2018年高等数学二试题及完全解析(Word版)
2018年全国卷Ⅱ理数高考试题文档版(含答案)

绝密★启用前2018年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.作答时,务必将答案写在答题卡上。
写在本试卷及草稿纸上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.12i12i+=- A .43i 55--B .43i 55-+C .34i 55--D .34i 55-+2.已知集合(){}223A x y xy x y =+∈∈Z Z ,≤,,,则A 中元素的个数为 A .9B .8C .5D .43.函数()2e e x xf x x --=的图像大致为4.已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a b A .4B .3C .2D .05.双曲线22221(0,0)x y a b a b-=>>的离心率为3,则其渐近线方程为A .2y x =±B .3y x =±C .22y x =±D .32y x =± 6.在ABC △中,5cos25C =,1BC =,5AC =,则AB =A .42B .30C .29D .257.为计算11111123499100S =-+-++-…,设计了右侧的程序框图,则在空白框中应填入 A .1i i =+ B .2i i =+ C .3i i =+ D .4i i =+8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是 A .112B .114C .115D .1189.在长方体1111ABCD A B C D -中,1AB BC ==,13AA =,则异面直线1AD 与1DB 所成角的余弦值为 A .15B .56C .55D .2210.若()cos sin f x x x =-在[,]a a -是减函数,则a 的最大值是A .π4B .π2C .3π4D .π11.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)(f f ff++++=… A .50- B .0 C .2 D .5012.已知1F ,2F 是椭圆22221(0)x y C a b a b +=>>:的左、右焦点,A 是C 的左顶点,点P 在过A 且斜率为36的直线上,12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为 A .23B .12C .13D .14二、填空题:本题共4小题,每小题5分,共20分. 13.曲线2ln(1)y x =+在点(0,0)处的切线方程为__________.14.若,x y 满足约束条件25023050x y x y x +-≥⎧⎪-+≥⎨⎪-≤⎩,,, 则z x y =+的最大值为__________.开始0,0N T ==S N T =-S 输出1i =100i <1N N i =+11T T i =++结束是否15.已知sin cos 1αβ+=,cos sin 0αβ+=,则sin()αβ+=__________. 16.已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45°,若SAB △的面积为515,则该圆锥的侧面积为__________.三、解答题:共70分。
2018年成人高等学校招生全国统一考试专升本《高等数学(二)》试题及答案解析

2018年成人高等学校招生全国统一考试专升本高等数学(二)本试卷分第Ⅰ卷(选择题)和第卷(非选择题)两部分,满分150分,考试时间120分.第Ⅰ卷(选择题,共40分)一、选择题(1~10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1. ( )A. C. 1 D. 02. 若,则= ( )A. B. C. D.3. 若函数,则( )A. B. C. D.4. 曲线在点处的法线方程是( )A. B.C. D.5.( )A. B.C. D.6. = ( )A. B. C. D.7. 若为连续的奇函数,则= ( )A. 0B. 2C.D.8. 若二元函数,则( )A. B. C. D.9. 设区域,则绕轴旋转一周所得旋转体的体积为( )A. B. C. D.10. 设为两个随机事件,且相互独立,,,则)=( )A. 0.24B. 0.36C. 0.4D. 0.6第Ⅱ卷(非选择题,共110分)二、填空题(11~20小题,每小题4分,共40分)11. 曲线的拐点为 .12. .13.若函数,则= .14. 若则 .15. 设,则 .16. .17. .18. .19. .20. 若二元函数:,则 .三、解答题(21~28题,共70分。
解答应写出推理、演算步骤)21. (本题满分8分)设函数,在处连续,求.22. (本题满分8分)求.23. (本题满分8分)设函数,求.24. (本题满分8分)求.25。
(本题满分8分)求.26。
(本题满分10分)求函数的极值.27. (本题满分10分)盒子中有5个产品,其中恰有3个合格品。
从盒子中任取2个,记为取出的合格品个数,求:(1)的概率分布;(2).28。
(本题满分10分)求函数在条件下的最值.参考答案及解析一、选择题1.【答案】D【考情点拨】本题考查了极限的运算的知识点.【应试指导】.2.【答案】D【考情点拨】本题考查了一元函数微分的知识点.【应试指导】.3.【答案】C【考情点拨】本题考查了函数的求导公式的知识点.【应试指导】,则.4.【答案】C【考情点拨】本题考查了法线方程的知识点.【应试指导】,,则法线斜率,则法线方程为,即。
2018年全国2卷数学试卷及参考答案

理科数学一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是复合题目要求的。
1.1212ii+=-( ) A .4355i --B .4355i -+C .3455i --D .3455i -+2.已知集合(){}223A x y xy x y =+∈∈Z Z ,≤,,,则A 中元素的个数为( )A .9B .8C .5D .43.函数()2x xe ef x x --=的图象大致是( )4.已知向量a b ,满足,1a =,1a b ⋅=-,则()2a a b ⋅-=( ) A .4B .3C .2D .05.双曲线()2222100x y a b a b-=>,> )A .y =B .y =C .y x =D .y =6.在ABC △中,cos2C =1BC =,5AC =,则AB =( )A .BCD .7.为计算11111123499100S =-+-+⋅⋅⋅+-,设计了右侧的程序框图, 则在空白框中应填入( ) A .1i i =+ B .2i i =+ C .3i i =+ D .4i i =+8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是( )A .112B .114C .115D .1189.在长方体1111ABCD A B C D -中,1AB BC ==,1AA =1AD 与1DB 所成角的余弦值为( )A .15B C D10.若()cos sin f x x x =-在[]a a -,是减函数,则a 的最大值是( )A .4π B .2π C .43πD .π11.已知()f x 是定义域为()-∞+∞,的奇函数,满足()()11f x f x -=+.若()12f =,则()()()()12350f f f f +++⋅⋅⋅+=( )A .50-B .0C .2D .5012.已知1F ,2F 是椭圆()2222:10x y C a b a b+=>>的左、右焦点交点,A 是C 的左顶点,点P 在过A 且的直线上,12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为( ) A .23B .12C .13D .14二、填空题,本题共4小题,每小题5分,共20分.13.曲线()2ln 1y x =+在点()00,处的切线方程为__________.14.若x y ,满足约束条件25023050x y x y x +-⎧⎪-+⎨⎪-⎩≥≥≤,则z x y =+的最大值为_________.15.已知sin cos 1αβ+=,cos sin 0αβ+=,则()sin αβ+=__________.16.已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45︒.若SAB △的面积为_________.三、解答题:共70分,解答应写出文字说明、证明过程或演算步骤。
2018年高等数学二试题及完全解析(Word版)

2018年全国硕士研究生入学统一考试数学二考研真题与全面解析(Word 版)一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. 1. 若()212lim1xx x eax bx →++=,则 ( )(A )1,12a b ==- (B )1,12a b =-=- (C )1,12a b == (D )1,12a b =-= 【答案】(B )【解析】由重要极限可得()()()2222222112200111lim211lim lim 1(1)lim 1(1)x x x x xx x x x x e ax bx e ax bx x xe ax bx x x e ax bx e ax bx e ax bx e →→→++-++-•++-→=++=+++-=+++-=,因此, 222222001()12lim 0lim 0x x x x x ax bx x e ax bx x x→→++++++-=⇒=ο 22201()(1)()12lim 00,102x a x b x x a b x →++++⇒=⇒+=+=ο 或用“洛必达”:2(1)200012212lim 0lim lim 0222x x x b x x x e ax bx e ax b e a ax x ⇒=-→→→++-++++=⇒=======, 故 1,12a b ==-,选(B ). 2. 下列函数中在0x =处不可导的是( )(A )()sin f x x x = (B)()f x x =(C )()cos f x x = (D)()f x =【答案】(D )【解析】根据导数定义,A. 000sin ()(0)limlim lim 0x x x x x x x f x f x x x→→→-===g ,可导;B. 000()(0)lim0x x x f x f x →→→-===, 可导; C. 20001cos 1()(0)2lim lim lim 0x x x x x f x f x x x→→→---=== ,可导;D. 20001122lim limx x x x x x→→→--== ,极限不存在。
2018年高考全国二卷数学理科(word版)试题(含答案)

2018年高考全国二卷数学理科(word版)试题(含答案)绝密★启用前2018年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.作答时,将答案写在答题卡上。
写在本试卷及草稿纸上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.12i 12i+=-A .43i 55-- B .43i 55-+ C .34i 55-- D .34i 55-+2.已知集合(){}223A x y xy x y =+∈∈Z Z,≤,,,则A 中元素的个数为A .9B .8C .5D .4 3.函数()2e e x xf x x --=的图像大致为4.已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a bA .4B .3C .2D .0 5.双曲线22221(0,0)x y a b a b -=>>则其渐近线方程为 A.y = B.y = C.y = D.y x =6.在ABC△中,cos2C 1BC =,5AC =,则AB = A.B.CD.7.为计算11111123499100S =-+-++-…,设计了右侧的程序框图,则在空白框中应填入 A .1i i =+ B .2i i =+ C .3i i =+ D .4i i =+8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是A .112 B .114 C .115 D .1189.在长方体1111ABCD A B C D -中,1AB BC ==,1AA =则异面直线1AD 与1DB 所成角的余弦值为A .15B C D 10.若()cos sin f x x x =-在[,]a a -是减函数,则a 的最大值是A .π4B .π2C .3π4D .π 11.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)(50)f f f f ++++=…A .50-B .0C .2D .5012.已知1F ,2F 是椭圆22221(0)x y C a b a b+=>>:的左,右焦点,A 是C 的左顶点,点P 在过A 且斜率的直线上,12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为A . 23B .12C .13D .14二、填空题:本题共4小题,每小题5分,共20分。
2018年全国二卷数学(含详解答案)

2018年全国二卷数学(含详解答案)2018年全国二卷数学一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.12i12i+=-A .43i 55-- B .43i 55-+ C .34i 55--D .34i 55-+2.已知集合(){}223A x y x y x y =+∈∈Z Z,≤,,,则A 中元素的个数为A .9B .8C .5D .4 3.函数()2e e x xf x x --=的图像大致为4.已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a bA .4B .3C .2D .0 5.双曲线22221(0,0)x y a b a b -=>>3线方程为 A .2y x= B .3y x= C .2y =D .3y x =6.在ABC△中,5cos2C 1BC =,5AC =,则AB = A .42B 30C 29D .257.为计算11111123499100S =-+-++-…,设计了右侧的程序框图,则在空白框中应填入 A .1i i =+ B .2i i =+ C .3i i =+ D .4i i =+8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的开始0,0N T ==S N T =-S 输出1i =100i <1N N i=+11T T i =++结束是否和”,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是 A .112 B .114 C .115D .1189.在长方体1111ABCD A B C D -中,1AB BC ==,13AA =,则异面直线1AD 与1DB 所成角的余弦值为A .15B 5C 5D 210.若()cos sin f x x x =-在[,]a a -是减函数,则a 的最大值是A .π4B .π2C .3π4D .π 11.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)(50)f f f f ++++=…A .50-B .0C .2D .50 12.已知1F ,2F 是椭圆22221(0)x y C a b a b+=>>:的左、右焦点,A是C的左顶点,点P 在过A3的直线上,12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为A . 23B .12C .13D .14二、填空题:本题共4小题,每小题5分,共20分. 13.曲线2ln(1)y x =+在点(0,0)处的切线方程为__________. 14.若,x y 满足约束条件25023050x y x y x +-≥⎧⎪-+≥⎨⎪-≤⎩,,, 则z x y =+的最大值为__________.15.已知sin cos 1αβ+=,cos sin 0αβ+=,则sin()αβ+=__________.16.已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45°,若SAB△的面积为515,则该圆锥的侧面积为__________.三、解答题:共70分。
(完整word版)2018年全国2卷理科数学试卷及答案

2018年普通高等学校招生全国统一考试全国2卷数学(理科)一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是复合题目要求的。
1.1212ii+=-( ) A .4355i --B .4355i -+C .3455i --D .3455i -+2.已知集合(){}223A x y xy x y =+∈∈Z Z ,≤,,,则A 中元素的个数为( ) A .9B .8C .5D .43.函数()2x xe ef x x --=的图象大致是( )4.已知向量a b ,满足,1a =,1a b ⋅=-,则()2a a b ⋅-=( ) A .4B .3C .2D .05.双曲线()2222100x y a b a b-=>,> )A .y =B .y =C .y x =D .y x =6.在ABC △中,cos 2C =,1BC =,5AC =,则AB =( )A .B C D .7.为计算11111123499100S =-+-+⋅⋅⋅+-,设计了右侧的程序框图,则在空白框中应填入( ) A .1i i =+ B .2i i =+ C .3i i =+ D .4i i =+8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是( ) A .112B .114C .115D .1189.在长方体1111ABCD A B C D -中,1AB BC ==,13AA =,则异面直线1AD 与1DB 所成角的余弦值为( ) A .15B .56C .55D .2210.若()cos sin f x x x =-在[]a a -,是减函数,则a 的最大值是( )A .4π B .2π C .43πD .π11.已知()f x 是定义域为()-∞+∞,的奇函数,满足()()11f x f x -=+.若()12f =,则()()()()12350f f f f +++⋅⋅⋅+=( ) A .50-B .0C .2D .5012.已知1F ,2F 是椭圆()2222:10x y C a b a b+=>>的左、右焦点交点,A 是C 的左顶点,点P 在过A 且斜率为36的直线上,12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为( ) A .23B .12C .13D .14二、填空题,本题共4小题,每小题5分,共20分.13.曲线()2ln 1y x =+在点()00,处的切线方程为__________.14.若x y ,满足约束条件25023050x y x y x +-⎧⎪-+⎨⎪-⎩≥≥≤,则z x y =+的最大值为_________.15.已知sin cos 1αβ+=,cos sin 0αβ+=,则()sin αβ+=__________.16.已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45︒.若SAB △的面积为_________.三、解答题:共70分,解答应写出文字说明、证明过程或演算步骤。
(完整word版)2018年全国2卷理科数学试卷及答案(2),推荐文档

2018年普通高等学校招生全国统一考试全国2卷数学(理科)一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是复合题目要求的。
1.1212ii+=-( ) A .4355i --B .4355i -+C .3455i --D .3455i -+2.已知集合(){}223A x y xy x y =+∈∈Z Z ,≤,,,则A 中元素的个数为( ) A .9B .8C .5D .43.函数()2x xe ef x x --=的图象大致是( )4.已知向量a b ,满足,1a =,1a b ⋅=-,则()2a a b ⋅-=( ) A .4B .3C .2D .05.双曲线()2222100x y a b a b-=>,> )A .y =B .y =C .y x =D .y x =6.在ABC △中,cos 2C =,1BC =,5AC =,则AB =( )A .B C D .7.为计算11111123499100S =-+-+⋅⋅⋅+-,设计了右侧的程序框图,则在空白框中应填入( ) A .1i i =+ B .2i i =+ C .3i i =+ D .4i i =+8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是( ) A .112B .114C .115D .1189.在长方体1111ABCD A B C D -中,1AB BC ==,13AA =,则异面直线1AD 与1DB 所成角的余弦值为( ) A .15B .5 C .5 D .210.若()cos sin f x x x =-在[]a a -,是减函数,则a 的最大值是( )A .4π B .2π C .43πD .π11.已知()f x 是定义域为()-∞+∞,的奇函数,满足()()11f x f x -=+.若()12f =,则()()()()12350f f f f +++⋅⋅⋅+=( ) A .50-B .0C .2D .5012.已知1F ,2F 是椭圆()2222:10x y C a b a b+=>>的左、右焦点交点,A 是C 的左顶点,点P 在过A 且斜率为3的直线上,12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为( ) A .23B .12C .13D .14二、填空题,本题共4小题,每小题5分,共20分.13.曲线()2ln 1y x =+在点()00,处的切线方程为__________.14.若x y ,满足约束条件25023050x y x y x +-⎧⎪-+⎨⎪-⎩≥≥≤,则z x y =+的最大值为_________.15.已知sin cos 1αβ+=,cos sin 0αβ+=,则()sin αβ+=__________.16.已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45︒.若SAB △的面积为_________.三、解答题:共70分,解答应写出文字说明、证明过程或演算步骤。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年全国硕士研究生入学统一考试数学二考研真题与全面解析(Word 版)一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. 1. 若()2120lim1xx x eax bx →++=,则 ( )(A )1,12a b ==- (B )1,12a b =-=- (C )1,12a b == (D )1,12a b =-= 【答案】(B )【解析】由重要极限可得()()()2222222112200111lim211lim lim 1(1)lim 1(1)x x x x xx x x x x e ax bx e ax bx x xe ax bx x x e ax bx e ax bx e ax bx e →→→++-++-•++-→=++=+++-=+++-=,因此, 222222001()12lim 0lim 0xx x x x ax bx x e ax bx x x→→++++++-=⇒=ο 22201()(1)()12lim 00,102x a x b x x a b x →++++⇒=⇒+=+=ο 或用“洛必达”:2(1)200012212lim 0lim lim 0222x x x b x x x e ax bx e ax b e a ax x ⇒=-→→→++-++++=⇒=======, 故 1,12a b ==-,选(B ). 2. 下列函数中在0x =处不可导的是( )(A )()sin f x x x = (B)()f x x =(C )()cos f x x = (D)()f x =【答案】(D )【解析】根据导数定义,A. 000sin ()(0)limlim lim 0x x x x x x x f x f x x x→→→-===g ,可导;B. 000()(0)lim 0x x x f x f x →→→-===, 可导;C. 20001cos 1()(0)2lim lim lim 0x x x x x f x f x x x→→→---=== ,可导;D. 20001122lim limx x x x x x→→→--== ,极限不存在。
故选(D ). 3. 设函数1,0()1,0x f x x -<⎧=⎨≥⎩,2,1(),10,0ax x g x x x x b x -≤-⎧⎪=-<<⎨⎪-≥⎩ ,若()()f x g x +在R 上连续,则( ). (A )3,1a b == (B )3,2a b == (C )3,1a b =-= (D )3,2a b =-= 【答案】(D )【解析】 令1,1()()()1,101,0ax x F x f x g x x x x b x -≤-⎧⎪=+=--<<⎨⎪-+≥⎩ , 则 (1)1,(0)1,F a F b -=+=- (10)2,(00)1,F F -+=--=-因为函数连续,所以极限值等于函数值,即12,113,2a b a b +=--=-⇒=-=,故选 (D ). 4. 设函数()f x 在[0,1]上二阶可导。
且10()0f x dx =⎰,则 ( )(A )当()0f x '<时,1()02f < (B )当()0f x ''<时,1()02f <(C )当()0f x '>时,1()02f < (D )当()0f x ''>时,1()02f <【答案】(D )【解析一】有高于一阶导数的信息时,优先考虑“泰勒展开”。
从选项中判断,展开点为012x = 。
将函数()f x 在012x =处展开,有 2111()1()()()()()2222!2f f x f f x x ξ'''=+-+-,其中12x ξ<<。
两边积分,得111200111()10()()()()()2222!2f f x dx f f x dx x dx ξ'''==+-+-⎰⎰⎰1201()1()()22!2f f x dx ξ''=+-⎰,由于120()1()0()02!2f f x x dx ξ''''>⇒->⎰,所以1()02f <,应选(D ). 【解析二】排除法。
(A )错误。
令1()2f x x =-+,易知10()0f x dx =⎰,()10f x '=-<,但是1()02f =。
(B )错误。
令21()3f x x =-+,易知10()0f x dx =⎰,()20f x ''=-<,但是1()02f >。
(C )错误。
令1()2f x x =-,易知10()0f x dx =⎰,()10f x '=>,但是1()02f =。
故选 (D ).5. 设2222(1)1x M dx xππ-+=+⎰,221x x N dx e ππ-+=⎰,22(1K dx ππ-=⎰,则( ) (A )MN K >> (B )M K N >> (C )K M N >> (D )K N M >>【答案】(C )【解析】积分区间是对称区间,先利用对称性化简,能求出积分最好,不能求出积分则最简化积分。
22222222222(1)122(1)111x x x x M dx dx dx x x x πππππππ---+++===+=+++⎰⎰⎰,2222(11K dx dx πππππ--=+>=⎰⎰g ,令()1,(,)22xf x e x x ππ=--∈-,则()1xf x e '=-,当(,0)2x π∈-时,()0f x '<,当(0,)2x π∈时,()0f x '>,故 对(,)22x ππ∀∈-,有()(0)0f x f ≥=,因而 11x x e +≤,222211x x N dx dx e πππππ--+=<=⎰⎰g ,故K M N >>。
应选(C ).6.222121(1)(1)x x xxdx xy dy dx xy dy ----+-=⎰⎰⎰⎰( )(A )53 (B )56 (C )73 (D )76【答案】(C )【解析】还原积分区域,如图所示:积分区域D 关于y 轴对称,被积函数中xy 关于x 是奇函数,所以222121120(1)(1)7(1)(2)3x x xx D Ddx xy dy dx xy dyxy dxdy dxdy x x dx ----+-=-==--=⎰⎰⎰⎰⎰⎰⎰⎰⎰, 故选(C )。
7. 下列矩阵中阵,与矩阵110011001⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦相似的是( ) (A )111011001-⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦ (B )101011001-⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦ (C )111010001-⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦ (D )101010001-⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦【答案】(A )【解析】记矩阵110011001H ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,则秩()3r H =,迹()3tr H =,特征值1λ= (三重)。
观察,,,A B C D 四个选项,它们与矩阵H 的秩相等、迹相等、行列式相等,特征值也相等,进一步分析可得:()2r EH λ-=,()2r E A λ-=,()1r E B λ-=()1r E C λ-=, ()1r E D λ-=。
如果矩阵A 与矩阵X 相似,则必有kE A -与kE X-相似(k 为任意常数),从而()()r kEA r kE X -=-),故选(A ),8. 设,A B 是n 阶矩阵,记()r X 为矩阵X 的秩,(,)X Y 表示分块矩阵,则( ) (A )(,)()r A AB r A = (B )(,)()r A BA r A =(C )(,)max{(),()}r A B r A r B = (D )(,)(,)T T r A B r A B =【答案】(A )【解析】把矩阵,A AB 按列分块,记1212(,,),(,,)n n A AB αααβββ==L L ,则向量组12,,n βββL可以由向量组12,,n αααL 线性表出,从而12,,n αααL 与12,,n αααL ,12,,n βββL ,等价,于是(,)()r A AB r A =,故选(A )。
,二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸...指定位置上. 9. 若2lim [arctan(1)arctan ]x x x x →+∞+-= 。
【答案】 1.【解析】【方法一】 由拉格朗日中值定理可得21arctan(1)arctan ,1x x +-=+ξ其中 1,0x x x ξ<<+>,可知 2221111(1)11x x <<++++ξ,而 2222lim lim 11(1)1x x x x x x →+∞→+∞==+++, 根据夹逼定理可得,222lim [arctan(1)arctan ]lim11x x x x x x →+∞→+∞+-==+ξ。
【方法二】0∞g型未定式的极限必须化成商式。
22arctan(1)arctan lim [arctan(1)arctan ]limx x x xx x x x-→+∞→+∞+-+-= 32222322111[1(1)(1)]1(1)1lim lim 22(1)[1(1)]x x x x x x x x x x -→+∞→+∞-++-++++==-+++ 432212lim 12(1)[1(1)]x x x x x →+∞+==+++。
10. 曲线22ln y x x =+在其拐点处的切线方程为 。
【答案】43yx =-.【解析】函数的定义域为(0,)+∞,22y x x '=+,222y x''=-;34y x'''=。
令 0y ''=,解得 1x=,而(1)0y '''≠,故点 (1,1)是曲线唯一的拐点。
曲线在该点处的斜率(1)4y '=,所以切线方程为 43y x =-。
11.2543dxx x +∞=-+⎰; 【答案】1ln 22。
【解析】2555111131ln ln 243231212dx x dx x x x x x +∞+∞+∞-⎛⎫⎛⎫=-== ⎪ ⎪-+---⎝⎭⎝⎭⎰⎰。