们得到了一组车牌识别的结果。
在测试数据集上,我们的识别准确率达到了90%以上。
尤其是在白天和晴朗天气下,识别效果更加出色。
然而,在夜晚和雨天等恶劣条件下,识别准确率有所下降。
五、实验评估尽管我们的车牌识别系统取得了较好的结果,但仍存在一些问题和改进空间。
首先,恶劣天气条件下的识别准确率较低,需要进一步优化算法来提高鲁棒性。
车牌识别项目实验报告

摘要基于数学形态学的车牌定位方法【摘要】在汽车牌照识别系统中,车牌定位是整个识别模块实现的前提,目前车牌定位的方法多种多样,各有所长,但存在着计算量大或定位准确率不高等问题。
本文结合数学形态学的基本运算,尝试使用数学形态学来实现车牌照识别系统中的关键步骤——车牌定位。
实验结果表明此方法算法简单,且有一定的定位准确率。
【关键词】数学形态学,结构元素,车牌定位浙江大学城市学院毕业论文Abstract A Method 0f License Plate Location Based0n Morphology【Abstract】In car license plate recognition system,license plate location is the precondition of the whole recognition module.Now various methods are used in it, each of which has its own advantage.However,such problems as the quantity in calculation or the low correct location rate aren’t solved.This paper uses mathematical morphology combined with its elemental calculation to realize the crucial procedure—license plate location in car license plate recognition.Experiment results show that such method call simplify the algorithm and has some correct location rate.【Key Words】Morphology,Structure element, License plate location目录第1章绪论 (1)1.1 车牌研究概要 (1)1.1.1 车牌定位的背景 (1)1.1.2 车牌定位的意义 (2)1.2 本文研究的内容 (3)1.2.1 车牌定位研究的主要内容 (4)1.2.2 研究小结 (4)第2章车牌定位算法的研究 (5)2.1 传统的车牌定位算法 (5)2.1.1 基于颜色的分割算法 (5)2.1.2 基于纹理的分割算法 (5)2.1.3 基于边缘检测的分割算法 (6)2.1.4 基于数学形态学的分割算法 (6)2.1.5 基于遗传算法的分割方法 (7)2.1.6 基于神经网络的分割算法 (8)2.2 形态学的基本运算 (8)2.2.1 膨胀,腐蚀 (9)2.2.2 开,闭运算 (10)2.3 本章小结 (11)第3章车牌定位算法的实现 (12)3.1 算法处理过程 (12)3.2 二值化处理 (12)3.3 腐蚀去噪 (13)3.4 作膨胀,腐蚀运算 (13)3.5 标记连通域 (13)3.6 标识并定位车牌 (14)3.7 本章小结 (15)第4章实验结果及分析 (16)4.1 实验说明 (16)4.1.1 实验流程 (16)4.1.2 实验分析 (17)4.2 实验小结 (20)结论 (21)参考文献 (22)附录 (24)致谢.......................................................................................................... 错误!未定义书签。
车牌识别测试报告

车牌识别测试报告1. 背景介绍车牌识别技术是一种通过计算机视觉技术对车辆的车牌进行自动识别的技术。
它广泛应用于交通管理、停车场管理、安防监控等领域。
本文将对车牌识别系统进行测试,并给出详细的测试报告。
2. 测试环境车牌识别系统的测试环境如下: - 操作系统:Windows 10 - 开发工具:Python 3.7 - 相机设备:USB摄像头3. 测试步骤步骤一:安装依赖库车牌识别系统的运行需要依赖一些Python库,如OpenCV、Numpy等。
在测试前,首先需要确保这些库已经正确安装。
步骤二:获取测试样本为了测试车牌识别系统的准确性和鲁棒性,我们从不同场景中收集了一些包含车牌的图片作为测试样本。
这些样本包括不同角度、不同光照条件下的车牌图片。
步骤三:预处理图片在进行车牌识别前,需要对测试样本进行一些预处理操作,以增加识别的准确性。
预处理步骤包括图像去噪、图像增强等。
步骤四:车牌定位车牌定位是车牌识别的第一步,在该步骤中,系统需要识别出图像中的车牌位置。
我们使用基于边缘检测和形态学运算的方法进行车牌定位。
步骤五:字符分割在车牌定位的基础上,需要对车牌进行字符分割,将车牌中的字符分离出来。
字符分割算法通常包括基于投影法、基于连通性等方法。
步骤六:字符识别在字符分割后,将得到单个字符的图像,然后使用字符识别算法对这些字符进行识别。
字符识别算法可以采用传统的机器学习方法,也可以使用深度学习方法。
步骤七:识别结果验证通过对测试样本的处理和识别,得到了识别结果。
为了验证系统的准确性,我们将人工判断识别结果与实际车牌进行比对。
4. 测试结果经过对车牌识别系统的测试,我们得到了如下结果: - 在正常光照条件下,系统的准确率达到了90%以上; - 在光照不均匀或夜间光照条件下,系统的准确率略有下降,但仍能保持在80%以上; - 对于车牌被遮挡或者倾斜的情况,系统的准确率会有所降低。
5. 总结与改进车牌识别系统在本次测试中表现出了较高的准确性和鲁棒性。
车牌识别项目总结

车牌识别项目总结
车牌识别项目是一种利用计算机视觉技术来识别车辆车牌信息的项目。
通过对车辆图片或视频流进行处理,提取车牌区域,并使用图像处理、机器学习和深度学习等算法来识别车牌中的字符和数字。
车牌识别项目的总结如下:
1. 数据收集:为了建立车牌识别模型,需要收集大量的车辆图片和视频数据。
这些数据应涵盖各种不同环境下的车辆和车牌样本,以提高模型的泛化能力。
2. 图像预处理:对收集到的车辆图片进行预处理是车牌识别的第一步。
常见的预处理操作包括灰度化、去噪、图像增强和车牌区域定位等。
3. 车牌检测:车牌检测是识别车辆图片中车牌区域的过程。
常用的方法有基于特征的方法、基于模板匹配的方法和基于深度学习的方法。
4. 车牌识别:通过提取车牌区域中的字符和数字来识别车牌。
常用的方法有基于图像处理的方法和基于深度学习的方法。
对于深度学习方法,常用的模型有卷积神经网络(CNN)和循环神经网络(RNN)。
5. 性能评估:对车牌识别模型进行评估是项目的关键。
常用的评估指标包括准确率、召回率和F1分数等。
通过对不同模型
和参数的调整,可以提高识别准确度和鲁棒性。
6. 应用场景:车牌识别技术可以广泛应用于交通管理、智能停车、公安安防等领域。
通过实时识别车牌号码,可以提高交通监控效率和安全性。
总结起来,车牌识别项目是一项基于计算机视觉技术的项目,通过对车辆图片进行处理和分析,提取车牌区域并识别车牌号码。
这项技术在交通管理和安防等领域具有广泛的应用前景。
车牌识别实验报告

车牌识别实验报告1. 引言车牌识别是计算机视觉领域中一项重要的任务,它可以应用于交通管理、车辆追踪、智能停车等多个领域。
本实验旨在使用计算机视觉技术实现车牌识别,并评估不同方法在车牌识别任务上的性能。
2. 方法与实验设置2.1 数据集本实验使用了包含X张车辆图片的数据集,其中每张图片都带有车牌。
数据集中的车牌来自不同地区,包括不同字母和数字的组合。
2.2 数据预处理在进行车牌识别之前,需要对数据进行一定的预处理。
我们采取了以下步骤来准备数据:2.2.1 图像裁剪首先,我们利用图像处理技术对每张图片进行裁剪,截取出车牌区域。
由于车牌的位置和大小可能会有所不同,因此需要使用特定的算法来进行车牌区域的定位和提取。
2.2.2 图像增强为了提高图像中车牌的可分辨性,我们对裁剪后的车牌图像进行了增强处理。
常见的增强方法包括对比度增强、直方图均衡化和图像清晰化等。
通过这些增强技术,我们可以增强车牌图像的边缘和文字信息,从而更好地进行后续的识别。
2.3 特征提取与分类在车牌识别中,我们需要提取图像中的特征,并将其输入到分类器中进行识别。
常用的特征提取方法包括颜色直方图、梯度方向直方图和局部二值模式等。
在本实验中,我们选择了梯度方向直方图作为特征,并使用支持向量机(SVM)作为分类器进行车牌识别。
3. 实验结果与分析3.1 评估指标在对车牌进行识别后,我们需要评估识别的准确率和性能。
常用的评估指标包括精确度(Precision)、召回率(Recall)和F1值等。
3.2 实验结果根据实验设置,我们对数据集进行了训练和测试,并使用评估指标来评估车牌识别模型的性能。
经过多次实验和交叉验证,我们得到了如下结果:方法精确度召回率F1值方法A 0.85 0.82 0.83方法B 0.92 0.88 0.90方法C 0.95 0.93 0.943.3 分析与讨论根据实验结果,我们可以发现方法C在车牌识别任务中的性能最好,具有最高的精确度、召回率和F1值。
车牌识别技术实验报告

车牌识别技术实验报告引言车牌识别技术是一种基于计算机视觉和模式识别的技术,旨在从车辆图像中自动识别并提取出车牌信息。
随着交通管理的不断升级和智能化的要求,车牌识别技术逐渐得到广泛应用。
本实验旨在探究车牌识别技术的原理和实现方法,并通过实验验证其识别准确率和稳定性。
实验目的1. 了解车牌识别技术的基本原理;2. 学习车牌识别技术的常见实现方法;3. 掌握车牌识别系统的搭建和调试方法;4. 通过实验验证车牌识别技术的准确率和稳定性。
实验过程1. 数据集准备首先,我们需要准备具有不同车牌种类和样式的数据集作为实验数据。
根据实际应用场景,可以从公开数据集、网络爬取和现场采集等渠道获取。
2. 车牌定位车牌定位是车牌识别的第一步,它的目的是在整个车辆图像中提取出车牌区域。
常用的车牌定位方法包括边缘检测、颜色识别和特征匹配等。
3. 字符分割字符分割是车牌识别的第二步,它的目的是将车牌区域中的字符分割开来,以便后续识别。
常用的字符分割方法包括基于间隔的分割方法和基于统计特征的分割方法。
4. 字符识别字符识别是车牌识别的最关键步骤,它的目的是将分割开的字符识别出来。
常用的字符识别方法包括基于模板匹配的方法和基于机器学习的方法。
5. 实验验证通过将实现的车牌识别系统应用于真实场景的车辆图像,对识别结果进行准确率和稳定性的测试和评估。
可以使用准确率和召回率等指标来评估识别效果。
实验结果经过以上实验步骤,我们成功搭建了一个车牌识别系统,并进行了实验验证。
在实验过程中,我们从数据集中随机选择了100张车辆图像进行识别测试。
实验结果显示,车牌识别系统在准确率和稳定性方面表现出色,准确率达到95%,并能在不同光照和角度下稳定识别。
实验总结通过本次实验,我们深入了解了车牌识别技术的原理和实现方法。
我们学习了车牌定位、字符分割和字符识别等关键步骤,并成功搭建了一个车牌识别系统。
实验结果表明,该系统具有较高的准确率和稳定性,在实际应用中具有很大的潜力。
《数字图像处理》大作业:车牌识别

将图中字符分割出来 将每个字符单独分割出来进行操作方便字 符识别 用d=bwareaopen(d,150);将第二个 和第三个字符中间的点去除点。
分割第一个字符的程序
wide1 = 0 while sum(d(:,wide1+1))<3 && wide1 <= n-2 wide1 = wide1 + 1; end wide2 = wide1; while sum(d(:,wide2+1))>2 && wide2 <= n-2 wide2 = wide2 + 1; end % temp = imcrop(d, [wide1 1 wide2-wide1 m]); % figure;imshow(temp); % tp=3;bottm=m-5; while sum(d(tp,wide1:wide2))==0 tp = tp + 1; end while sum(d(bottm,wide1:wide2))==0 bottm = bottm - 1; end e1 = imcrop(d, [wide1 tp wide2-wide1 bottm-tp]);
%求出一列中满足蓝色区域点的个数
%找出车牌区域左右边界
车牌字符处理
首先要对定位好的车牌图像进行处理,再将车牌 上的字符分割出来,方便后续识别操作。ຫໍສະໝຸດ 图像灰度化图像二值化
图像滤波处理
车牌图像处理
图像处理部分程序
X = im2bw(Plate); 像 [H, L] = size(X); X = imcrop(X, [5 5 L-10 H-10]); %im2bw使用阈值变换法把灰度图 转换成二值图像。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数字图像处理综合实验报告车牌识别技术(LPR)组长:__ ******_____组员:___ _****** ____ _******_________ _*******___指导老师:___ *******_____*****学院****学院2010年6月10日实验五车牌识别技术(LPR)一、实验目的1、了解车牌识别系统的实现,及车牌识别系统的应用;2、了解并掌握车牌识别系统如何实现。
二、实验内容1、车牌识别系统的图像预处理、2、车牌定位、3、字符分割4、字符识别三、实验原理车辆牌照识别(LPR)系统是一个专用的计算机视觉系统,它能够自动地摄取车辆图像和识别车牌号码,可应用在公路自动收费、停车场管理、失窃车辆侦察、门卫系统、智能交通系统等不同场合。
LPR系统的广泛应用将有助于加快我国交通管理自动化的进程。
1、预处理摄像时的光照条件,牌照的整洁程度,摄像机的状态(焦距,角度和镜头的光学畸变),以及车速的不稳定等因素都会不同程度的影响图像效果,出现图像模糊,歪斜或缺损,车牌字符边界模糊不清,细节不清,笔画断开,粗细不均等现象,从而影响车牌区域的分割与字符识别的工作,所以识别之前要进行预处理。
预处理的包括:1)消除模糊——用逆滤波处理消除匀速运动造成的图像运动模糊2)图像去噪。
通常得到的汽车图像会有一些污点,椒盐噪声,应用中值滤波3)图像增强自然光照度的昼夜变化会引起图像对比度的不足,所以必须图像增强,可以采用灰度拉伸,直方图均衡等通过以上处理,提高了图像的质量,强化了图像区域。
2、车牌定位自然环境下,汽车图像背景复杂、光照不均匀,如何在自然背景中准确地确定牌照区域是整个识别过程的关键。
首先对采集到的视频图像进行大范围相关搜索,找到符合汽车牌照特征的若干区域作为候选区,然后对这些侯选区域做进一步分析、评判,最后选定一个最佳的区域作为牌照区域,并将其从图象中分割出来。
• 图像的灰度化 • 图像灰度拉伸• 对图像进行边缘检测采用Sobel 算子经行边缘检测该算子包含两组3*3的矩阵,分别为横向及纵向,将之与图像作平面卷积,即可分别得出横向及纵向的亮度差分近似值。
如果以A 代表原始图像,Gx 及Gy 分别代表经横向及纵向边缘检测的图像,其公式如下:A Gx *]101202101⎥⎥⎥⎦⎤+-+-+-⎢⎢⎢⎣⎡= and A *121000121Gy ⎥⎥⎥⎦⎤---+++⎢⎢⎢⎣⎡= 图像的每一个像素的横向及纵向梯度近似值可用以下的公式结合,来计算梯度的大小。
2y 2x G G G +=然后可用以下公式计算梯度方向。
⎪⎪⎭⎫⎝⎛=x yG G arctan θ 在以上例子中,如果以上的角度θ等于零,即代表图像该处拥有纵向边缘,左方较右方暗。
• 对其进行二值化 • 纹理分析法行扫描行法是利用了车牌的连续特性。
车牌区域有连续7个字符,而且字符与字符之间的距离在一定范围内。
定义从目标到背景或者从背景到目标为一个跳变。
牌照区域相对于其它非车牌区域跳变多,而且间距在定范围内和跳变次数大于一定次数,并且连续满足上述要求的行要达到一定的数目。
从下到上的顺序扫描,对图像的每一行进行从左向右的扫描,碰到跳变点记录下当前位置,如果某行连续20个跳变点以上,并且前一个跳变点和后一个跳变点的距离在30个像素内,就记录下起始点和终止点位置,如果连续有10行以上这样的跳变点,我们就认为该区域就是车牌预选区域。
3、字符分割:完成牌照区域的定位后,再将牌照区域分割成单个字符,然后进行识别。
字符分割一般采用垂直投影法。
由于字符在垂直方向上的投影必然在字符间或字符内的间隙处取得局部最小值的附近,并且这个位置应满足牌照的字符书写格式、字符、尺寸限制和一些其他条件。
利用垂直投影法对复杂环境下的汽车图像中的字符分割有较好的效果。
• 车牌区域灰度二值化•确定字符上下边框和去除铆钉和车牌垂直投影字符分割难点由于铆钉和周围其它干扰像素的原因,使得垂直投影中,铆钉会对图像的分割起干扰作用,所以要先去除铆钉和确定字符上下界。
方法:将图片看成是一个平面。
将图片向水平方向投影,这样有字的地方的投影值就高,没字的地方投影得到的值就低。
这样会得到一根曲线,像一个又一个山头。
下面是我手画示意图:然后,用一根扫描线(上图中的S)从下向上扫描。
这个扫描线会与图中曲线存在交点,这些交点会将山头分割成一个又一个区域。
车牌图片一般是7个字符,因此,当扫描线将山头分割成七个区域时停止。
然后根据这七个区域向水平线的投影的坐标就可以将图片中的七个字符分割出来。
•字符大小归一化外形归一化:将文字的外边框按比例线性放大或缩小成为规定尺寸的文字图像简单的采用图像的放大和缩小算法,实现所有字符的同大小,为下一步识别做好准备。
4、字符识别:字符识别方法目前主要有基于模板匹配算法和基于人工神经网络算法。
我们选用基于模板匹配算法首先将分割后的字符二值化,并将其尺寸大小缩放为字符数据库中模板的大小,然后与所有的模板进行匹配,最后选最佳匹配作为结果。
用采集到的20多幅汽车图片作为实验样本数据,用纯软件的方法实现了车牌字符的自动识别,达到了较高的识别率。
四、详细设计与实现车牌图片预处理车牌定位分割字符分割字符识别输出结果1、预处理1)灰度化主要流程图2)高斯滤波主要流程图2、车牌定位1)Sobel边缘检测主要流程图2)车牌粗略定位主要流程图3、车牌分割1)车牌人工矫正主要流程图2)车牌精确分割主要流程图3)字符模板归一并储存主要流程图4、简易字符识别主要流程图五、实验结果与分析对十几张图片进行车牌识别,将其中IMAG00291.bmp作为例子,分析其结果。
5.1.1打开图片图5.1原始图像5.1.2 图像的灰度化图5.2灰度化后图像彩色图像包含着大量的颜色信息,不但在存储上开销很大,而且在处理上也会降低系统的执行速度,因此在对图像进行识别等处理中经常将彩色图像转变为灰度图像,以加快处理速度。
由彩色转换为灰度的过程叫做灰度化处理。
选择的标准是经过灰度变换后,像素的动态范围增加,图像的对比度扩展,使图像变得更加清晰、细腻、容易识别。
5.1.3 图像的高斯滤波图5.3高斯滤波后图像高斯滤波对随机噪声和高斯噪声(尤其是服从正态分布的噪声)的去除效果都比较好,能够有效除去采集过来时图片的随机噪声。
5.2.1 Sobel 边缘检测Sobel 算子根据像素点上下、左右邻点灰度加权差,在边缘处达到极值这一现象检测边缘。
对噪声具有平滑作用,提供较为精确地边缘方向信息,边缘定位精度不够高,但对于车牌的粗略定位还是能起作用的,效果比较好,尤其是对高斯滤波过后的图片。
5.2.2 车牌定位分割车牌定位采用纹理跳变法实现的,在算法中采用了2*6的粗定位,最后效果虽然不太好,但是能准确地将车牌区域定位并分割出来。
5.3.1 车牌人工矫正由于车牌图像不是水平的,对分割和识别会产生影响,需要人工对其矫正,经实验得,这幅图像需矫正-1°。
实验结果见图5.7图5.4 Sobel 边缘检测后图像图5.5 车牌定位后图像标记结果图5.6 根据图5.5在原图片截取的车牌图5.7 已矫正了-1°的车牌图像5.3.2 车牌的灰度化和二值化图5.8已灰度化的车牌图像图5.9已二值化的车牌图像此处车牌图片的二值化采用的是比较流行的自适应阈值二值化,它根据车牌字符和车牌背景的区分,能有效地将字符突出出来,对车牌的分割有着明显的好处。
5.3.3 车牌字符的分割图5.10车牌字符指示图像图5.11完成车牌字符分割后的图像对预处理过后的车牌图像进行精确定位,并依据竖直方向从下到上扫描出6个大的间隙,再根据字符的宽度特点,确定其字符位置,并将已预处理过后相应的字符归一化后后台保存起来,为下一步车牌识别准备。
5.4 简易车牌识别图5.12车牌识别效果图运行该程序后,会将上一步存储的字符与已存好的模板进行匹配,根据其像素点的相同点数和白点的个数作为依据,其效果并不理想,但由于该字符刚好分割出来作为原模板,所以能很好的识别出来,该识别功能并不完美,但能够针对一小部分车牌图像进行很好的识别。
表5-1车牌定位车牌分割车牌识别车牌识别2字以内错测试图片数目16 15 15 15正确图片张数15 15 5 7正确率93.8% 100% 33.3% 46.7%分析:该程序的车牌预处理的效果比较好,使得经过sobel边缘检测后,车牌的定位能够准确地定位出来,其正确率经过实验所得,几乎达到94%;但由于是粗略定位,会对车牌字符分割带来一定影响,在字符分割这一块采用了一种自适应分割法,它相对于纯粹的垂直投影法有着明显的优势,尤其是对于粗定位的车牌图片,采用这种分割方法,其效果较为理想,对于矫正过后的图片,其达到了几乎100%的正确率;最后的车牌识别采用的是模板匹配,利用分割出来的字符图片作为模板,再对其匹配,其效果较差,若该字符刚好是模板,则其能识别出来,若不是,则其正确率较低,最终识别率仅为33.3%,两个字内错的也仅为46.7%。
在车牌识别的过程中数字库的建立很重要,只有数字库的准确才能保证检测出来的数据正确。
切割出来的数据要与数据库的数据作比较,所以数据库的数据尤为重要。
将A误识别为4了,在识别中还可能出错的有0和D、5和8、1和I等,因此需要在其他方面做些弥补。
六、小结实验对车牌识别系统的软件部分进行了研究,分别从图像预处理、车牌定位、字符分割以及字符识别等方面进行了系统的分析。
在车牌定位我们采用基于灰度跳变的定位方法,采用先对图像进行预处理,再进行边缘检测操作的方法。
实验表明本方法既保留了车牌区域的信息,又减少了噪声的干扰,从而简化了二值化处理过程,提高了后续处理的速度。
实验表明,用该方法实现的车牌定位准确率较高。
本设计用C#编程运行结果可以得出,本设计采用的图像预处理、sobel边缘检测、灰度跳变等对车牌的定位都是非常有效的,而本设计采用的水平投影分析和自适应阈值二值化技术有效检测了车牌图像的上下左右边框,采用人工旋转角度,准确实现的车牌字符的分割,对多个车牌进行实验,均有很高的正确率。
本设计虽然车牌的识别部分不是很好,但最终能够实现该功能已很满足了。