部编版人教初中数学九年级上册《24.1.2 垂直于弦的直径 教学设计》最新精品优秀教案

合集下载

人教版数学九年级上册24.1.2《垂直于弦的直径》教学设计

人教版数学九年级上册24.1.2《垂直于弦的直径》教学设计

人教版数学九年级上册24.1.2《垂直于弦的直径》教学设计一. 教材分析人教版数学九年级上册24.1.2《垂直于弦的直径》是圆的一部分性质的教学内容。

本节课主要让学生了解并掌握垂直于弦的直径的性质,能灵活运用这一性质解决相关问题。

教材通过实例引导学生探究,培养学生的观察、思考和动手能力,为后续圆的弦和圆弧的学习打下基础。

二. 学情分析九年级的学生已经学习了平面几何的基本知识,对图形的性质和定理有一定的理解。

但垂直于弦的直径这一性质较为抽象,学生可能难以理解。

因此,在教学过程中,要注重引导学生通过观察、操作、思考、讨论等方式,逐步掌握性质,提高学生的空间想象和逻辑思维能力。

三. 教学目标1.了解垂直于弦的直径的性质,能证明并运用这一性质解决相关问题。

2.培养学生的观察、思考、动手和合作能力。

3.提高学生对圆的一部分性质的兴趣,为后续圆的学习打下基础。

四. 教学重难点1.垂直于弦的直径的性质及其证明。

2.灵活运用垂直于弦的直径的性质解决实际问题。

五. 教学方法1.情境教学法:通过实例引导学生观察、思考,激发学生的学习兴趣。

2.问题驱动法:提出问题,引导学生探究,培养学生的解决问题能力。

3.合作学习法:分组讨论,共同完成任务,提高学生的团队协作能力。

4.实践操作法:让学生动手操作,加深对性质的理解。

六. 教学准备1.教学课件:制作课件,展示实例和动画,辅助教学。

2.教学素材:准备相关的几何图形,便于学生观察和操作。

3.教学设备:投影仪、计算机、黑板、粉笔等。

七. 教学过程1.导入(5分钟)利用实例引入课题,展示垂直于弦的直径的性质,激发学生的兴趣。

2.呈现(10分钟)展示垂直于弦的直径的性质,引导学生观察、思考,并提出问题。

3.操练(10分钟)分组讨论,让学生动手操作,证明垂直于弦的直径的性质。

4.巩固(10分钟)出示练习题,让学生独立解答,巩固所学知识。

5.拓展(10分钟)出示一些实际问题,让学生运用垂直于弦的直径的性质解决,提高学生的应用能力。

人教版九年级数学上册《24.1.2垂直于弦的直径》公开课教学设计

人教版九年级数学上册《24.1.2垂直于弦的直径》公开课教学设计

人教版九年级数学上册《24.1.2垂直于弦的直径》公开课教学设计一. 教材分析人教版九年级数学上册《24.1.2垂直于弦的直径》这一节主要讲述了圆中垂直于弦的直径的性质。

通过这一节的学习,学生能够理解并掌握垂直于弦的直径的性质,并能运用这一性质解决相关问题。

教材通过例题和练习题的形式,帮助学生巩固所学知识,提高解决问题的能力。

二. 学情分析九年级的学生已经具备了一定的数学基础,对圆的基本概念和性质有所了解。

但是,对于圆中垂直于弦的直径的性质,他们可能还比较陌生。

因此,在教学过程中,需要引导学生从已有的知识出发,逐步探究和理解新知识。

三. 教学目标1.理解并掌握圆中垂直于弦的直径的性质。

2.能够运用垂直于弦的直径的性质解决相关问题。

3.培养学生的观察能力、思考能力和解决问题的能力。

四. 教学重难点1.垂直于弦的直径的性质。

2.如何运用垂直于弦的直径的性质解决实际问题。

五. 教学方法1.引导探究法:通过引导学生观察、思考和讨论,让学生自主发现和理解垂直于弦的直径的性质。

2.例题讲解法:通过讲解典型例题,让学生掌握运用垂直于弦的直径的性质解决问题的方法。

3.练习法:通过课堂练习和课后作业,巩固所学知识,提高解决问题的能力。

六. 教学准备1.准备相关课件和教学素材。

2.准备典型例题和练习题。

3.准备黑板和粉笔。

七. 教学过程1.导入(5分钟)通过回顾圆的基本性质和概念,引导学生进入新的学习内容。

2.呈现(10分钟)展示圆中垂直于弦的直径的性质,引导学生观察和思考。

3.操练(15分钟)讲解典型例题,让学生掌握运用垂直于弦的直径的性质解决问题的方法。

4.巩固(10分钟)布置课堂练习题,让学生巩固所学知识。

5.拓展(5分钟)通过解决实际问题,让学生运用所学知识解决实际问题。

6.小结(5分钟)总结本节课所学内容,引导学生理解垂直于弦的直径的性质。

7.家庭作业(5分钟)布置课后作业,巩固所学知识。

8.板书(5分钟)板书本节课的主要内容和重点。

人教版数学九年级上册《24.1.2垂直于弦的直径》教学设计

人教版数学九年级上册《24.1.2垂直于弦的直径》教学设计

人教版数学九年级上册《24.1.2垂直于弦的直径》教学设计一. 教材分析《24.1.2垂直于弦的直径》是人教版数学九年级上册第24章《圆》的第二个知识点。

本节课主要学习了圆中一条特殊的直径——垂直于弦的直径,并探究了它的性质。

教材通过实例引导学生发现垂直于弦的直径的性质,并运用这一性质解决一些与圆有关的问题。

二. 学情分析学生在学习本节课之前,已经掌握了圆的基本概念、圆的周长和面积计算、圆的性质等知识。

他们具备了一定的观察、分析和解决问题的能力。

但对于垂直于弦的直径的性质及其应用,可能还比较陌生。

因此,在教学过程中,需要注重引导学生发现和总结垂直于弦的直径的性质,并通过实例让学生体会其在解决实际问题中的应用。

三. 教学目标1.理解垂直于弦的直径的性质。

2.学会运用垂直于弦的直径的性质解决与圆有关的问题。

3.培养学生的观察能力、分析能力和解决问题的能力。

四. 教学重难点1.垂直于弦的直径的性质。

2.运用垂直于弦的直径的性质解决实际问题。

五. 教学方法1.引导发现法:通过实例引导学生发现垂直于弦的直径的性质。

2.实践操作法:让学生动手画图,加深对垂直于弦的直径性质的理解。

3.问题驱动法:设置问题,引导学生运用垂直于弦的直径的性质解决问题。

六. 教学准备1.课件:制作课件,展示相关实例和问题。

2.练习题:准备一些与垂直于弦的直径性质有关的练习题。

3.圆规、直尺等画图工具:为学生提供画图所需的工具。

七. 教学过程1.导入(5分钟)通过一个实际问题引入本节课的主题:在一个圆形池塘中,怎样找到一个点,使得从该点到池塘边缘的距离最远?引导学生思考,并提出解决问题的方法。

2.呈现(10分钟)展示几个与垂直于弦的直径性质相关的实例,引导学生观察和分析这些实例,发现垂直于弦的直径的性质。

3.操练(10分钟)让学生动手画图,验证垂直于弦的直径的性质。

在这个过程中,引导学生运用圆规、直尺等画图工具,提高他们的动手能力。

24.1.2垂直于弦的直径教案 2022-2023学年人教版九年级上册数学

24.1.2垂直于弦的直径教案 2022-2023学年人教版九年级上册数学

24.1.2 垂直于弦的直径教案2022-2023学年人教版九年级上册数学本教案旨在帮助学生理解并掌握垂直于弦的直径概念,并通过实例让学生能够运用所学知识解决相关问题。

通过本教案的学习,学生将能够更深入地理解圆的性质与特点,提高数学解题能力。

一、教学目标1.理解并掌握垂直于弦的直径的概念。

2.掌握相关综合运用题的解题方法。

3.培养学生的逻辑思维能力和问题解决能力。

二、教学重点和难点1.教学重点:垂直于弦的直径的概念及应用。

2.教学难点:综合运用题的解题方法。

三、教学准备1.教师准备:–教材:人教版九年级上册数学教材。

–备课笔记和教案。

–相关教学资源。

2.学生准备:–学习用具:课本、笔、纸等。

四、教学过程1. 导入通过提问和讨论,回顾圆的相关概念,如半径、直径、弧等,引导学生思考并复习相关知识。

2. 概念讲解•引入垂直于弦的直径概念,解释其定义和性质。

•强调垂直于弦的直径的特点,即垂直于弦的直径恰好经过弦的中点。

•通过实例和图示让学生更好地理解和记忆该概念。

3. 示例分析通过具体的例题,引导学生运用垂直于弦的直径的性质进行解题。

教师可以选择简单的例题进行分析,逐步引导学生掌握解题方法。

示例题1:在一个圆上,弦AB的长度为6cm,弦AB的中点O到圆心的距离为4cm,求圆的半径。

解题思路:根据垂直于弦的直径的性质,弦AB的中点O到圆心的距离等于圆的半径。

所以,圆的半径为4cm。

4. 综合运用题训练设计一些综合运用题,让学生将所学知识应用到更具挑战性的问题中。

逐步提高学生的解题能力和逻辑思维能力。

练习题1:已知圆上弦CD的长度为10cm,且CD垂直于弦AB,弦AB的长度为8cm。

求圆的半径。

解题思路:根据垂直于弦的直径的性质,弦CD垂直于弦AB,且AB的长度为8cm,那么AB就是CD的直径。

所以,圆的半径为4cm。

5. 总结和归纳对本节课所学的知识进行总结和归纳,提醒学生关注垂直于弦的直径的特点和解题方法,加深对相关概念的理解。

24.1.2垂直于弦的直径教案

24.1.2垂直于弦的直径教案
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“垂直于弦的直径在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考,例如:“你们认为这个性质在建筑或工程中可能会有哪些应用?”
24.1.2垂直于弦的直径教案
一、教学内容
《24.1.2垂直于弦的直径》为本章节的教学内容,选自人教版数学九年级下册第二十四章《圆》。本节课主要内容包括:
1.探索圆的性质:垂直于弦的直径。
2.证明垂径定理及其推论。
3.应用垂径定理解决实际问题。
二、核心素养目标
《24.1.2垂直于弦的直径》教学的核心素养目标为:
2.教学难点
-难点内容:
a.理解并证明垂径定理。
b.掌握垂径定理推论的应用。
c.将垂径定理应用于解决复杂的几何问题。
-难点突破:
a.通过动态演示或模型操作,帮助学生直观理解垂径定理。
b.分步骤引导学生进行垂径定理的证明,强调证明过程中的关键步骤。
c.设计不同难度的练习题,从简单到复杂,帮助学生逐步掌握垂径定理的应用。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解垂直于弦的直径的基本概念。垂直于弦的直径是圆内一条特殊的线段,它不仅垂直于弦,而且能够将弦平分成两段相等的部分。这个性质在几何图形的构造和解题中有着重要的作用。
2.案例分析:接下来,我们来看一个具体的案例。假设我们有一个圆,弦AB需要被平分,我们可以如何找到能够实现这一点的直径?通过分析,我们可以发现,只需找到垂直于AB的直径CD,就可以轻松完成这个任务。

人教版数学九年级上册教学设计24.1.2《垂直于弦的直径》

人教版数学九年级上册教学设计24.1.2《垂直于弦的直径》

人教版数学九年级上册教学设计24.1.2《垂直于弦的直径》一. 教材分析《垂直于弦的直径》是人教版数学九年级上册第24章《圆》的一部分。

本节课主要内容是让学生掌握垂径定理,理解并证明圆中的一些特殊性质。

通过学习,学生能够运用垂径定理解决实际问题,提高解决问题的能力。

二. 学情分析学生在学习本节课之前,已经掌握了圆的基本概念、圆的性质、圆的周长和面积等知识。

但部分学生对圆的性质理解不够深入,对圆中特殊位置关系的判断和证明能力较弱。

因此,在教学过程中,要注重引导学生发现圆中的垂直关系,培养学生动手操作和解决问题的能力。

三. 教学目标1.知识与技能:让学生掌握垂径定理,学会运用垂径定理解决圆中的问题。

2.过程与方法:培养学生观察、分析、归纳、推理的能力,提高动手操作和解决问题的能力。

3.情感态度与价值观:激发学生学习圆的性质的兴趣,培养学生团队协作和积极参与的精神。

四. 教学重难点1.重点:垂径定理的理解和运用。

2.难点:圆中特殊位置关系的判断和证明。

五. 教学方法1.情境教学法:通过实物演示、图形展示等手段,引导学生发现圆中的垂直关系。

2.问题驱动法:设计一系列问题,引导学生思考和探究,激发学生的学习兴趣。

3.合作学习法:学生进行小组讨论和探究,培养学生的团队协作能力。

4.讲授法:教师讲解垂径定理及相关性质,引导学生理解和掌握。

六. 教学准备1.准备相关图形和实物,如圆、弦、直径等。

2.准备多媒体教学设备,如投影仪、电脑等。

3.准备练习题和测试题,用于巩固和检验学生的学习效果。

七. 教学过程1.导入(5分钟)利用实物或图形,展示圆中的垂直关系,引导学生关注垂直于弦的直径。

提问:你们发现了吗?垂直于弦的直径有什么特殊的性质吗?2.呈现(10分钟)介绍垂径定理的内容,并用多媒体展示垂径定理的证明过程。

让学生理解并掌握垂径定理。

3.操练(10分钟)设计一系列练习题,让学生运用垂径定理解决问题。

教师引导学生思考和探究,解答学生的疑问。

24.1.2 垂直于弦的直径教学设计

24.1.2 垂直于弦的直径教学设计

24.1.2 垂直于弦的直径本节内容是前面初步理解圆后的第一个重要性质,是圆的轴对称性的具体化,也是今后证明线段相等、角相等、弧相等、垂直关系的重要依据,同时也是为实行圆的计算和作图提供了方法和依据.本课时主要内容有垂直于弦的直径的性质、推论及其应用.教学时要提醒学生在使用性质时要注意:直径和直径垂直于弦这两个条件缺一不可.【情景导入】(1)请同学把手中的圆对折,你会发现圆是一个什么样的图形呢?(2)请同学们再把手中的圆沿直径向上折,折痕是圆的一条什么呢?通过观察,你能发现直径与这条折痕的关系吗?【说明与建议】说明:通过折叠圆的操作,探索圆的轴对称性及垂径定理,思考利用等腰三角形的性质证明圆的轴对称性.建议:学生动手操作,并分组观察、讨论和归纳操作结果,在学生归纳的过程中注意学生语言的准确性和简洁性.【归纳导入】(1)操作1:如图①,沿着圆的直径折叠圆,你有什么发现?【归纳】圆是轴对称图形,任何一条直径所在直线都是圆的对称轴.(2)操作2:如图,将一个圆二等分、四等分、八等分.①②③(3)操作3:按下面的步骤做一做:第一步,在一张纸上任意画一个⊙O,沿圆周将圆剪下,把这个圆对折,使圆的两部分重合;第二步,展开,得到一条折痕CD;第三步,在⊙O 上任取一点A ,过点A 作折痕CD 的垂线,沿垂线将纸片折叠; 第四步,将纸打开,得到新的折痕,其中点M 是两条折痕的交点,即垂足,新的折痕与圆交于另一点B ,如图.在上述的操作过程中,你发现了哪些相等的线段和相等的弧?为什么?【说明与建议】 说明:通过对剪圆和折叠圆的操作,调动学生的积极性,活跃课堂气氛.建议:在学生操作、分析、归纳的基础上,引导学生归纳垂直于弦的直径的性质时注意全等图形或等腰三角形知识的复习和应用.命题角度1 垂径定理及推论的理解 1.下列说法正确的是(D)A .垂直于弦的直线平分弦所对的两条弧B .平分弦的直径垂直于弦C .垂直于直径的直线平分这条直径D .弦的垂直平分线经过圆心2.如图,AB 是⊙O 的直径,CD 为弦,CD ⊥AB 于点E ,则下列结论中不成立是(C)A.AC ︵=AD ︵B.BC ︵=BD ︵C .OE =BED .CE =DE命题角度2 直接利用垂径定理进行计算3.如图,⊙O 的直径为10,AB 为弦,OC ⊥AB ,垂足为C ,若OC =4,则弦AB 的长为(C)A .10B .8C .6D .44.如图,在⊙O 中,半径r =10,弦AB =12,M 是弦AB 上的动点,则线段OM 长的最小值是(D)A .10B .16C .6D .8命题角度3 垂径定理的实际应用5.如图,一个隧道的截面图为⊙O 的一部分,路面AB =10米,净高CD =7米,则此圆半径长为(D)A .5米B .7米C.375米D.377米 6.(鄂州中考)筒车是我国古代发明的一种水利灌溉工具,明朝科学家徐光启在《农政全书》中用图画描绘了筒车的工作原理,如图1.筒车盛水桶的运行轨道是以轴心O 为圆心的圆,如图2.已知圆心O 在水面上方,且⊙O 被水面截得的弦AB 长为6米,⊙O 半径长为4米.若点C 为运行轨道的最低点,则点C 到弦AB 所在直线的距离是(B)图1 图2 A .1米B .(4-7)米C .2米D .(4+7)米魔术蛋魔术蛋是九块板,这九块板合起来是一个椭圆,形如鸟蛋,用它可以拼出各种鸟形,因而又名“百鸟拼板”.要制作一个魔术蛋,先绘制一个椭圆形鸟蛋:上部为半圆,下部为椭圆.1.作一个圆,圆心为O ,并通过圆心,作直径AB 的垂线MN.2.连接AN ,并适当延长,再以A 为圆心,AB 的长为半径作圆弧交AN 的延长线于点C. 3.连接BN ,并适当延长,再以B 为圆心,BA 的长为半径作圆弧交BN 延长线于点D. 4.以N 为圆心,NC 为半径,作圆弧CD ,于是下部成为椭圆.5.在OM 上作线段MF 等于NC.以F 为圆心,MF 为半径作圆弧,交AB 于点G ,H ,连接FG ,FH ,这样魔术蛋便制好了.活动一:学生动手操作把事先准备好的一张圆形纸片沿着圆的任意一条直径对折,重复做几次,你有什么发现?由此你能得到什么结论?试一试!师生活动:学生动手操作,教师观察操作结果,在学生归纳的过程中注意学生语言的准确性和衔接性.结论:圆是轴对称图形,任何一条直径所在直线都是圆的对称轴. 活动二:出示问题从上面的动手操作可知,如图,如果⊙O 的直径CD 垂直于弦AA ′,垂足为M ,那么点A 和点A ′是对称点,把⊙O 沿着直径CD 折叠时,点A 与点A ′重合,你能找出图中有哪些相等的线段和弧吗?并说明理由.师生活动:学生进行观察、分析,通过合情推理总结结论,教师指导学生分析题目中的条件和结论.教师用多媒体演示,学生尝试归纳垂径定理后,教师补充、完善,最后用几何语言进行描述.教师板书:垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧.几何语言:∵CD ⊥AA ′,CD 是⊙O 的直径, ∴AM =MA ′,AC ︵=A ′C ︵,AD ︵=A ′D ︵. 活动三:教师针对图形,提出问题1:垂径定理是由几个条件得到几个结论? 师生分析得:①直径;②垂直于弦;③平分弦;④平分优弧;⑤平分劣弧.问题2:把垂径定理中的“垂直”和“平分”互换,是否仍然成立呢? 学生讨论、交流,并用语言进行总结,教师引导、点拨,得到结论: 平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.【典型例题】例1 如图所示,AB 是⊙O 的直径,CD 是弦,CD ⊥AB 于点E ,则下列结论中不一定正确的是(D)A .∠COE =∠DOEB .CE =DE C.AC ︵=AD ︵D .OE =BE例2 如图,在⊙O 中,CD 是⊙O 的直径,AB ⊥CD 于点E.若AB =6,OE =7,则⊙O 的直径为(D)A.10 B .210 C .4 D .8师生活动:教师引导学生分析,圆心到弦的距离为,连接半径,从而构造直角三角形进行解答. 例3 解答赵州桥的问题.教师引导学生分析:根据赵州桥的实物图画出几何图形,如图.教师总结:在圆中解决有关弦长或半径的问题,常需要作垂直于弦的半径或过圆心向弦作垂线段,把垂径定理和勾股定理结合,得到半径r ,弦心距d ,弦长a 之间的关系:r 2=d 2+(a 2)2.学生书写解答过程,教师做好点评. 【变式训练】1.如图,⊙O 中弦AB 长为8,OC ⊥AB ,垂足为E.若CE =2,则⊙O 半径长是(D)A .10B .8C .6D .52.如图,一根排水管道的横截面是半径为13 cm 的圆.排水管内有水,若水面宽度AB =24 cm ,则水管中水的最大深度为8 cm.3.已知⊙O 的直径CD =100 cm ,AB 是⊙O 的弦,AB ⊥CD ,垂足为M ,且AB =96 cm ,则AC 的长为(B)A .36 cm 或64 cmB .60 cm 或80 cmC .80 cmD .60 cm师生活动:学生思考,小组讨论,教师作适当引导,使学生能运用转化思想、分类讨论思想解决问题.A.12.5 B.13 C.25 D.263.一辆装满货物,宽为2.4米的卡车,欲通过如图所示的隧道,则卡车的外形高必须低于(A)A.4.1米 B.4.0米 C.3.9米 D.3.8米师生活动:学生进行当堂检测,完成后,教师进行个别提问,并指导学生解释做题理由和做题方法,使学生在思考解答的基础上,共同交流,形成共识,确定答案.1.课堂小结:(1)你在本节课的学习中有哪些收获?有哪些进步?(2)学习本节课后,还存在哪些困惑?教师讲解主要内容:在圆内求弦的长度,常常需要过圆心作弦的垂线段,利用勾股定理进行解答.2.布置作业:(1)教材第83页练习第2题,教材第89~90页习题24.1第8,9,10,11题.(2)补充题(选做):好山好水好绍兴,石拱桥在绍兴处处可见,小明要帮忙船夫计算一艘货船是否能够安全通过一座圆弧形的拱桥,现测得桥下水面AB宽度16 m时,拱顶高出水平面4 m,货船宽12 m,船舱顶部为矩形并高出水面3 m.。

数学人教版九年级上册24.1.2《垂直于弦的直径》教案

数学人教版九年级上册24.1.2《垂直于弦的直径》教案
三、教学难点与重点
1.教学重点
-理解垂直于弦的直径的定义:通过直观演示和实际操作,让学生明确什么样的直径是垂直于弦的,并能够准确地描述这一概念。
-掌握垂直于弦的直径的性质:分析并理解垂直于弦的直径所具有的性质,如平分弦、垂直平分弦等,并能够运用这些性质解决具体问题。
-应用垂直于弦的直径解决实际问题:培养学生将理论知识应用于解决实际问题的能力,如通过垂直于弦的直径的性质来求解圆的相关问题。
-与其他圆的性质的综合应用:在综合问题中,学生需要将垂直于弦的直径的性质与其他圆的性质结合起来,这对于学生来说是一个挑战。
举例:在讲解垂直于弦的直径的证明过程时,教师可以使用直观的动画或模型,逐步引导学生通过观察和思考,理解证明过程中的每一步。对于难点内容,如灵活运用性质,教师可以通过以下方法帮助学生突破:
二、核心素养目标
本节课的核心素养目标主要包括以下方面:
1.培养学生的空间观念和几何直观:通过观察、操作、推理等过程,使学生理解并掌握圆的基本性质,提高对圆的认识,发展空间想象力。
2.提升学生的逻辑推理能力:在学习垂直于弦的直径定义和性质的过程中,引导学生运用逻辑思维进行推理和证明,增强分析解决问题的能力。
举例:讲解垂直于弦的直径定义时,教师可以借助图形,如一个圆和一条弦,通过动画或实物演示,让学生观察并总结出垂直于弦的直径的特点。
2.教学难点
-理解垂直于弦的直径的证明过程:学生往往难以理解为什么垂直于弦的直径会具有平分弦的性质,以及如何通过几何证明来证实这一点。
-灵活运用垂直于弦的直径的性质:在解决具体问题时,学生可能难以迅速找到垂直于弦的直径,并有效地利用其性质来简化问题。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解垂直于弦的直径的基本概念。垂直于弦的直径是经过圆中心并且垂直于弦的线段。它在圆的性质中占有重要地位,因为它可以平分弦,并在几何图形中起到关键作用。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
作业
设计
必做
习题24.1 第1题,第8题,第9题.
选做




图3
学生活动设计:
学生观察图形,利用垂直于弦的直径的性质分析图形条件,发现若OC⊥AB,则有AD=BD,且△ADO是直角三角形,在直角三角形中可以利用勾股定理构造方程.
教师活动设计:
在学生解决问题的基础上引导学生进行归纳:弦长、半径、拱形高、弦心距(圆心到弦的距离)四个量中,只需要知道两个量,其余两个量就可以求出来.
〔解答〕设圆的半径为R,由条件得到OD=R-4,AD=8,
在Rt△ADO中
,即 .
解得
R=10(m).
答:此圆的半径是10 m.
活动4:如图4,已知 ,请你利用尺规作图的方法作出 的中点,说出你的作法.
图4
师生活动设计:
根据基本尺规作图可以发现不能直接作出弧的中点,但是利用垂径定理只需要作出弧所对的弦的垂直平分线,垂直平分线与弧的交点就是弧的中点.
能够利用垂直于弦的直径的性质解决相关实际问题.
过 程

方 法
在探索问题的过程中培养学生的动手操作能力,使学生感受圆的对称性,体会圆的一些性质,经历探索圆的对称性及相关性质的过程.
进一步体会和理解研究几何图形的各种方法;培养学生独立探索,相互合作交流的精神.
情 感
态 度
价值观
使学生领会数学的严谨性和探索精神,培养学生实事求是的科学态度和积极参与的主动精神.
第一步,在一张纸上任意画一个⊙O,沿圆周将圆剪下,把这个圆对折,使圆的两半部分重合;
第二步,得到一条折痕CD;
第三步,在⊙O上任取一点A,过点A作CD折痕的垂线,得到新的折痕,其中点M是两条折痕的交点,即垂足;
第四步,将纸打开,新的折痕与圆交于另一点B,如图1.
图1 图2
在上述的操作过程中,你发现了哪些相等的线段和相等的弧?为什么?(课件:探究垂径定理)
学生活动设计:如图2所示,连接OA、OB,得到等腰△OAB,即OA=OB.因CD⊥AB,故△OAM与△OBM都是直角三角形,又OM为公共边,所以两个直角三角形全等,则AM=BM.又⊙O关于直径CD对称,所以A点和B点关于CD对称,当圆沿着直径CD对折时,点A与点B重合, 与 重合.因此AM=BM, = ,同理得到 .
教师活设计:
在学生操作、分析、归纳的基础上,引导学生归纳垂直于弦的直径的性质:
(1)垂直于弦的直径平分弦,并且平分弦所对的两条弧;
(2)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.
活动3:如图3, 所在圆的圆心是点O,过O作OC⊥AB于点D,若CD=4 m,弦AB=16 m,求此圆的半径.
〔解答〕1.连接AB;
2.作AB的中垂线,交 于点C,点C就是所求的点.
三、拓展创新,培养学生思维的灵活性以及创新意识.
活动5 解决下列问题
1.如图5,某条河上有一座圆弧形拱桥ACB,桥下面水面宽度AB为7.2米,桥的最高处点C离水面的高度2.4米.现在有一艘宽3米,船舱顶部为方形并高出水面2米的货船要经过这里,问:这艘船是否能够通过这座拱桥?说明理由.
图5 图6
学生活动:学生根据实际问题,首先分析题意,然后采取一定的策略来说明能否通过这座拱桥,这时要采取一定的比较量,才能说明能否通过,比如,计算一下在上述条件下,在宽度为3米的情况下的高度与2米作比较,若大于2米说明不能经过,否则就可以经过这座拱桥.
〔解答〕如图6,连接AO、GO、CO,由于弧的最高点C是弧AB的中点,所以得到
前言:
该教学设计(教案)由多位一线国家特级教师根据最新课程标准的要求和教学对象的特点结合教材实际精心编辑而成。实用性强。高质量的教学设计(教案)是高效课堂的前提和保障。
(最新精品教学设计)
教学时间
课题
24.1.2 垂直于弦的直径
课型
新授课




知 识

能 力
探索圆的对称性,进而得到垂直于弦的直径所具有的性质;
教学重点
垂直于弦的直径所具有的性质以及证明.
教学难点
利用垂直于弦的直径的性质解决实际问题.
教学准备
教师
多媒体课件
学生
“五个一”
课 堂 教 学 程 序 设 计
设计意图
一、创设问题情境,激发学生兴趣,引出本节内容
活动1:用纸剪一个圆,沿着圆的任意一条直径对折,重复做几次,你发现了什么?由此你能得到什么结论?(课件:探究圆的性质)
学生活动设计:
学生动手操作,观察操作结果,可以发现沿着圆的任意一条直径对折,直径两旁的部分能够完全重合,由此可以发现:圆是轴对称图形,任何一条直径所在直线都是它的对称轴.
教师活动设计:
在学生归纳的过程中注意学生语言的准确性和简洁性.
二、问题引申,探究垂直于弦的直径的性质,培养学生的探究精神
活动2:按下面的步骤做一做:
〔解答〕
如图8所示,连接OA,过O作OE⊥AB,垂足为E,交圆于F,
则AE= AB=30 cm.令⊙O的半径为R,
则OA=R,OE=OF-EF=R-10.
在Rt△AEO中,OA2=AE2+OE2,即R2=302+(R-10)2.
解得R=50 cm.
修理人员应准备内径为100 cm的管道.
小结:垂直于弦的直径的性质,圆对称性.
OC⊥AB,OC⊥GF,
根据勾股定理容易计算
OE=1.5米,
OM=3.6米.
所以ME=2.1米,因此可以通过这座拱桥.
2.银川市某居民区一处圆形下水管道破裂,修理人员准备更换一段新管道.如图7所示,污水水面宽度为60 cm,水面至管道顶部距离为10 cm,问修理人员应准备内径多大的管道?
图7 图8
师生活动设计:让学生在探究过程中,进一步把实际问题转化为数学问题,掌握通过作辅助线构造垂径定理的基本结构图,进而发展学生的思维.
相关文档
最新文档