全面自己设计制作的DIY电子负载

合集下载

DIY 电子负载系统

DIY  电子负载系统

DIY 电子负载系统设计思想:1、想了解手中各种电源、电池特性,电子负载必不可少2、设计制作不同类型电子负载,享受体验各自特性,所以做了两个:无源型与有源型3、花钱要尽可能少,最大程度利用手中现有设备完成数据采集自动化4、外观设计尽可能具有自己的个性风格一、无源电子负载二、简介:1、电路尽可能简单、花钱要尽可能少2、避开每次使用都用万用表监视调整负载电流3、使热量尽可能均匀分布在一块电路板上,免去外加散热器4、手中各种锂电比较多,打算专门为锂电服务5、基于以上几点反复思考决定使用六片AMS1117-1.2(0.2元/片)完成恒流每路一片AMS1117-1.2,恒流100mA,六路最大负载电流总和为600mA六片AMS1117-1.2均匀分布在一块电路板上,刻电路板时尽量保存覆铜加强散热6、用5个拨号开关设定电流5个拨号开关全部关断时,负载电流为100mA,每接通一个开关,增加100mA7、用较厚的不锈钢带将电路板链接在底座上8、适应电压范围:最小电压为2.7V,最高适应电压由AMS1117-1.2决定9、用手中VC86D(带USB电脑接口)万用表完成数据采集自动化二、有源电子负载简介:1、电路尽可能简单、花钱要尽可能少,服务于各种电源、电池2、核心元器件为:IRF520(1.9元/个)、LM358P(0.2元/片)、TL431(0.1元/个)3、在铝合金门窗加工点寻找一块料头做散热器,整体设计围绕这块铝合金料头4、铝合金料头是块方管,为了解决散热通风,在下面开个长方形口使得散热对流获得改善,同时还可以用小风扇从下面往上吹进行强制散热5、LM358P内部两个运算放大器,实际用一个就可以,避免浪费,两个运算放大器全部使用其中一个做采样放大,将电流采样信号最大值放大到2.5V,与TL431基准电压相同另一个接IRF520,去调整稳定负载电流6、电流取样电阻为0.068Ω无感陶瓷电阻(过两天到货,暂时用0.22Ω普通电阻,电流只能达到1A)7、用较厚较宽的不锈钢带将电路板链接在底座上8、电流可调范围在0~3A之间,1A时最低适应电压可达0.5V以下,最高适应电压由IRF520决定功耗8W以内不需要扇强制散热,加风扇强制散热功率至少提高一倍9、同样用手中VC86D(带USB电脑接口)万用表完成数据采集自动化三、电路图与改进改进:1、有源电子负载改进我没有制作电路板套餐,只能刀刻如果有制作电路板套餐腐蚀电路板,使用贴片元件,电路板面积可缩减到现有面积四分之一以下这样可以将电路板放到铝合金方管内,使外观变得更古怪富有特点2、接下来打算编写一个小软件,进一步加工处理数据,给出完整的测试结果及绘制更理想漂亮的放电曲线四、应用—电测试电池容量虽然是“DIY电子负载”,但下面测试结果准确度值得信赖精度不见得比专业电子负载低,因为使用前校对过放电电流采样数据完整,嫌麻烦没∑求和计算电池放电能量接下来打算编写一个小软件,进一步加工处理数据,给出完整的测试结果及绘制更理想漂亮的放电曲线1、SX40相机沣标锂电电池新电池,容量足,放电曲线还可以,寿命多长不清楚,对得起价格2、G9、400D相机原厂锂电电池测试前没补充充电,已经用了几年,电量不减,放电曲线依然不错同时间购买的品胜电池,已经用坏了两块3、品力牌磷酸铁锂电池容量不足,放电曲线非常好这个小AA电池短路电流可达7A(我做过短路试验)使用非常频繁,最近几乎一两天充一次电,用于小台灯、小电钻4、山寨版18650锂电电池容量虚标,放电曲线不理想,小电流使用还可以,价格便宜(10元一节)。

自己动手做个恒流电子负载机

自己动手做个恒流电子负载机

自己动手做个恒流电子负载机电子负载机是很多从事电子设计尤其是电源设计与制作的朋友们必备的工具,在设计中有时需要给电池等器件放电,如果用个水泥电阻进行电流调节,不但不能恒流还不够方便,而买一台市场上的成品电子负载机,最便宜的也要近1000 元。

笔者自己动手做了一台电子负载机,该负载机的制作元件易找,制作后不用调试就能使用,还具有恒流及各项保护功能。

经过试用效果十分理想,不但可以用来对电池恒流放电,还可以用在工厂对生产的电源产品做老化实验用等。

在此将制作方法同大家分享。

电路原理电路如图 1 所示。

VT4 提供整个电路的 2 .5V 基准电压。

IC 1A 、R9 、VT1 、VT2 等组成开关式恒流电路。

例如当Load 端接入电池,并且刚开始电流在R9 上产生的压降(C 点) 没有 B 点的电压高,此时 D 点输出为高电位,VT1 、VT2 持续导通,于是R9 上的压降(C 点) 将持续增加直到超过 B 点电压,此时 D 点输出为低电位,VT1 、VT2 关断。

这个过程一直重复下去,所以恒流电流={[2 .5 ÷ (R7+R8)] × R8} ÷ R9 。

以图中为例,流过Load 端的电流为{[2 .5 ÷ (100k+10k)] × 10} ÷0 .1 ≈ 2 .3A 。

IC1B 起低压保护作用。

平时G 点电位高于H 点,所以F 点为高电位,VT3 不动作,VT1 、VT2 正常工作。

当Load 端的电压低于设定值时 F 输出为L ,VT3 动作,将VT1 、VT2(E 点) 的驱动电压拉低,VT1 、VT2 将不导通,无负载电流流过Load 端口,起到了低压保护作用。

例如在对一块铅酸电池放电时,将12V 的电池放到电压只有3V 时,该电路就会发挥低压保护作用,终止放电电流。

希望终止的放电电压可通过[U ÷ (R13+R10)] × R10=2 .5V 来计算,其中的U 就是希望终止的放电电压。

直流电子负载的设计制作

直流电子负载的设计制作

直流电子负载的设计制作【摘要】本设计主要以高速、低功耗、超强抗干扰STC12C5A60S单片机为控制核心设计直流电子负载。

包括控制电路(MCU)、主电路、采样电路、显示电路等,能够检测被测电路的电流值、电压值等各个参数,并能直观的在液晶上显示。

本系统由自锁开关控制电路的工作状态,通过手动调节开关切换在恒压、恒流、恒阻电路之间的工作状态,由LED灯指示相应的工作状态。

系统的稳压范围为1V-30V,稳流范围为100mA-3.5A,误差0-5%在题目要求范围内,达到题目要求并扩展了恒压、恒流的范围。

由单片机控制,通过按键达到对恒压值或恒流值在一定范围内的控制,设置了过载保护,通过亮灯显示过载。

【关键词】电子负载;单片机(MCU)1.方案设计与论证1.1 整体方案设计基于手动调节单片机控制的直流电子负载图1 基于手动调节单片机控制的直流电子负载原理图本方案通过两个自锁开关来控制电路的工作状态,在恒压、横流、恒阻之间进行切换,通过stc12c5a60s单片机通过D/A芯片控制恒压、恒流等的值,stc12c5a60s是高速、低功耗、超强抗干扰的新一代8051单片机,指令代码完全兼容传统的8051,但速度快8-12倍,8路高速10位A/D转换。

采用大功率NMOS 管IRF540,该管导通电阻足够小,源漏抗击穿能力足够强。

软硬件结的方式,方便简洁实现了不同模块之间的转换,很好的完成了恒压、恒流等基本功能,并完成了恒阻等附加功能。

由单片机采集电压、电流值,检测电路过载控制继电器工作,实现电路的过载保护并报警。

1.2 模块方案1.2.1 恒压设计方案方案一:用晶体管来实现电压放大和比较,基极和发射极分别相当于比较器的负、正输入端。

基极本身会分得一部分电流,同时还会有个电流Ibe影响发射极的电压。

这样的电路能够实现恒压功能,但是误差比较大,同时还有较大的功率损耗。

方案二:直接用运算放大器OP07芯片来实现电压的放大和比较电路看起来简单易懂。

简易直流电子负载设计

简易直流电子负载设计

简易直流电子负载设计报告摘要:本文论述了简易直流电子负载的设计思路和过程。

直流电子负载采用MSP430G2553单片机作为系统的控制芯片,可实现以下功能:在恒流(CC)模式下,不管电子负载两端电压是否变化,流过电子负载的电流为一个设定的恒定值。

AD模块接收电路电压和电流模拟信号,转化为数字信号,经液晶模块12864同步显示电压和电流。

系统包括控制电路(MCU)、驱动隔离电路(PWM波)、主电路、采样电路、显示电路、基准电路等;具有过压保护功能;能够检测被测电源的电流值、电压值;具有直流稳压电源负载调整率自动测量功能;各个参数都能直观的在液晶模块上显示。

关键词:电子负载;单片机(MCU);模数(A/D).PWM波.一、引言电子负载用于测试直流稳压电源的调整率,电池放电特性等场合,是利用电子元件吸收电能并将其消耗的一种负载。

电子元件一般为功率场效应管(Power MOS)、绝缘栅双极型晶体管(IGBT)等功率半导体器件。

由于采用了功率半导体器件替代电阻等作为电能消耗的载体,使得负载的调节和控制易于实现,能达到很高的调节精度和稳定性。

同时通过灵活多样的调节和控制方法,不仅可以模拟实际的负载情况,还可以模拟一些特殊的负载波形曲线,测试电源设备的动态和瞬态特性。

二,总体方案论证与设计设计和制作一台电子负载,在恒流(CC)模式下,不管电子负载两端电压是否变化,流过电子负载的电流为一个设定的恒定值。

要求:(1)负载工作模式:恒流(CC)模式;(2)电压设置范围:0~10V;(3)电流设置范围:100mA~1000mA,设置分辨率为10mA,设置精度为±1%;(4)直流稳压电源负载调整率:测量范围为0.1%~19.9%,测量精度为±1%。

(5)显示分辨能力及误差:至少具有3位数,相对误差小于5%。

恒流模块和恒压模块共用一个基准电压12v,并且通过开关实现两种模式的转换,用A/D转换器把电路中的电压电流的模拟信号转换为数字信号,然后通过单片机来程控从而重置电压电流,用数码管液晶显示同时呈现即时电压电流。

电子假负载的制作与测试

电子假负载的制作与测试


驱动 电路 虚线框 ④ 示 所

、 、
直 流电压


选用 大功 率
以娜
年,

电千创 作

、 、



的 栅极
,
电压
阻 都打在 仪陷处 单 刀 双 掷开 关
打在
端时 为恒 压
,
,
减小
,

的 内阻

增 大 负载 电流 减小
模式
,
所选 的被 测 电源 的输 出 电压 保 持在


从 而 达到恒 流 的 目的
如图
、 、
明该电子 假负 载 有恒 压 功能
,
单 刀 双掷 开 关

打在
过流保护电路
虚 线 框 ③所示



得漏极
压 的 目的
和源极

之 间 的电压
减小
,
从 而达 到恒
,
为 限流 电阻
,
一 端接场效 应 管

夕泊

极 另 一 端接地 用 于 防展 荡 虚线 框 ② 示 所
,
恒流 电路
如图
、 、

当负 载 电流 增 大 时


,

三 电路 洲 试
电子假负载制作 后 需 进行 测试
如图

,

上 的 电压 增大 即



,
测试 电路接线 图

的取样 电压 增 大 也 即是 出低 电平
,
反 相输人端 电压增 大 当
,
所 示 虚线框 ⑤和 两 个 万用 表部分 万 用 表

简易直流电子负载

简易直流电子负载

9.2 简易直流电子负载电子负载仪是电源制作和电池性能测试必不可少的一种仪器。

它是由电子器件组成的模拟负载,用来检测各类电源带负荷特性和化学电源输出性能的仪器。

在恒电流测试时加以同步计时,就可精确测出电池容量值。

9.2.1 功能要求设计和制作一台恒流(CC)工作模式的简易直流电子负载。

技术要求:电流设置范围为100mA~1000mA ,设置分辨率为10mA,设置精度为±1%。

当电子负载两端电压变化10V时,要求输出电流变化的绝对值小于变化前电流值的1%。

具有过压保护功能,过压阈值电压为18V±0.2V。

能实时测量并数字显示电子负载两端的电压,电压测量精度为±(0.02%+0.02%FS ),分辨力为1mV。

能实时测量并数字显示流过电子负载的电流,电流测量精度为±(0.1%+0.1%FS),分辨力为1mA。

具有直流稳压电源负载调整率自动测量功能,测量范围为0.1%~19.9%,测量精度为±1%。

为方便,本题要求被测直流稳压电源的输出电压在10V以内。

9.2.2总体方案论证系统的关键在设计恒流源电路和高精度A/D转换电路。

1.恒流源电路方案【方案一】恒流源可以通过一个经典的数控稳压源来实现。

在输出回路串联一个电流取样电阻,通过实测电流与给定电流的比较,运用恰当的控制算法,调整输出电压使实测与给定两个电流相等,就可以达到恒流的目的。

此种方案最大的问题是:不论是输入电源电压变化,还是负载变化,都要经过一段时间才能使电流稳定。

【方案二】最好的方案是一个硬件的闭环稳流电路,稳流的过程几乎不需要时间。

图9.2.1就是一个典型电路。

根据集成运放虚短的概念可得:I L ≈ V i / RR为电流取样电阻,由于R固定,因此I L完全由V i决定,只要V i不变,则I L不变,这就是恒流原理。

对某一特定的V i下的I L,无论是V CC或是R L变化,利用负反馈的自动调节作用,都能维持I L的稳定。

自己动手DIY电子假负载

自己动手DIY电子假负载

自己动手DIY电子假负载本文制作的电子假负载能替代传统的负载电阻箱、滑线变阻器等,尤其能设置恒定电流或恒定电压应用于传统的滑线变阻器不能解决的领域里。

用于发电机、AC/DC、DC/DC变换器、不间断电源(UPS)、干电池、蓄电池、变压器、充电器等输出特性进行测试。

最大假负载功率高达600W,假负载电阻可调节在30mΩ~14.352kΩ。

一、基本思路电子假负载的功率器件,一般选用所需控制功率小的场效应管和IGBT管、选用时一定要有超过满载时的功率余量,避免使用中烧毁;电子假负载工作时产生大量的热量,需要加装散热器,并且功率器件与散热器之间的热阻要尽量小,必要时可安装散热风扇;电子假负载的功率器件极易发生寄生自激振荡,一旦产生振荡,不但工作状态完全变了,还会烧坏功率器件。

所以防寄生自激振荡非常重要的,也是制作电子假负载成功与否的决定因素。

本制作产生一个基准电压分别送到三个运放,通过恒压、恒流实现电子假负载的基本功能。

总原理框图如图1所示。

图1 原理框图二、电路原理原理图如图2所示,基本电路为除虚线框⑤和两个万用表以外的部分,由恒压电路、恒流电路、过流保护电路、驱动电路组成。

V =12V输入电压,经过限流电阻R1到三端可调分流基准源U1(TL431)的阴极K后,由参考端R得到输出基准电压VR为2.5V,经电阻R1到调整滑动变阻器R6,一路经电阻R2为U3A提供电压,另一路经电阻R7为U3C提供电压。

1.恒压电路如图2虚线框①所示。

当负载端输入电压增大时,U3A同相输入端电压增大。

当同相输人端电压大于反相输入端电压(基准电压)时,U3A输出高电平,在场效应管Q1、Q2、Q3、Q4的栅极G电压VG上产生压降,使得漏极D和源极S之间的电压VDS减小,从而达到恒压的目的。

2.恒流电路如图2虚线框②所示。

当负载电流增大时,R19、R22、R25、R28上的电压增大。

即R18、R21、R24、R27上的取样电压增大,也即是U3C反相输入端电压增大,当U3C反相输入端电压大于同相输入端电压时,U3C输出低电平,场效应管Q1、Q2、Q3、Q4的栅极G电压VG减小,Q1、Q2、Q3、Q4的内阻RDS增大,负载电流减小,从而达到恒流的目的。

简易直流电子负载

简易直流电子负载

简易直流电子负载设计报告一,引言在电路中,负载是指用来吸收电源供应器输出的电能量的装置,它将电源供应器输出的电能量吸收并转化为其他形式的能量储存或消耗掉。

如电炉子将电能转化为热能;电灯将电能转化为光能;蓄电池将电能转化为化学能;电机将电能转化为动能。

这些都是负载的真实表现形式。

负载的种类繁多,但根据其在电路中表现的特性可分为阻性负载、容性负载、感性负载和混合性负载。

在实验室,我们通常采用电阻、电容、电感等或它们的串并联组合,作为负载模拟真实的负载情况。

进行电源设备的性能实验。

电子负载是利用电子元件吸收电能并将其消耗的一种负载。

电子元件一般为功率场效应管(Power MOS)、绝缘栅双极型晶体管(IGBT)等功率半导体器件。

由于采用了功率半导体器件替代电阻等作为电能消耗的载体,使得负载的调节和控制易于实现,能达到很高的调节精度和稳定性。

同时通过灵活多样的调节和控制方法,不仅可以模拟实际的负载情况,还可以模拟一些特殊的负载波形曲线,测试电源设备的动态和瞬态特性。

这是电阻等负载形式所无法实现的。

二,总体方案论证与设计电子负载用于测试直流稳压电源、蓄电池等电源的性能。

设计和制作一台电子负载,有恒流和和恒压两种模式,可手动切换。

恒流方式时不论输入电压如何变化(在一定范围内),流过该电子负载的电流恒定,且电流值可设定。

工作于恒压模式时,电子负载端电压保持恒定,且可设定,流入电子负载的电流随被测直流电源的电压变化而变化。

外接12V稳压电路。

要求:(1)负载工作模式:恒压(CV)、恒流(CC)两种模式可选择。

(2)电压设置及读出范围:1.00V~20.0V。

(3)电流设置及读出范围:100mA~3.00A。

(4)显示分辨能力及误差:至少具有3位数,相对误差小于5%。

恒流模块和恒压模块共用一个基准电压12v,并且通过开关实现两种模式的转换,用A/D转换器把电路中的电压电流的模拟信号转换为数字信号,然后通过单片机来程控从而重置电压电流,用数码管液晶显示同时呈现即时电压电流。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全面自己设计制作的DIY电子负载
全面自己设计制作的DIY电子负载做出来了,还加上了个PWM风扇自动温控调整电路。

元件仿真的3D图
布线图
慢慢焊出来的控制板成品。

哈哈
接上管子上电试一下,很好,很正常
开始找其他器件配机器。

变压器。

风扇、可调电阻。

配上试试。

把散热片改一下,太高了。

改完了一看觉得有点像机器人啊。


里面是四个MOS管,专业耗电发热。

打算做个木头盒子装它。

大致找几片废木板摆一下。

开干,跑去车库找出一条长木板
划线开锯!
锯出四片边板
继续划好两头的板。

跑到车库用修边机修平。

修边机转速两万转。

太吵了,而且粉尘大,不敢放在家里用。

开始搭盒子。

支上试下合适不。

顺便开始调整风道,为强力散热做准备。

我打算做到200W到300W的,散热不好那几个MOS管很快会挂的。

开始正式安装盒子。

狂野的散热片啊。

没办法,上面的散热片虽然是热管的,但不够厚,热容量小,升温比下面的大,所以,改造咯。

种了几株散热树上去,哈哈。

装上看看,挺好的呢。

但看起来两边与上方的气流通道还要堵一堵,以减少散热效率低的气流通道。

底板上的脚支。

翻出四只LP高根鞋配的后根垫子粘上,很合适的样子。

开始加四边的底板固定安装柱。

然后。

很多然后。

最后终于初步成型了。

哈哈
出风口这面。

暴力风扇,风量需求巨大的,所以进风口基本全敞式。

上电试机。

220W无压力,不过最后温度好像是到73度上下了。

然后。

然后又蛋疼地给盒子包上木纹纸,其实我原来是打算上漆的,也确实上了漆,结果发现自己刷油漆的手工技能太差了。

惨不忍睹,所以,改成贴木纹纸了。

这个容易多了,就是看起来好奇怪,很像老式式收音机的感觉。

是吧。

真的像老式收音机。

另一侧。

背面。

但没完。

试运行烤机一个晚上,觉得风扇太吵了。

再拆开。

打算加个自动按温度调整风扇转速的电路上去。

暴力风扇,本来四线的。

被我拆成两线在用。

要调整,得加回PWM调整信号接收线。

再D 个可以调节占空比的PWM生发电路去控制它。

看看接口的焊点,P脚是PWM调速信号的接收脚。

打算用494芯片做主控。

先随便接一下看是不是能调节。

一接上494出来的PWM波。

风扇立马从呜呜叫变成轻轻的沙沙响,哈哈,看来从基本机制上是可行的。

再试试占空比调节。

用可调电阻模拟一下温控试下电路先改变占空比。

真的是可行的啊。

相关文档
最新文档