2020年4月全国高等数学(工本)自考试题及答案解析
2020年普通高等学校招生全国统一考试数学带答案解析

F
为双曲线 C :
x2 a2
y2 b2
1(a
0, b
0) 的右焦点,A
为
C
的右顶点,B
为
C
上的点,且
BF
垂直于
x
轴.若 AB 的斜率为 3,则 C 的离心率为
.
16.如图,在三棱锥 P–ABC 的平面展开图中,AC=1, AB AD 3 ,AB⊥AC,AB⊥AD,∠CAE=30°,
则 cos∠FCB=
已知函数 f (x) | 3x 1| 2 | x 1| . (1)画出 y f (x) 的图像;
精品文档,名师推荐! 来源网络,造福学生
———————欢迎下载,祝您学习进步,成绩提升———————
(2)求不等式 f (x) f (x 1) 的解集.
选择题答案 一、选择题 1.D 5.D
参考答案
所以E的方程为 x(x2,y2),P(6,t). 若t≠0,设直线CD的方程为x=my+n,由题意可知–3<n<3.
t
t
由于直线PA的方程为y= 9 (x+3),所以y1= 9 (x1+3).
t
t
直线PB的方程为y= 3 (x–3),所以y2= 3 (x2–3).
C. a b2
D. a b2
二、填空题:本题共 4 小题,每小题 5 分,共 20 分。
2x y 2 0,
13.若 x,y 满足约束条件 x y 1 0, 则 z=x+7y 的最大值为
.
y 1 0,
14.设 a,b 为单位向量,且 | a b | 1,则 | a b |
.
15.已知
2.B 6.B
3.C 7.C
自考高等数学试题及答案解析

自考高等数学试题及答案解析一、选择题(每题3分,共30分)1. 下列函数中,哪一个不是周期函数?A. y = sin(x)B. y = cos(x)C. y = e^xD. y = tan(x)答案:C解析:周期函数是指函数在某一固定区间内重复其图形的函数。
y= sin(x)和y = cos(x)都是周期为2π的周期函数,y = tan(x)是周期为π的周期函数,而y = e^x是指数函数,没有周期性。
2. 微积分基本定理指出,如果一个连续函数f(x)在区间[a, b]上有一个原函数F(x),那么f(x)在该区间上的定积分可以通过F(x)的差值来计算。
设f(x) = 2x,求∫[1, 3] 2x dx。
A. 6B. 12C. 18D. 24答案:B解析:首先找到f(x)的原函数F(x),F(x) = ∫2x dx = x^2 + C。
根据微积分基本定理,定积分等于原函数的差值,即F(3) - F(1) = (3^2) - (1^2) = 9 - 1 = 8。
3. 以下哪个选项是二阶微分方程y'' - y' - 6y = 0的通解?A. y = e^(3x)B. y = e^x + e^(-2x)C. y = e^(2x) + e^(-3x)D. y = e^(-x) + e^(3x)答案:B解析:这是一个线性常系数微分方程,其特征方程为r^2 - r - 6 = 0。
解这个二次方程得到r1 = 3和r2 = -2。
因此,通解为y = C1 * e^(3x) + C2 * e^(-2x)。
4-10. (略)二、填空题(每题2分,共20分)1. 函数f(x) = x^2在区间[0, 1]上的最大值为______。
答案:1解析:函数f(x) = x^2在区间[0, 1]上是连续的,且在x = 1处取得最大值。
2. 设f(x) = x^3 - 6x^2 + 9x,求f'(x)。
(整理)年4月全国自考高等数学(工本)试题和参考答案.

精品文档全国2011年4月高等教育自学考试高等数学(工本)试题课程代码:00023一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.已知a ={-1,1,-2),b =(1,2,3},则a ×b =( )A.{-7,-1,3}B.{7,-1,-3}C.{-7,1,3}D.{7,1,-3)2.极限222200)(3sin lim y x y x y x ++→→( ) A.等于0B.等于31C.等于3D.不存在3.设∑是球面x 2+y 2+z 2=4的外侧,则对坐标的曲面积分⎰⎰∑x 2dxdy =( ) A.-2B.0C.2D.4 4.微分方程22y x xy dx dy +=是( ) A.齐次微分方程 B.可分离变量的微分方程C.一阶线性齐次微分方程D.一阶线性非齐次微分方程 5.无穷级数∑∞=023n n n的前三项和S 3=( )A.-2B.419C.827D.865精品文档 二、填空题(本大题共5小题,每小题2分,共10分)请在每小题的空格中填上正确答案。
错填、不填均无分。
6.已知向量a ={2,2,-1),则与a 反方向的单位向量是_________.7.设函数f (x ,y )=yx y x +-,则f (1-x ,1+x )=_________. 8.设积分区域D :x 2+y 2≤2,则二重积分⎰⎰Df (x ,y )dxdy 在极坐标中的二次积分为________. 9.微分方程y 〞+y =2e x 的一个特解是y *=_________.10.设f (x )是周期为2π的函数,f (x )在[-π, π],上的表达式为f (x )=⎩⎨⎧∈-∈),0[,)0,[,0ππx e x x S (x )为f (x )的傅里叶级数的和函数,则S (0)=_________.三、计算题(本大题共12小题,每小题5分,共60分)11.求过点P (-1,2,-3),并且与直线x =3+t ,y =t ,z =1-t 垂直的平面方程.12.设函数z =,求全微分dz |(2,1).13.设函数z=f (cos (xy ),2x-y ),其中f (u ,v )具有连续偏导数,求x z ∂∂和dyz ∂. 14.已知方程e xy -2z +x 2-y 2+e z =1确定函数z=z (x,y ),求x z ∂∂和y z ∂∂. 15.设函数z=e x (x 2+2xy ),求梯度grad f (x ,y ).16.计算二重积分⎰⎰D y 22x e -dxdy .其中积分区域D 是由直线y=x , x =1及x 轴所围成的区域. 17.计算三重积分⎰⎰⎰Ω(1-x 2-y 2)dxdydz ,其中积分区域Ω是由x 2+y 2=a 2,z =0及z =2所围成的区域.18.计算对弧长的曲线积分⎰C xds ,其中C 是抛物线y=x 2上由点A (0,0)到点B (2,4)的一段弧.精品文档19.验证对坐标的曲线积分⎰C (x+y )dx +(x-y )dy 与路径无关, 并计算I=⎰-++)3,2()1,1()()(dy y x dx y x20.求微分方程x 2y 〞=2ln x 的通解.21.判断无穷级数∑∞=+1)11ln(n n 的敛散性. 22.将函数f (x )=x arctan x 展开为x 的幂级数.四、综合题(本大题共3小题,每小题5分,共15分)23.设函数z =arctan yx ,证明.02222=∂∂+∂∂y z x z 24.求由曲面z =xy ,x 2+y 2=1及z =0所围在第一卦限的立体的体积.25.证明无穷级数∑∞==+1.1)!1(n n n精品文档精品文档精品文档。
2020年全国大学高等数学考试及答案解析

2020年全国大学高等数学考试试题一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)若函数1,0(),0x f x axb x ⎧->⎪=⎨⎪≤⎩在0x =处连续,则( ) ()()11()22()02A abB abC abD ab ==-==(2)设函数()f x 可导,且'()()0f x f x >,则( )()()()(1)(1)(1)(1)()(1)(1)(1)(1)A f fB f fC f fD f f >-<->-<-(3) 若级数1∞=∑nn a条件收敛,则=x 3=x 依次为幂级数1(1)∞=-∑n n n na x 的 ( )(A) 收敛点,收敛点 (B) 收敛点,发散点 (C) 发散点,收敛点 (D) 发散点,发散点(4) 设D 是第一象限由曲线21xy =,41xy =与直线y x =,y =围成的平面区域,函数(),f x y 在D 上连续,则(),Df x y dxdy =⎰⎰ ( )(A)()13sin 2142sin 2cos ,sin d f r r rdr πθπθθθθ⎰⎰(B)()34cos ,sin d f r r rdr ππθθθ⎰(C)()13sin 2142sin 2cos ,sin d f r r dr πθπθθθθ⎰⎰(D)()34cos ,sin d f r r dr ππθθθ⎰x(5)设α是n 维单位列向量,E 为n 阶单位矩阵,则( )()()()()22T T TT A E B E C E D E αααααααα-++-不可逆不可逆不可逆不可逆(6)设矩阵200210100021,020,020*********A B C ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,则( ) ()()(),,(),,A A C B C B A C B C C A C B C D A C B C 与相似与相似与相似与不相似与不相似与相似与不相似与不相似(7) 若A,B 为任意两个随机事件,则 ( )(A) ()()()≤P AB P A P B (B) ()()()≥P AB P A P B (C) ()()()2≤P A P B P AB (D) ()()()2≥P A P B P AB(8)设随机变量,X Y 不相关,且2,1,3===EX EY DX ,则()2+-=⎡⎤⎣⎦E X X Y ( )(A) 3- (B) 3 (C) 5- (D) 5二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸...指定位置上. (1) 已知函数21()1f x x=+,则(3)(0)f =__________ (2) 微分方程'''230y y y ++=的通解为y =_________(3) 若曲线积分221L xdx aydy x y -+-⎰在区域{}22(,)|1D x y x y =+<内与路径无关,则 a =__________(4)设Ω是由平面1++=x y z 与三个坐标平面平面所围成的空间区域,则(23)__________.x y z dxdydz Ω++=⎰⎰⎰(5)设二维随机变量(,)x y 服从正态分布(1,0;1,1,0)N ,则{0}________.P XY Y -<=三、解答题:15—23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤. (1)(本题满分10分)设函数(,)f u v 具有2阶连续偏导数,(,cos )xy f e x =,求0x dy dx=,22x d y dx=(2)(本题满分10分)求21lim ln 1nn k kk nn →∞=⎛⎫+ ⎪⎝⎭∑(3)(本题满分10分)已知函数()y x 由方程333320x y x y +-+-=确定,求()y x 的极值(4)(本题满分 10 分)(I )设函数()()u x ,v x 可导,利用导数定义证明u x v x u x v x u x v x '''=+[()()]()()()()(II )设函数()()()12n u x ,u x ,,u x 可导,n f x u x u x u x =12()()()(),写出()f x 的求导公式.(5)(本题满分 10 分)已知曲线L的方程为,z z x ⎧=⎪⎨=⎪⎩起点为()A,终点为()0,B ,计算曲线积分()()2222d d ()d LI y z x z x y y x y z =++-+++⎰.(6) (本题满11分)设向量组1,23,ααα内3R 的一个基,113=2+2k βαα,22=2βα,()313=++1k βαα.(I )证明向量组1β2β3β为3R 的一个基;(II )当k 为何值时,存在非0向量ξ在基1,23,ααα与基1β2β3β下的坐标相同,并求所有的ξ.(7)(本题满分11分)设二次型222123123121323(,,)2282f x x x x x ax x x x x x x =-++-+在正交变换X QY =下的标准型221122y y λλ+,求a 的值及一个正交矩阵Q(8)(本题满分11分)设随机变量,X Y 相互独立,且X 的概率分布为1(0)(2)2P X P X ====,Y 的概率密度为201()0,y y f y <<⎧=⎨⎩,其他()I 求()P Y EY ≤()∏求Z X Y =+的概率密度。
历年全国自考高等数学(工本)试题及答案(更新至4月)

全国20XX 年4月高等教育自学考试高等数学(工本)试题课程代码:00023一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题号的括号内。
错选、多选或未选均无分。
1.下列曲面中,母线平行于y 轴的柱面为( )A .z =x 2B .z = y 2C .z = x 2 + y 2D .x + y + z =12.已知函数h (x,y )=x –y+f (x+y ),且h (0,y )=y 2,则f (x+y )为( )A .y (y + 1)B .y (y - 1)C .( x + y )( x + y -1)D .( x + y )( x + y +1)3.下列表达式是某函数u (x,y )的全微分的为( )A .x 2y d x + xy 2d yB .x d x + xy d yC .y d x - x d yD .y d x + x d y4.微分方程y xy d d =x 的阶数是( ) A .0B .1C .2D .35.无穷级数∑∞=2!1n n 的和为( )A .e + 1B .e - 1C .e - 2D .e + 2 二、填空题(本大题共5小题,每小题2分,共10分)请在每小题的空格中填上正确答案。
错填、不填均无分。
6.已知向量a ={ -2, c, 6}与向量b ={ 1, 4, -3}垂直,则常数c=______.7.函数z =224y x --ln(x 2+y 2-1)的定义域为______.8.二次积分I =⎰⎰--21011d d y x f ( x, y )y ,交换积分次序后I =______.9.已知y =sin2x +ce x 是微分方程y ''+4y =0的解,则常数c =______.10.幂级数∑∞=+013n n n x 的收敛半径R =______. 三、计算题(本大题共12小题,每小题5分,共60分)11.将直线⎩⎨⎧=-++=++0432023z y x z y x 化为参数式和对称式方程. 12.设方程f ( x + y + z, x, x + y )=0确定函数z = z ( x, y ),其中f 为可微函数,求x z ∂∂和y z ∂∂. 13.求曲面z = 2y + ln yx 在点(1,1,2)处的切平面方程. 14.求函数z = x 2 - y 2在点(2,3)处,沿从点A (2,3)到点B (3,3+3)的方向l 的方向导数.15.计算二重积分()⎰⎰+D y x x yd d sin 32,其中积分区域D 是由y = | x |和y =1所围成.16.计算三重积分I =⎰⎰⎰Ωz y x xy d d d ,其中积分区域Ω是由x 2+y 2=4及平面z =0,z =2所围的在第一卦限内的区域. 17.计算对弧长的曲线积分I =⎰L ds y 2,其中L 为圆周x 2+y 2=9的左半圆. 18.计算对坐标的曲线积分I =⎰-++L y y x x x y d )1(d )1(22,其中L 是平面区域D :x 2 + y 2 ≤4的正向边界.19.验证y 1 = e x ,y 2 = x 都是微分方程(1 – x )y ''+y x '-y = 0的解,并写出该微分方程的通解。
自考高数试题及答案

自考高数试题及答案一、选择题(本题共10分,每题1分)1. 函数f(x)=x^3-3x+1的导数是()A. 3x^2 - 3B. 3x^2 + 3C. x^2 - 3xD. x^2 + 3x答案:A2. 极限lim(x→0) (sin x)/x的值是()A. 0B. 1C. 2D. ∞答案:B3. 定积分∫(0,1) x^2 dx的值是()A. 1/3B. 1/2C. 1/4D. 1/6答案:C4. 微分方程y'' - y' - 2y = 0的通解是()A. y = e^x + e^(-x)B. y = e^(2x) + e^(-2x)C. y = e^x + e^(-x) + xD. y = e^(2x) + e^(-2x) + x答案:A5. 矩阵A = [1, 2; 3, 4]的行列式值是()A. 2B. -2C. 7D. -7答案:C二、填空题(本题共10分,每题2分)6. 函数f(x) = x^2 - 6x + 8的极值点是______。
答案:37. 函数y = ln(x)的导数是______。
答案:1/x8. 曲线y = x^3 - 3x + 1在点(1, -1)处的切线斜率是______。
答案:39. 函数y = sin(x) + cos(x)的周期是______。
答案:2π10. 矩阵B = [1, 0; 0, 1]的逆矩阵是______。
答案:[1, 0; 0, 1]三、解答题(本题共30分,每题15分)11. 求函数f(x) = x^3 - 3x^2 + 2在区间[-2, 2]上的最大值和最小值。
答案:函数f(x) = x^3 - 3x^2 + 2的导数为f'(x) = 3x^2 - 6x。
令f'(x) = 0,解得x = 0 或 x = 2。
在区间[-2, 2]上,当x = -2时,f(x) = 2;当x = 2时,f(x) = -2;当x = 0时,f(x) = 2。
全国自考公共课高等数学(工本)模拟试卷4(题后含答案及解析)

全国自考公共课高等数学(工本)模拟试卷4(题后含答案及解析) 题型有:1. 单项选择题 2. 填空题 3. 计算题 4. 综合题单项选择题在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.已知f(x,y)在点(x0,y0)的偏导数存在.则下列结论正确的是( ) A.f(x,y)在(x0,y0)点连续B.f(x,y)在(x0,y0)点可微C.函数f(x,y0)在x=x0点连续D.f(x,y)在(x0,y0)点有任意方向的方向导数正确答案:C解析:根据多元函数的连续、可导、可微之间的关系可知A、B是错误的.对于C,因F(x)=F(x,y0)是关于x的一元函数,从而F’(x0)=fx(x0,y0)是存在的,因此一元函数F(x)=f(x,y0)在x=x0处是连续的.从而C是正确的.对于D,我们知道,如果f(x,y)在点(x0,y0)可微,则在点(x0,y0)处沿任意方向的方向导数都存在.但两个偏导数存在并不意味着可微,所以此结论的正确性是有疑问的.事实上,对于函数f(x,y)=,可以证明在原点的两个偏导数都为零,但是沿方向{1,1}的方向导数不存在.答案为C.2.极限=( )A.B.C.D.π正确答案:A解析:.答案为A.3.设D由圆r=2围成,则=( )A.B.4πC.D.π正确答案:C解析:本题考查二元积分的计算.积分区域D由圆r=2围成,令x=rcosθ,y=rsinθ则答案为C.4.以y=sin3x为特解的微分方程为( )A.y”+y=0B.y”-y=0C.y”+9y=0D.y”-9y=0正确答案:C解析:由题可知:特征根r=±3i 故r2+q=0 故所求微分方程为y”+qy =0.答案为C.5.设an>0,(n=1,2,3,…),若收敛,则下列结论正确的是( ) A.发散B.发散C.发散D.收敛正确答案:D解析:本题考查级数的敛散性.填空题请在每小题的空格中填上正确答案。
4月全国自考高等数学(工本)试题及答案解析

1全国2018年4月自学考试高等数学(工本)试题课程代码:00023一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.在空间直角坐标系中,方程1222222=++cz b y a x 表示的图形是( )A.椭圆抛物面B.圆柱面C.单叶双曲面D.椭球面2.设函数z =x 2y ,则=∂∂xz( ) A.212-y yxB.x xyln 2C.x x yln 22 D.()12-y yx3.设Ω是由平面01=-+-z y x 及坐标面所围成的区域,则三重积分=⎰⎰⎰Ωdxdydz ( ) A.81 B.61 C.31 D.21 4.已知微分方程)()(x Q y x P y =+'的两个特解为y 1=2x 和y 2=cos x ,则该微分方程的通解是y =( ) A.2C 1x +C 2cos x B.2Cx +cos x C.cos x +C (2x -cos x ) D.C (2x -cos x )5.设幂级数∑∞--1)3(n n nx a在x =1处收敛,则在x =4处该幂级数( )A.绝对收敛B.条件收敛2C.发散D.敛散性不定二、填空题(本大题共5小题,每小题2分,共10分)请在每小题的空格中填上正确答案。
错填、不填均无分。
6.设函数y x y z cos sin =,则=∂∂xz. 7.已知dy e dx e y x yx +++是某函数()y x u ,的全微分,则()=y x u , .8.设∑是上半球面()01222≥=++z z y x ,则对面积的曲面积分⎰⎰∑=dS .9.微分方程x y 2sin =''的通解为y= .10.无穷级数∑∞=0!2n nn 的和为 .三、计算题(本大题共12小题,每小题5分,共60分) 11.求过点P (3,-1,0)并且与直线321-=-=z y x 垂直的平面方程. 12.设函数()y x x f z -=,3,其中f 是可微函数,求x z ∂∂,yz∂∂. 13.设方程xyx ln=确定函数()y x z z ,=,求全微分dz. 14.求函数()22,xy y x y x f +=在点(1,-1)沿与x 轴正向成30°角的方向l 的方向导数.15.求空间曲线t z t y t x ===,sin ,cos 在点⎪⎪⎭⎫⎝⎛4,22,22π处的切线方程.16.计算二重积分()dxdy e I Dy x⎰⎰+-=22,其中区域D :.0,422≥≤+y y x17.计算二次积分⎰⎰=22sin ππydx xxdy I . 18.计算对弧长的曲线积分()⎰+-L ds y x 132,其中L 是直线2-=x y 上从点(-1,-3)到点(1,-1)的直线段. 19.计算对坐标的曲线积分⎰+Lydx xdy 其中L 是抛物线2x y =上从点(-2,4)到点(2,4)的一段3弧.20.求微分方程034=+'-''y y y 满足初始条件()8)0(,40='=y y 的特解. 21.判断级数()∑∞=-+-131321n n nn 是否收敛,如果收敛,是条件收敛还是绝对收敛?22.设函数()⎩⎨⎧<≤<≤-=ππx x x x f 0,0,0的傅里叶级数展开式为()∑∞=++10sin cos 2n n n nx b nx a a ,求系数b 7.四、综合题(本大题共3小题,每小题5分,共15分) 23.求函数()y x xy y x y x f 311381021,22-----=的极值.24.设曲线()x y y =在其上点(x ,y )处的切线斜率为x +y ,且过点(-1,e -1),求该曲线方程. 25.将函数()2312+-=x x x f 展开为(x +1)的幂级数.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全国2019年4月高等教育自学考试普通逻辑试题课程代码:00024一、单项选择题(本大题共15小题,每小题1分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.“p∧q→r”与“p∨q←r”这两个逻辑式子中,它们()A.变项和逻辑常项相同B.变项不同但逻辑常项相同C.逻辑常项不同但变项相同D.变项和逻辑常项都不同2.对于A、B两概念,如果所有a都是b并且有b不是a,那么,A、B两概念具有()A.全同关系B.真包含于关系C.交叉关系D.全异关系3.□p与□┐p之间关系是()A.反对关系B.矛盾关系C.差等关系D.下反对关系4.一个相容选言判断p∨q假,那么,一定为()A.p真q真B.p真q假C.p假q真D.p假q假5.判断间的反对关系,应是()关系。
A.对称且传递B.对称且非传递C.非对称且反传递D.非对称且传递6.有学生在上课时间去看电影,老师批评时,学生反问:“看革命题材电影不是好事吗?”学生的说法()A.违反同一律B.违反矛盾律C.违反排中律D.不违反普通逻辑的基本规律7.直接推理“SEP→PA S”,属于()推理。
A.换质法B.换位法C.换质位法D.换位质法8.“(p→q)∧(r→s)∧(┐q∨┐s)→(┐p∨┐r)”,这一推理式是()A.二难推理的简单构成法B.二难推理的简单破坏式C.二难推理的复杂构成式D.二难推理的复杂破坏式9.“因为aRb并且bRc,所以,a R c”,这一推理式是()A.对称关系推理B.反对称关系推理C.传递关系推理D.反传递关系推理10.反证法是先论证与原论题相矛盾的论断为假,然后根据()确定原论题真的论证方法。
A.同一律B.矛盾律1C.排中律D.充足理由律11.一国丧失过量的表土,需进口更多的粮食,这就增加了其他国家土壤的压力;一国大气污染,导致邻国受到酸雨的危害;二氧化碳过度排放,造成全球变暖,海平面上升,几乎可以危及所有的国家和地区。
下述()最能概括上文的主观观点。
A.环境污染已影响到国与国之间的关系,可能引起国际争端B.经济的快速发展必然会导致环境污染的加剧,先污染后治理是一条规律C.在治理污染方面,发达国家应该承担更多的责任和义务D.环境污染问题已经成为区域性、国际性的问题,解决环境污染问题是人类面临的共同任务12.某家饭店中,一桌人在边就餐边谈生意。
其中,1个是哈尔滨人,2个是北方人,1个是广东人,2个人只做电脑生意,3个人只做服装生意。
如果以上介绍涉及餐桌上所有的人,那么下列关于这一桌人数()的说法是正确的。
A.最少可能是3人,最多可能是8人B.最少可能是5人,最多可能是8人C.最少可能是5人,最多可能是9人D.无法确定13.小李和小张就广告问题争论得面红耳赤,没完没了。
小李说:广告进了百姓门,带来方便送福音。
小张说:广告就会吹,真假难区分。
以下()对小张的论点提供了最有力的支持。
A.某教师受慢性萎缩性胃炎折磨多年,从电视广告中找到了良药B.电视广告对于不愿意看的观众是一种浪费C.街头的招牌广告被风吹倒,造成人身伤亡,应该引以为戒D.64%的保健品凭着广告走进了市场。
在一次抽样调查中,仅有2%具有所说的效果14.经过对最近十年的统计资料分析,大连市因癌症死亡的人数比例比全国城市的平均值要高两倍。
而在历史上大连市一直是癌症特别是肺癌的低发地区。
看来,大连最近这十年对癌症的防治出现了失误。
以下()如果为真,最能削弱上述论断。
A.大连的气候和环境适合疗养,外地癌症病人在大连走过了最后一段人生之路B.大连最近几年医疗保健的投入连年上升,医疗设施有了极大的改善C.大连医学院在以中医理论探讨癌症机理方面取得了突破性的进展D.尽管癌症的死亡率上升,但大连的肺结核死亡率几乎降到了零15.如今的音像市场上,正版的激光唱盘和影视盘的销售不如盗版的,盗版的屡禁不绝,销售非常火爆。
有的分析人员认为,这主要是因为价格上盗版盘更有优势,所以在市场上更有活力。
以下()是这位分析人员在分析中隐含的假定。
A.正版的往往内容呆板,不适应市场的需要B.与价格的差别相比,正版盗版质量差别不大C.盗版的比正版的进货渠道畅通D.正版的不如盗版的销售网络完善二、双项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的五个备选项中有二个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选、少选或未选均无分。
16.当S与P具有关系或关系时,SAP和SEP都假。
()2A.全同B.S真包含于PC.S真包含PD.交叉E.全异17.在性质判断中,判断和判断的主项周延,谓项不周延。
()A.全称肯定B.全称否定C.特称肯定D.单称肯定E.单称否定18.“有的大学生是运动员”和“有的大学生不是运动员”,这两个性质判断()A.不能同真,可以同假B.不能同假,可以同真C.既不能同真,也不能同假D.可以同真,可以同假E.至少有一真,可以同真19.要使一个充分必要条件假言判断p↔q真,那么()A.p真q真B.p真q假C.p假q真D.p假q假E.p与q不等值20.以MAP为大前提,再增补或为小前提,可有效推出结论SIP。
()A.SEMB.SAMC.SIMD.MESE.SOM21.判断“┐p∨q”的负判断的等值判断是()A.p∨┐qB.┐p∨qC.p∧┐qD.┐(q→p)E.┐(p→q)22.若□p真,则必假。
()A.□┐pB.◇pC.◇┐pD.pE.□p23.不完全归纳推理不是和的推理。
()A.或然性B.特殊到一般C.前提不蕴涵结论D.必然性E.前提蕴涵结论24.以“p∧q→r”和“┐r”为前提,能有效推出结论或。
()A.p∧qB.p∨qC.┐p∨┐qD.p→┐qE.┐p→q25.在下列各推理式中,无效推理式为()A.(p→q)∧┐q→┐pB.(p∨q)∧p→┐qC.(p∨&q)∧p→┐qD.(┐p→┐q)∧┐q→┐pE.(p←q)∧q→p三、填空题(本大题共10小题,每小题1分,共10分)请在每小题的空格中填上正确答案。
错填、不填均无分。
26.普通逻辑是研究思维的___________及其基本规律和简单逻辑方法的科学。
327.如果概念A___________概念B,则概念A为种概念,概念B为属概念。
28.简单判断就是自身中___________的判断。
29.一个充分条件假言判断“p→q”是假的,当且仅当___________。
30.既肯定SAP,又肯定同素材的SEP,这就违反了逻辑上的___________律。
31.一个正确推理必须___________和前提真实。
32.必要条件假言推理有肯定后件式和___________。
33.完全归纳推理是___________性推理。
34.从思维进程来看,类比推理是___________的推理。
35.间接证明有反证法和___________。
四、图表题(本大题共2小题,第36小题4分,第37小题6分,共10分)36.请用欧拉图表示下列概念之间的关系。
A.中国B.黄山C.长城D.旅游胜地37.试用真值表判定下列A、B两个判断是否为矛盾关系。
A:王华要么报考南京大学,要么报考东南大学。
B:王华既不报考南京大学,又不报考东南大学。
设:p表示“王华报考南京大学”,q表示“王华报考东南大学”。
五、分析题(本大题共5小题,每小题5分,共25分)38.(1)“矛盾是旧形式与新内容之间的斗争。
”该句作为定义是否正确?请说明理由。
(2)“微机可分为台式微机、便携式微机、办公用微机和家用微机。
”该句作为划分是否正确?请说明理由。
39.(1)请将“没有一个自学成才者不是经过刻苦努力的”换质位,写出换质位的公式和换质位后的结论。
(2)找出能反驳“所有的被告都是有罪的”的判断,并指出为什么能反驳。
40.写出下列三段论的推理式,指出其格与式,并根据三段论规则说明其是否有效。
“并非所有细菌都有毒;并非所有生物都是细菌;所以,并非所有生物都有毒。
”41.“为了证实吸烟与肺癌的关系,美国弗来明心脏研究中心进行了大量的调查研究。
统计资料显示:每多吸一支烟,肺癌的发病率就上升一倍。
如果一个人每天吸两包烟,那么这个人比不吸烟的人得肺癌的几率高20倍。
可见,吸烟与肺癌的发病有一定的因果关系。
”分析此例运用了何种探求因果联系的方法,说明理由并写出该逻辑方法的公式。
42.“作品愈高,知人愈少”,这是错误的。
因为,倘若作品愈高,知人愈少,那么,推论起来,谁也不懂的东西,就是世界上的绝作了。
分析此例,指出被反驳的论题,用来反驳的论据和反驳所使用的逻辑方法,并分析反驳得是否正确。
六、证明题(本大题共2小题,每小题4分,共8分)443.两个肯定前提必得肯定结论。
44.大前提为I判断,小前提为E判断,不能构成一个有效的三段论。
七、综合题(本大题共2小题,每小题6分,共12分)45.上海某宾馆来了A、B、C三位客人,现已知:①如果A和B都来自北京,那么C就来自昆明;②并非C来自杭州或昆明;③只有B来自北京,C才不是来自杭州。
请问:A是否来自北京?写出推导过程。
(设:A表示“A来自北京”,B表示“B来自北京”,C1表示“C来自昆明”,C2表示“C 来自杭州”)46.某市发生一个抢劫杀人案,经初步侦察,犯罪嫌疑人为A、B、C。
现已知:①如果A无罪或B有罪,那么,C有罪;②只有A有罪,C才有罪。
请问:A是否有罪?写出推导过程。
(设:A表示“A有罪”,A表示“A无罪”,其它类同)5。