晶体生长科学与技术1(1-2) 综述_PPT幻灯片
合集下载
晶体生长科学与技术1(1-2)

。
功能晶体
功能晶体 在传感器、换能器、闪烁计数器等领域有广泛应用。
除了具有光学和半导体性质外,还具有其他特殊功能, 如压电、热释电、铁电、闪烁等。
应用特点:功能多样,可满足不同领域的需求。
04
CATALOGUE
晶体生长的挑战与前景
晶体生长的挑战
晶体生长过程的控制
晶体生长过程中,需要精确控制温度、压力、浓度等参数,以确 保晶体质量、形态和尺寸的稳定性。
晶体性质
晶体具有各项异性、对称性、光 学特性、电学特性等,这些性质 决定了晶体在不同领域的应用价 值。
晶体生长的热力学与动力学
热力学条件
晶体生长的热力学条件包括温度、压 力、组分等,这些因素决定了晶体能 否自发形成以及形成的相态和稳定性 。
动力学过程
晶体生长的动力学过程涉及原子或分 子的迁移、扩散、碰撞和结晶等,这 些过程决定了晶体生长的速率和形态 。
晶体生长技术
气相法
物理气相沉积法
利用物理方法,如真空蒸发、溅射等,使原 料气体在冷却过程中凝结成晶体。
气相法生长晶体的优点
可生长大尺寸、高质量的单晶,且生长速率 较快。
化学气相沉积法
通过化学反应使原料气体在加热或光照条件 下转化为晶体。
气相法生长晶体的缺点
设备成本高,操作复杂,对原料气体的纯度 要求高。
晶体生长的基本过程
成核
形态控制Βιβλιοθήκη 在一定的条件下,原子或分子通过扩 散和聚集形成微小的晶核。
通过控制晶体生长的条件,可以调控 晶体的形态,从而获得具有特定结构 和性质的晶体。
生长
晶核在一定的热力学和动力学条件下 不断吸收周围的原子或分子,逐渐长 大成为具有一定形态和大小的晶体。
功能晶体
功能晶体 在传感器、换能器、闪烁计数器等领域有广泛应用。
除了具有光学和半导体性质外,还具有其他特殊功能, 如压电、热释电、铁电、闪烁等。
应用特点:功能多样,可满足不同领域的需求。
04
CATALOGUE
晶体生长的挑战与前景
晶体生长的挑战
晶体生长过程的控制
晶体生长过程中,需要精确控制温度、压力、浓度等参数,以确 保晶体质量、形态和尺寸的稳定性。
晶体性质
晶体具有各项异性、对称性、光 学特性、电学特性等,这些性质 决定了晶体在不同领域的应用价 值。
晶体生长的热力学与动力学
热力学条件
晶体生长的热力学条件包括温度、压 力、组分等,这些因素决定了晶体能 否自发形成以及形成的相态和稳定性 。
动力学过程
晶体生长的动力学过程涉及原子或分 子的迁移、扩散、碰撞和结晶等,这 些过程决定了晶体生长的速率和形态 。
晶体生长技术
气相法
物理气相沉积法
利用物理方法,如真空蒸发、溅射等,使原 料气体在冷却过程中凝结成晶体。
气相法生长晶体的优点
可生长大尺寸、高质量的单晶,且生长速率 较快。
化学气相沉积法
通过化学反应使原料气体在加热或光照条件 下转化为晶体。
气相法生长晶体的缺点
设备成本高,操作复杂,对原料气体的纯度 要求高。
晶体生长的基本过程
成核
形态控制Βιβλιοθήκη 在一定的条件下,原子或分子通过扩 散和聚集形成微小的晶核。
通过控制晶体生长的条件,可以调控 晶体的形态,从而获得具有特定结构 和性质的晶体。
生长
晶核在一定的热力学和动力学条件下 不断吸收周围的原子或分子,逐渐长 大成为具有一定形态和大小的晶体。
《晶体生长机理》课件

晶体生长的原理
晶体生长是指晶体在适宜的条件下从溶液或气相中生长增大的过程。它受到 晶体生长条件和晶体形态影响,涉及物质输送、结晶核、晶体生长速率等因 素。
滴定法生长晶体
滴定法是一种常用的生长晶体的方法。它利用溶液中所含物质的滴定反应, 控பைடு நூலகம்条件使晶体从溶液中沉淀出来。
物质输送导致晶体生长
物质输送是晶体生长的重要因素之一。毛细管现象导致了溶液中物质传输的 变化,对晶体生长速率产生影响。晶体生长速率与传质系数密切相关。
结论
晶体生长机理的研究对于推动材料科学和生命科学的发展至关重要。未来的研究方向包括深入探究晶体 生长的动力学过程和机制,并应用于更广泛的领域。
《晶体生长机理》PPT课 件
晶体生长机理是研究晶体生长过程及其原理的学科。本课件将介绍晶体的定 义、组成、生长过程、条件,以及滴定法生长晶体、物质输送导致晶体生长 等内容。
什么是晶体?
晶体是具有确定的物理结构和几何形状的固体物质。它由阵列有序排列的原 子、离子或分子构成,因此具有独特的性质和形态。
晶体生长机制的研究方法
研究晶体生长机制的方法包括红外光谱法、X射线衍射法和晶体形态模拟法。 这些方法可以揭示晶体生长的分子结构、微观行为和晶体形态发展规律。
晶体生长机理的意义
晶体生长机理对新材料研究和生命科学具有重要意义。了解晶体生长原理可 以指导材料设计、制备和性能优化,以及研究细胞、蛋白质等生命科学领域。
晶体生长机理PPT课件

西安理工大学
非平衡材料研究室
• A single molecule is denoted by C60 .
西安理工大学
非平衡材料研究室
• Each molecule is composed of groups of carbon atoms that are bonded to one another to form both hexagon (six-carbon atom) and pentagon (five-carbon atom) geometrical configurations.
• 应用:
滤波器、谐振器、光偏转器、测压元件等。
西安理工大学
非平衡材料研究室
(8)闪烁晶体
• 定义:
当射线或放射性粒子通过晶体时,晶体会 发出荧光脉冲,这类晶体为闪烁晶体。
• 应用:
核医学、核技术、空间物理等。
西安理工大学
非平衡材料研究室
(9)半导体晶体
• 定义:
电阻率处于导电体(10 - 5 .cm)和绝缘 体(1010 .cm )之间的晶体为半导体晶体。
• 应用:
光通讯、光开关、大屏幕显示、光储存、 光雷达和光计算机等。
西安理工大学
非平衡材料研究室
• 要求:
在使用的波长范围内,对光的吸收和散射要小、 电阻率要大、介电损耗角要小、化学稳定、机械和 热性能好、半波电压低等。
西安理工大学
非平衡材料研究室
(4)声光晶体
• 定义:
超声波通过晶体时,在晶体中产生随时间变化 的压缩和膨胀区域,使晶体的折射率发生周期性变 化,形成超声导致的折射率光栅,当光通过折射率 周期性变化的晶体时,将受到光栅的衍射,产生声 光相互作用。这类晶体为声光晶体。
非平衡材料研究室
• A single molecule is denoted by C60 .
西安理工大学
非平衡材料研究室
• Each molecule is composed of groups of carbon atoms that are bonded to one another to form both hexagon (six-carbon atom) and pentagon (five-carbon atom) geometrical configurations.
• 应用:
滤波器、谐振器、光偏转器、测压元件等。
西安理工大学
非平衡材料研究室
(8)闪烁晶体
• 定义:
当射线或放射性粒子通过晶体时,晶体会 发出荧光脉冲,这类晶体为闪烁晶体。
• 应用:
核医学、核技术、空间物理等。
西安理工大学
非平衡材料研究室
(9)半导体晶体
• 定义:
电阻率处于导电体(10 - 5 .cm)和绝缘 体(1010 .cm )之间的晶体为半导体晶体。
• 应用:
光通讯、光开关、大屏幕显示、光储存、 光雷达和光计算机等。
西安理工大学
非平衡材料研究室
• 要求:
在使用的波长范围内,对光的吸收和散射要小、 电阻率要大、介电损耗角要小、化学稳定、机械和 热性能好、半波电压低等。
西安理工大学
非平衡材料研究室
(4)声光晶体
• 定义:
超声波通过晶体时,在晶体中产生随时间变化 的压缩和膨胀区域,使晶体的折射率发生周期性变 化,形成超声导致的折射率光栅,当光通过折射率 周期性变化的晶体时,将受到光栅的衍射,产生声 光相互作用。这类晶体为声光晶体。
《晶体生长理论》ppt课件

提纯
多次区熔的过程
○ 在凝固界面,对于k<1的杂质,由于分凝作用将部分被
排斥到熔区,并向后携带
○ 在熔化界面,锭料的熔化带入新的杂质,并从熔化界面向凝
固界面运动〔杂质倒流〕,其结果是使整个熔区杂质浓度添加
○ 随着区熔次数的添加,尾部杂质越来越多,浓度梯度越来越
陡,杂质倒流越严重
极限分布
○ 经过多次区熔提纯后,杂质分布形状到达一个
如Cu-Ni相图 :
相图分析:2个点、2条线、3个区。
测定方法:热分析法〔最常用〕。
③二元合金相图的建立——热分析法建立相图的过程
▲配制系列成分的铜镍合金
▲测出它们的冷却曲线,得到临
界点
▲把这些点标在T—成分坐标上
▲将具有一样意义的点衔接成线,
标明各区域内所存在的相, 即得到
Cu-Ni合金相图
2、分凝景象与分凝系数
④ l →大,Cs→小,提纯效果好⇒l越大越好
⑤ 极限分布时(K一定):
⑥ l →大,B →小, A →大,Cs(x)→大, 提纯效果差
⑦
⇒l越小越好
⑧ 运用:前几次用宽熔区,后几次用窄熔区。
②熔区的挪动速度
BPS公式:
Keff
K0
f
D
1K0e
K0
f越小,keff越接近k0,提纯效果好, 区熔次数少, 但是过低速
〔资料中的杂质量本来很少〕
由于存在分凝景象,正常凝固后锭条中的杂质分布不再是均匀的,
会出现三种情况:
K<1的杂质,杂质向尾部集中;
K>1的杂质,杂质向头部集中;
K≈1的杂质,根本上坚持原有的均匀分布的方式
正常凝固过程中,Cs沿锭长的分布
1
多次区熔的过程
○ 在凝固界面,对于k<1的杂质,由于分凝作用将部分被
排斥到熔区,并向后携带
○ 在熔化界面,锭料的熔化带入新的杂质,并从熔化界面向凝
固界面运动〔杂质倒流〕,其结果是使整个熔区杂质浓度添加
○ 随着区熔次数的添加,尾部杂质越来越多,浓度梯度越来越
陡,杂质倒流越严重
极限分布
○ 经过多次区熔提纯后,杂质分布形状到达一个
如Cu-Ni相图 :
相图分析:2个点、2条线、3个区。
测定方法:热分析法〔最常用〕。
③二元合金相图的建立——热分析法建立相图的过程
▲配制系列成分的铜镍合金
▲测出它们的冷却曲线,得到临
界点
▲把这些点标在T—成分坐标上
▲将具有一样意义的点衔接成线,
标明各区域内所存在的相, 即得到
Cu-Ni合金相图
2、分凝景象与分凝系数
④ l →大,Cs→小,提纯效果好⇒l越大越好
⑤ 极限分布时(K一定):
⑥ l →大,B →小, A →大,Cs(x)→大, 提纯效果差
⑦
⇒l越小越好
⑧ 运用:前几次用宽熔区,后几次用窄熔区。
②熔区的挪动速度
BPS公式:
Keff
K0
f
D
1K0e
K0
f越小,keff越接近k0,提纯效果好, 区熔次数少, 但是过低速
〔资料中的杂质量本来很少〕
由于存在分凝景象,正常凝固后锭条中的杂质分布不再是均匀的,
会出现三种情况:
K<1的杂质,杂质向尾部集中;
K>1的杂质,杂质向头部集中;
K≈1的杂质,根本上坚持原有的均匀分布的方式
正常凝固过程中,Cs沿锭长的分布
1
晶体生长的基本规律PPT参考课件

缺点:组分多,影响因素多,生长速度慢,周期长。
具体方法很多,比如降温法,蒸发法。
43
2、高温溶液法
• 原理:高温下从溶液或熔融盐溶剂中生长晶体,可以使 溶质相在远低于熔点的温度下进行。
• 优点(1)适用性强。只要找到适当的助熔剂,就能生长 晶体。
• (2)许多难熔化合物或在熔点极易挥发或高温有相变, 不能直接从熔体中生长优质单晶,助熔剂法由于温度低, 显示出独特的能力。
45
• 缓冷法 高温下,在晶体材料 全部熔融于助熔剂后, 缓慢降温冷却,使晶 体从饱和熔体中自发 成核并逐渐成长的方 法。
46
3、熔融法
• 从熔体中生长晶体是制备大单晶和特定形状单晶 最常用和最重要的一种方法。
• 原理:将生长晶体的原料熔化,在一定条件下使 其凝固,变成单晶。
• 优点:具有生长速度快,晶体的纯度和完整性高 等特点。
4)重结晶-小晶体长大的过程,有液体参与
5)脱玻化-非晶体自发地转化成晶体
6
§2.2晶核的形成
晶体形成的一般过程是先生成晶核,而后再逐渐长大。
晶核:从结晶母相中析出,并达到某个临界大 小,从而得以继续成长的结晶相微粒。
成核作用:形成晶核的过程。
7
以过饱和溶液情况为例,说明成核作用的过程
晶体成核过程示意图
饱和比等。 • 主要分为: • 物理气相沉积:用物理凝聚的方法将多晶原料经过气相转
为单晶,如升华法。 • 化学气相沉积:通过化学过程将多晶原料经过气相转为单
晶,气体合成法。
49
• 升华法: • 在高温区将材料升华,
然后输送到冷凝区成为 饱和蒸气,经过冷凝成 晶体。 • 升华法生长速度慢,应 用于生长小块晶体,薄 膜或晶须。
《晶体的生长》课件

《晶体的生长》ppt课件
目录
• 晶体简介 • 晶体生长的原理 • 晶体生长的方法 • 晶体生长的实验技术 • 晶体生长的应用实例 • 未来展望与挑战
01 晶体简介
晶体的定义
晶体是由原子、分子 或离子按照一定的规 律排列而成的固体物 质。
晶体的内部原子或分 子的排列方式决定了 晶体的物理和化学性 质。
界面反应与扩散
界面过程涉及界面反应和 扩散过程,研究晶体生长 过程中界面物质交换和化 学反应的规律。
界面动力学与控制
界面过程还探讨界面动力 学与控制因素,分析不同 条件下界面形态变化的动 力学过程和机制。
03 晶体生长的方法
熔体生长法
总结词
通过将原料加热至熔化后进行冷却结晶的方法。
详细描述
熔体生长法是一种常见的晶体生长方法,通过将原料加热至熔化,然后控制冷却 速度和温度梯度,使熔体中的原子或分子重新排列成晶体结构。这种方法适用于 制备大尺寸、高质量的单晶材料,如硅单晶和锗单晶等。
LED晶体材料的生长与应用
总结词
LED晶体材料是制造LED灯的关键材料,具有高效、节能、环保等特点,广泛应用能够将电能转化为光能的半导体材料。通过控制LED晶体材料的生 长和掺杂过程,可以获得具有特定能带结构和光学性质的LED晶体。LED晶体在照明、
技术创新
通过技术创新,改进晶体生长设备、 工艺和流程,提高晶体生长效率和产 量。
自动化与智能化
引入自动化和智能化技术,实现晶体 生长过程的远程监控、自动调节和控 制,提高生产效率和产品质量。
环境友好型的晶体生长方法
环保意识
随着环保意识的提高,环境友好型的 晶体生长方法成为研究重点,以减少 对环境的负面影响。
晶体具有规则的几何 外形和内部结构,其 原子排列具有周期性 。
目录
• 晶体简介 • 晶体生长的原理 • 晶体生长的方法 • 晶体生长的实验技术 • 晶体生长的应用实例 • 未来展望与挑战
01 晶体简介
晶体的定义
晶体是由原子、分子 或离子按照一定的规 律排列而成的固体物 质。
晶体的内部原子或分 子的排列方式决定了 晶体的物理和化学性 质。
界面反应与扩散
界面过程涉及界面反应和 扩散过程,研究晶体生长 过程中界面物质交换和化 学反应的规律。
界面动力学与控制
界面过程还探讨界面动力 学与控制因素,分析不同 条件下界面形态变化的动 力学过程和机制。
03 晶体生长的方法
熔体生长法
总结词
通过将原料加热至熔化后进行冷却结晶的方法。
详细描述
熔体生长法是一种常见的晶体生长方法,通过将原料加热至熔化,然后控制冷却 速度和温度梯度,使熔体中的原子或分子重新排列成晶体结构。这种方法适用于 制备大尺寸、高质量的单晶材料,如硅单晶和锗单晶等。
LED晶体材料的生长与应用
总结词
LED晶体材料是制造LED灯的关键材料,具有高效、节能、环保等特点,广泛应用能够将电能转化为光能的半导体材料。通过控制LED晶体材料的生 长和掺杂过程,可以获得具有特定能带结构和光学性质的LED晶体。LED晶体在照明、
技术创新
通过技术创新,改进晶体生长设备、 工艺和流程,提高晶体生长效率和产 量。
自动化与智能化
引入自动化和智能化技术,实现晶体 生长过程的远程监控、自动调节和控 制,提高生产效率和产品质量。
环境友好型的晶体生长方法
环保意识
随着环保意识的提高,环境友好型的 晶体生长方法成为研究重点,以减少 对环境的负面影响。
晶体具有规则的几何 外形和内部结构,其 原子排列具有周期性 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
真空蒸发镀膜法
✓蒸发源的结构:螺旋式(a)、篮式(b)、发叉式(c)和浅舟式(d)
真空蒸发镀膜法
✓真空蒸发镀膜是将固体材料置于蒸发电极上,在真空条件下,
将固体材料加热蒸发,当把一些加工好的基板材料放在其中时, 蒸发出来的原子或分子就会吸附在基板上逐渐形成一层薄膜;
✓在蒸发电极上采用高熔点的金属(如W,Mo,Ta等),制成蒸
化学气相沉积法
✓ 化学气相沉积种类: 1. 常压化学气相沉积 APCVD 2. 低压化学气相沉积 LPCVD 3. 等离子化学气相沉积 PECVD 4. 微波等离子增强化学气相沉积 MWPECVD 5. 金属有机化学气相沉积 MOCVD 6. 热丝化学气相沉积 HW-CVD 7. 射频等离子体增强化学气相沉积 RF-PCVD
CVD系统
化学气相沉积法
✓ 原理:CVD方法是一种气相生长方法,它通过将金属的氢
化物、卤化物或者金属有机物蒸发成气相,或用适当的气 体作为载体,在一定衬底上沉积,形成所需要的固体薄膜 材料。
1. 热分解反应沉积过程:P63 2. 化学反应沉积:P64
✓ 反应顺利进行须满足条件: 1. 具有足够高蒸气压; 2. 反应生成物中,除了所需要的沉积物为固态外,其它都为
磁控溅射镀膜法
✓ 磁控溅射是一种溅射镀膜法,它对阴极溅射中电子使基片温度上升过
快以及溅射速率低的缺点加以改良,工作原理是在直流溅射的技术之 上,增加了磁场约束,利用磁场产生的洛仑兹力束缚阴极靶表面电子 的运动轨迹,导致轰击靶材的高能离子的数量增多,而轰击基片的高 能电子的减少,具有高速和低温的特点;
升华法
升华法
✓升华法是气相法生长晶体的一种,一般采用氩气作为输运介
质,热端原料与掺杂剂加热后挥发,在氩气的输运下到达冷端, 成为过饱和状态,经过冷凝成核重新结晶;
✓升华法生长的晶体质量不高,主要用来生长小尺寸单晶体、
薄膜或者晶须;
✓适当调节扩散速度,可提高晶体材料的纯度和完整性; ✓对于原料易氧化的材料,通常采用闭管方式;
气态;
3. 沉积物本身的蒸气压足够低,这样在整个沉积过程中,能
稳定保持在加热的衬底上;
化学气相沉积法
✓ 影响膜质量因素:P66 1. 沉积温度; 2. 反应气体的比例; 3. 衬底对沉积膜层的影响; 4. 沉积室内的压强;
✓ 优点: 1. 纯度高,致密性好,结晶定向好,广泛用于高纯和单晶材
料的制备;
同工作气体氩分子的碰撞几率,提高了电子的电离效率,使磁控溅射 速率数量级地提高;
✓ 氩离子被磁控阴极延长运动距离和加速,并轰击阴极(靶)表面,将
靶材上的原子溅射出来沉积在工件表面形成薄膜(物理气相沉积);
✓ 电子经过多次碰撞后,丧失了能量成为 “最终电子”进入弱电场区,
• 通常一次铸造得到的晶锭体积可以很大, 达到60cm*60cm*20cm,重量达几百公斤;
Байду номын сангаас
冷坩埚法
弧熔法
晶体生长方法简介
气相生长法:
✓拟生长的晶体材料经过升华、蒸发、分解等过程成为气态,
再通过结晶过程得到晶体;
✓气相法生长过程中,分子密度低,因此生长速率大大低于熔
体法晶体生长速率;
✓一般生成的晶体厚度在几个到几百个微米之间; ✓厚度、表面形态和杂质含量; ✓膜和衬底的热膨胀系数以及晶格失配的关系; ✓高质量的衬底表面,没有损伤; ✓衬底的温度、沉积压强、气体分压与成膜的质量关系;
发源,待蒸发原料就放在蒸发源上;
✓蒸发源的要求是:
1. 良好的热稳定性,化学性质不活泼,达到蒸发温度本身的蒸汽压要足够 低; 2. 蒸发源的熔点要高于被蒸发物的蒸发温度; 3. 蒸发物质和蒸发源材料的互熔性必须很底,不易形成合金; 4. 要求线圈状蒸发源所用材料能与蒸发材料有良好的浸润,有较大的表面 张力; 5. 对于不易制成丝状、或蒸发材料与丝状蒸发源的表面张力较小时,可采 用舟状蒸发源;(综合4.5分析,如果张力小,容易掉下去)
铸造设备
HEM(热交换法,
DSS(定向凝固系统,
heat exchanger method ) Directional Solidification System )
优点:
• 铸造或定向凝固方法;
• 生长成本较低,具有较高的生产效率;
• 熔融的熔体浇注到一个涂有SiO/SiN表面 膜的方形石墨模具中,然后控制这些融 体从模具的底部向顶部定向凝固,从而 得到晶体;
✓ 磁控溅射法是在真空度为10-3~10-4Pa(10-5~10-6 Torr)左右时充入适量的氩
气,在阴极(靶)和阳极(真空室壁)之间施加几百伏直流电压,真 空室内的氩气被电离,产生磁控型异常辉光放电;
✓ 在被溅射的靶极(阳极)与阴极之间加一个正交磁场,电场和磁场方
向相互垂直;
✓ 在正交电磁场的作用下,电子以摆线的方式沿着靶表面前进,增加了
真空蒸发镀膜法
✓真空蒸发镀膜是将固体材料置于蒸发电极上,在真空条件下,
将固体材料加热蒸发,当把一些加工好的基板材料放在其中时, 蒸发出来的原子或分子就会吸附在基板上逐渐形成一层薄膜;
✓在蒸发电极上采用高熔点的金属(如W,Mo,Ta等),制成蒸
发源,待蒸发原料就放在蒸发源上;
✓蒸发源的要求是:
1. 良好的热稳定性,化学性质不活泼,达到蒸发温度本身的蒸汽压要足够 低; 2. 蒸发源的熔点要高于被蒸发物的蒸发温度; 3. 蒸发物质和蒸发源材料的互熔性必须很底,不易形成合金; 4. 要求线圈状蒸发源所用材料能与蒸发材料有良好的浸润,有较大的表面 张力; 5. 对于不易制成丝状、或蒸发材料与丝状蒸发源的表面张力较小时,可采 用舟状蒸发源;(综合4.5分析,如果张力小,容易掉下去)
2. 能在较低温度下制备难熔物质; 3. 掺杂过程容易控制; 4. 适应性广; ✓ 缺点: 1. 沉积速率低,一般每小时几微米到几百微米;
应用举例
✓ 微波等离子化学气相沉积 MWPECVD:是一种不需电极及
发热体的等离子沉积系统,由微波当做主能量供应导入反 应室,其微波能量激发反应室的气体,使气体分子解离为 原子,再形成带电的离子,这种含有离子、电子、自由基 等的状态称为等离子。微波等离子体的特点是能量大,活 性强。激发的亚稳态原子多,化学反应容易进行,是一种 很有发展前途、用途广泛的新工艺;