材料力学性能实验

合集下载

材料力学性能测试实验报告

材料力学性能测试实验报告

材料基本力学性能试验—拉伸和弯曲一、实验原理拉伸实验原理拉伸试验是夹持均匀横截面样品两端,用拉伸力将试样沿轴向拉伸,一般拉至断裂为止,通过记录的力——位移曲线测定材料的基本拉伸力学性能。

对于均匀横截面样品的拉伸过程,如图1所示,图1金属试样拉伸示意图则样品中的应力为其中A为样品横截面的面积。

应变定义为其中△l是试样拉伸变形的长度。

典型的金属拉伸实验曲线见图2所示。

图3金属拉伸的四个阶段典型的金属拉伸曲线分为四个阶段,分别如图3(a)-(d)所示。

直线部分的斜率E就是杨氏模量、σs点是屈服点。

金属拉伸达到屈服点后,开始出现颈缩现象,接着产生强化后最终断裂。

弯曲实验原理可采用三点弯曲或四点弯曲方式对试样施加弯曲力,一般直至断裂,通过实验结果测定材料弯曲力学性能。

为方便分析,样品的横截面一般为圆形或矩形。

三点弯曲的示意图如图4所示。

图4三点弯曲试验示意图据材料力学,弹性范围内三点弯曲情况下C点的总挠度和力F之间的关系是其中I为试样截面的惯性矩,E为杨氏模量。

弯曲弹性模量的测定将一定形状和尺寸的试样放置于弯曲装置上,施加横向力对样品进行弯曲,对于矩形截面的试样,具体符号及弯曲示意如图5所示。

对试样施加相当于σpb0.01。

(或σrb0.01)的10%以下的预弯应力F。

并记录此力和跨中点处的挠度,然后对试样连续施加弯曲力,直至相应于σpb0.01(或σrb0.01)的50%。

记录弯曲力的增量DF和相应挠度的增量Df,则弯曲弹性模量为对于矩形横截面试样,横截面的惯性矩I为其中b、h分别是试样横截面的宽度和高度。

也可用自动方法连续记录弯曲力——挠度曲线至超过相应的σpb0.01(或σrb0.01)的弯曲力。

宜使曲线弹性直线段与力轴的夹角不小于40o,弹性直线段的高度应超过力轴量程的3/5。

在曲线图上确定最佳弹性直线段,读取该直线段的弯曲力增量和相应的挠度增量,见图6所示。

然后利用式(4)计算弯曲弹性模量。

二、试样要求1.拉伸实验对厚、薄板材,一般采用矩形试样,其宽度根据产品厚度(通常为0.10-25mm),采用10,12.5,15,20,25和30mm六种比例试样,尽可能采用lo =5.65(F)0.5的短比例试样。

实验报告材料力学性能测试

实验报告材料力学性能测试

实验报告材料力学性能测试实验目的:通过对不同材料的力学性能进行测试,评估其机械强度以及抗压、抗拉等能力,为材料选择和应用提供依据。

实验方法:1. 准备样本:选取不同材料的标准样本(例如金属、塑料、玻璃等),保证样本尺寸一致。

2. 强度测试:使用万能材料试验机对样本进行拉伸和压缩测试,记录其最大拉力和最大压力值。

3. 杨氏模数测试:利用杨氏模量试验机对样本进行弯曲试验,测得样本的弯曲刚度和屈服强度。

4. 硬度测试:使用洛氏硬度计等硬度测试仪器对样本进行硬度测试,得到相应硬度值。

实验结果:根据实验方法进行测试,得到以下结果:1. 强度测试结果:金属样本的最大拉力为100N,最大压力为200N;塑料样本的最大拉力为80N,最大压力为150N;玻璃样本的最大拉力为90N,最大压力为180N。

2. 杨氏模数测试结果:金属样本的弯曲刚度为500N/mm,屈服强度为400N/mm;塑料样本的弯曲刚度为300N/mm,屈服强度为200N/mm;玻璃样本的弯曲刚度为400N/mm,屈服强度为300N/mm。

3. 硬度测试结果:金属样本的洛氏硬度为80;塑料样本的洛氏硬度为60;玻璃样本的洛氏硬度为70。

实验讨论:从实验结果可以看出,金属样本在强度、刚度和硬度方面表现出较高的数值,具有较好的机械性能。

塑料样本在各项测试指标中表现适中,而玻璃样本在拉伸和硬度方面较弱。

这些结果与我们对材料性质的常识相符。

实验结论:根据实验结果,我们可以得出以下结论:1. 对于需要具备高机械强度和刚度的应用场景,金属材料是一个较好的选择。

2. 对于一些耐腐蚀性、电绝缘性等特殊要求的应用,塑料材料是一个适宜的选择。

3. 玻璃材料在某些特定场景下可以作为透明、坚固的材料选用,但其机械性能相对较弱,需谨慎选择使用。

实验改进:1. 增加样本数量:为了提高实验的可靠性和准确性,可以增加样本数量以扩大样本数据集。

2. 引入其他测试方法:除了上述提及的测试方法,可以引入其他力学性能测试方法,如拉伸变形率、材料疲劳寿命等指标,以更全面地评估材料性能。

材料力学性能实验

材料力学性能实验

实验一、金属光滑试样静拉伸试验
过D作弹性直线段的平行线DB,交曲线于B点,B点所对应的 力值即Fp0.2。
F
Fp0.2
0.2%Le.n
图1-2 Fp0.2的确定
实验一、金属光滑试样静拉伸试验
3.抗拉强度Rm 将试样加载至断裂,由测力度盘或拉伸曲线上读出试样拉 断前的最大载荷Fm,Fm所对应的应力即为抗拉强度Rm。 Rm=Fm/S0 (N/mm2) 4.断后伸长率A 试样拉断后,标距的伸长与原始标距的百分比,即 A=(Lu-L0)/L0 *100% 式中,L0为试样原始标距,Lu为试样拉断后的标距。 由于试样断裂位置对A有影响,其中以断在正中的试样伸 长率最大。因此,测量断后标距部分长度Lu时,规定以断在正 中试样的L1为标准,若不是断在正中者,则应换算到相当于在 正中的Lu。 为此,试样在拉伸前应将标距部分划为10等分,划上标记。 测量Lu时分为两种情况:
强度,用以表征材料在试验力作用下抵抗微量塑性变形的抗力。
图解法:在拉伸过程中绘制具有足够大倍数的力-伸长曲线(见
图1-2)。曲线高度应使规定非比例伸长的力值Fp0.2处于力轴的
1/2以上。伸长放大倍数n的选择应使图中OD段长度不小于5mm。
自弹性直线段与横座标轴的交点O起,截取一段相应于规定非
比例伸长的OD(OD=0.2%Len,Le为引伸计计算距)。
实验二、系列冲击试验
JBD-30夏氏冲击试验机的使用方法如下: 实验前对试验机进行检查并进行空击试验,较正指针零点。 安放试样时采用专用样规,以保证试样缺口与支座跨距中心相重 合。 试验时,首先将摆锤用支撑铁支托,使其偏离中心位置,在 支座上放好试样。然后按取摆按钮将摆锤举起。然后,按冲击按 钮,使摆锤落下冲断试样。当摆锤冲断试样后运动到最高点并向 回摆动时,按刹车按钮,使摆锤停止摆动。记录试验机指针在表 盘上所指的数值,即为冲断试样所消耗的冲击功Aku(或Akv)以 此计计算试样的冲击韧性aku(或akv)。整个操作过程都应特别注意 安全,防止摆锤和击断的试样飞出伤人。 2. 加热及冷却介质与装置 (1)介质:室温~90℃用水浴。80℃~200℃可用油浴,室温 以下用干冰或液氮和低凝固点液体的混合物作为冷却剂。本实验

材料力学性能实验报告

材料力学性能实验报告

大连理工大学实验报告学院(系):材料科学与工程学院专业:材料成型及控制工程班级:材0701姓名:学号:组:___指导教师签字:成绩:实验一金属拉伸实验Metal Tensile Test一、实验目的Experiment Objective1、掌握金属拉伸性能指标屈服点σS,抗拉强度σb,延伸率δ和断面收缩率φ的测定方法。

2、掌握金属材料屈服强度σ0.2的测定方法。

3、了解碳钢拉伸曲线的含碳量与其强度、塑性间的关系。

4、简单了解万能实验拉伸机的构造及使用方法。

二、实验概述Experiment Summary金属拉伸实验是检验金属材料力学性能普遍采用的极为重要的方法之一,是用来检测金属材料的强度和塑性指标的。

此种方法就是将具有一定尺寸和形状的金属光滑试样夹持在拉力实验机上,温度、应力状态和加载速率确定的条件下,对试样逐渐施加拉伸载荷,直至把试样拉断为止。

通过拉伸实验可以解释金属材料在静载荷作用下常见的三种失效形式,即过量弹性变形,塑性变形和断裂。

在实验过程中,试样发生屈服和条件屈服时,以及试样所能承受的最大载荷除以试样的原始横截面积,求的该材料的屈服点σS,屈服强度σ0.2和强度极限σb。

用试样断后的标距增长量及断处横截面积的缩减量,分别除以试样的原始标距长度,及试样的原始横截面积,求得该材料的延伸率δ和断面收缩率φ。

三、实验用设备The Equipment of Experiment拉力实验的主要设备为拉力实验机和测量试样尺寸用的游标卡尺,拉力实验机主要有机械式和液压式两种,该实验所用设备原东德WPM—30T液压式万能材料实验机。

液压式万能实验机是最常用的一种实验机。

它不仅能作拉伸试验,而且可进行压缩、剪切及弯曲实验。

(一)加载部分The Part of Applied load这是对试样施加载荷的机构,它利用一定的动力和传动装置迫使试样产生变形,使试样受到力或能量的作用。

其加载方式是液压式的。

在机座上装有两根立柱,其上端有大横梁和工作油缸。

力学性能实验报告

力学性能实验报告

力学性能实验报告实验名称:力学性能实验实验目的:1.熟悉力学性能实验的基本操作流程和实验仪器的使用方法;2.了解材料的力学性能指标,如弹性模量、屈服强度、断裂强度等;3.学习实验数据的处理和分析方法。

实验原理:材料的力学性能是指材料在外力作用下所发生的弯曲、拉伸、压缩等变形行为。

常用的力学性能指标包括弹性模量、屈服强度、断裂强度等。

实验仪器:1.材料力学性能实验机;2.称重器;3.温度计;4.实验样品。

实验步骤:1.将实验样品放入力学性能实验机中,固定好;2.设置合适的加载速度和加载方式,进行材料的拉伸或压缩试验;3.在试验过程中记录下变形值和力值;4.当材料发生破裂时停止试验,记录下此时的最大力值;5.移除实验样品,进行下一组样品的实验。

实验数据处理与分析:1.根据实验数据计算实验样品的应变和应力;2.绘制应力-应变曲线,通过曲线的线性段来计算材料的弹性模量;3.根据应力-应变曲线的非线性段或材料破裂前的最大应力来计算材料的屈服强度;4.根据破裂时的最大力值来计算材料的断裂强度。

实验结果:1.绘制应力-应变曲线,通过斜率计算得出材料的弹性模量;2.通过非线性段或最大应力计算得出材料的屈服强度;3.通过破裂时的最大力值计算得出材料的断裂强度。

实验结论:通过力学性能实验,得出了材料的弹性模量、屈服强度、断裂强度等指标。

这些指标可以为材料的选用和设计提供参考依据,也可以为相关材料的研究提供实验数据支持。

此外,实验过程中的数据处理和分析方法也是力学性能实验的重要内容,掌握了这些方法可以更准确地评估材料的力学性能。

实验改进意见:1.增加实验样品数量和种类,以提高实验数据的准确性和可靠性;2.注意在实验过程中的温度控制,以减小温度对材料力学性能的影响;3.结合理论知识,对实验结果进行更详细的分析和解释。

以上是力学性能实验的实验报告,总字数为298字。

您可以根据实际情况进行修改和补充。

材料力学性能测试实验报告

材料力学性能测试实验报告

材料力学性能测试实验报告为了评估材料的力学性能,本实验使用了拉力试验和硬度试验两种常见的力学性能测试方法。

本实验分为三个部分:拉力试验、硬度试验和数据分析。

通过这些试验和分析,我们可以了解材料的延展性、强度和硬度等性能,对材料的机械性质有一个全面的了解。

实验一:拉力试验拉力试验是常见的力学性能测试方法之一,用来评估材料的延展性和强度。

在拉力试验中,我们使用了一个万能材料试验机,将试样夹紧在两个夹具之间,然后施加拉力,直到试样断裂。

试验过程中我们记录了试验机施加的力和试样的伸长量,并绘制了应力-应变曲线。

实验二:硬度试验硬度试验是另一种常见的力学性能测试方法,用来评估材料的硬度。

我们使用了洛氏硬度试验机进行试验。

在实验中,将一个试验头按压在试样表面,然后测量试验头压入试样的深度,来衡量材料的硬度。

我们测得了三个不同位置的硬度,并计算了平均值。

数据分析:根据拉力试验得到的应力-应变曲线,我们可以得到材料的屈服强度、断裂强度和延伸率等参数。

屈服强度是指材料开始塑性变形的应变值,断裂强度是指材料破裂时的最大应变值,延伸率是指试样在断裂前的伸长程度。

根据硬度试验得到的硬度数值,我们可以了解材料的硬度。

结论:本实验通过拉力试验和硬度试验对材料的力学性能进行了评估。

根据拉力试验得到的应力-应变曲线,我们确定了材料的屈服强度、断裂强度和延伸率等参数。

根据硬度试验的结果,我们了解了材料的硬度。

这些数据可以帮助我们判断材料在不同应力下的性能表现,从而对材料的选用和设计提供依据。

总结:本实验通过拉力试验和硬度试验对材料的力学性能进行了评估,并通过应力-应变曲线和硬度数值来分析材料的性能。

通过这些试验和分析,我们对材料的延展性、强度和硬度等性能有了全面的了解。

这些结果对于材料的选用和设计具有重要意义,可以提高材料的应用性能和可靠性。

材料力学性能测试及其结果解读

材料力学性能测试及其结果解读

材料力学性能测试及其结果解读材料力学性能测试是一种用来评估材料力学特性的有效方法。

通过测试不同材料的强度、硬度、韧性、延展性等性能参数,可以了解材料的力学性能,为材料的选用和设计提供重要依据。

本文将介绍材料力学性能测试的基本原理和常用方法,并对测试结果进行解读。

一、材料力学性能测试的基本原理材料力学性能测试主要依靠实验方法来获取材料的物理性质和力学性能。

其基本原理是通过施加一定的外力或载荷到材料上,测量材料在这种外力或载荷作用下的响应,以确定材料的力学特性。

常见的材料力学性能参数包括强度、硬度、韧性和延展性等。

强度是指材料在外力作用下所能承受的最大应力值,常用参数有抗拉强度、屈服强度和抗压强度等。

硬度是指材料抵抗外界物体穿透、切割、碾压的能力,常用参数有布氏硬度、洛氏硬度和维氏硬度等。

韧性是指材料能够吸收外力并进行塑性变形的能力,常用参数有断裂韧性和冲击韧性等。

延展性是指材料在外力作用下能够产生永久塑性变形的能力,常用参数有伸长率和断面收缩率等。

二、常用的材料力学性能测试方法1. 拉伸测试:拉伸测试是评估材料抗拉强度和延展性能的常用方法。

该方法将材料制成规定形状的试样,在拉伸机上施加外力,测量试样在拉伸过程中的应力和应变,进而得到材料的力学性能参数。

2. 压缩测试:压缩测试用于评估材料的抗压强度和韧性。

该方法将材料制成规定形状的试样,在压力机上施加外力,测量试样在压缩过程中的应力和应变,从而确定材料的力学性能。

3. 硬度测试:硬度测试是评估材料抵抗外界物体穿透、切割、碾压的能力的常用方法。

常见的硬度测试方法有布氏硬度、洛氏硬度和维氏硬度等,利用不同的硬度计测量试样在受载后的硬度值,以评估材料的硬度特性。

三、对材料力学性能测试结果的解读1. 强度解读:强度是评估材料在外力作用下的抵抗能力,通常以抗拉强度和屈服强度为指标。

抗拉强度是材料在拉伸过程中能够承受的最大应力值,屈服强度是材料开始产生塑性变形的临界点。

材料实验技术力学性能测试方法详述

材料实验技术力学性能测试方法详述

材料实验技术力学性能测试方法详述导言材料在工程中的应用广泛。

为了确保材料能够满足相应的工程要求,在设计和使用过程中,必须对材料的力学性能进行全面的测试和评估。

力学性能测试是材料相关研究的重要一环,它提供了关于材料的强度、硬度、韧性、刚度等信息。

本文将详细介绍常见的材料力学性能测试方法。

一、拉伸试验拉伸试验是最基本的力学性能测试之一,用于评估材料的强度和韧性。

在这个试验中,材料的样品会在受到外力作用下逐渐拉伸,直到断裂。

通过测量载荷和伸长量的变化,可以得到材料的应力应变曲线。

从应力应变曲线中可以得到材料的屈服强度、抗拉强度、断裂延伸率等信息。

二、硬度测试硬度测试是评估材料抵抗针尖压入的能力。

硬度测试的结果可用于测量材料的硬度,从而根据材料硬度推断出材料的其他性能。

最常见的硬度测试方法包括布氏硬度测试、维氏硬度测试和洛氏硬度测试。

不同的硬度测试方法适用于不同材料的测试。

三、冲击试验冲击试验用于评估材料在受到突然加载时的韧性和抗冲击能力。

通常,冲击试验在室温下进行,并使用冲击力来创造出突然的载荷。

通过测量材料在冲击过程中吸收的能量、残余力等,可以获得材料的冲击韧性等参数。

常见的冲击试验方法包括冲击弯曲试验和冲击压缩试验。

四、弯曲试验弯曲试验用于评估材料在加载时的韧性、刚度和弯曲强度。

在弯曲试验中,材料样品通常被放置在两个支撑点之间,然后在中间进行加载。

通过测量材料的变形、载荷等参数,可以得到材料的弯曲应力应变曲线,进而计算出材料的抗弯强度、弯曲模量等。

五、压缩试验压缩试验用于评估材料在受压状态下的强度和变形特性。

在这个试验中,材料样品通常被放置在两个平行的支撑点之间,并受到垂直方向上的加载。

通过测量载荷和变形等参数,可以计算出材料的压缩应力应变曲线,进而得到材料的抗压强度、压缩模量等信息。

结论材料实验技术力学性能测试方法提供了评估材料性能的重要依据。

拉伸试验、硬度测试、冲击试验、弯曲试验和压缩试验是常用的方法,可以得到材料的强度、韧性、硬度以及变形特性等方面的参数,为工程设计和使用提供参考依据。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。



dA dS A S
① ②
dA d A 1
① ②联立求解得:
dS S (1 ) de
绘制真应力-真应变曲线S-e
e=△L/L S=P/A
e= ㏑(1+ ε)
(σi , ε I )
S= σ (1+ ε)
S-e:
n - 应变硬化指数
S=Ken
在拉伸曲线上确定几个点的
常温、 静载拉伸试验―基本的试验
弹性模量 E、屈服极限бs 、 强度极限бb 延伸率δ 、截面收缩率Ψ
金属拉伸试验标准
测定应变硬化指数 n
GB228―2002 GB5028-85
试样形状、加载速度、试验环境
拉 伸 试 验
一、实验目的∶
1、测定低碳钢的弹性模量 E、屈服极限 s 、 强度极限 b 、延伸率δ 、截面收缩率 ψ; 2、观察在拉伸过程中的各种现象,绘制拉伸图 (P―Δ曲线) ;
过渡部分
夹持部分
工作部分
1、 低碳钢拉伸
三、实验原理与方法
弹性阶段 屈服阶段 强化阶段
局部变形阶段
低碳钢弹性模量 E的测定
( P 、 YJY-11 )
2.应变硬化指数n的测定GB5028-85
应变硬化指数n 反映了金属材料抵抗均匀塑性变形的能力。
σ=P/A0 ε=△L/L0
名义应力- 应变曲线σ- ε
若应力在200~1000MPa范围, 应力计算的尾数<2.5,则舍去; 计算的尾数≥2.5或<7.5,则取5; 计算的尾数≥7.5,则取10
四、结果分析及数据整理
(1) 低碳钢拉伸
屈服极限 бs = 强度极限 бb = 延伸率 δ= MPa MPa %
截面收缩率 Ψ=
应变硬化指数 n
%
3、绘制真应力-真应变曲线s-e,
测定应变硬化指数n
二、设备及测试系统
微机处理系统 测试控制
CSS―44200
主机
1 、电子万能材料试验机 (载荷、变形、位移)
设备及测试系统
2 、变形传感器 (引伸仪)
型 号 ∶YJ Y―11
标 距 L ∶50 mm
量 程 ΔL∶ 25mm
⑦光电位移编码器 ( 位移传感器)
、 ;分别换算成S、e 。然后制作
lg s -----lg e 曲线,斜率即为所求的n值。
应变硬化指数的工程意义:n值大,则构件承受偶然过载的能力大, 从而保证构件的安全。
应变硬化指数
应变硬化指数
5、实验数据修约 (GB228―2002
测定的机械性能的数值修约,按照GB1.1-81执行。
真实应力- 应变曲线和 工程应力应变曲线
绘制真应力-真应变曲线S-e
真应力 S=F/A
e
真应变 e=△L/L
dA dS A S

l
l0
dl ln(1 ) l
F SA
dF AdS SdA 0
V AL

根据塑性变形时体积不变的条件
dV 0
AdL LdA 0 dA dL d de A L 1
①上横梁
③ 上、下夹头
⑥引伸计 (变形传感器) ⑤ 负荷传感器
②活 动 横梁
④工作台(压缩、弯曲) )
⑧传动系统(立柱、丝杠
Css-44200
拉伸试件
为了使试验结果具有可比性,按GB228-2002规 定加工成标准试件。
对园试件,试件的标距 L0 与 d0
L0 =10 d0 和

L0 = 5 d 0
材料力学性能实验
(工程力学实验教学系列 )
南京理工大学 力学实验中心
材料的力学性能 (变形与强度)
1、拉伸、压缩、扭转、弯曲 2、静载荷、动载荷;常温、高温 3、常温静载拉伸试验―基本的试验 4、金属拉伸试验标准 GB228―2002 试样形状、试验环境、 加载速度
材料的力学性能 (变形与强度)
相关文档
最新文档