数学建模之输油管的布置
输油管的布置

中图分类号 :E 7 . T 93 1 文献标 志码 : A
1 问题 描 述
某 油 田计 划 在 铁 路 线 一 侧 建 造 两 家 炼 油 厂 ,
输 油 管 的布 置
魏 杰 ,董 琚
( 兰州工业高等专科学校 基 础学科部 , 甘肃 兰州 70 5 ) 3 00
摘 要 : 照 某油田在铁路 线一侧 建造 两 家炼 油 厂 , 时在铁 路 线上 增 建 一 个车 站 , 来运 送成 品 按 同 用
油的要 求. 用数 学方 法对不 同情形设 计 出 了管线 建设 费用 最省 的 一般 数 学模 型 . 通过 对 模 型 的讨
两炼 油 厂 的具 体 位 置 如 图 1所 示 , 中 厂 其 位于郊 区 ( 图中的 I 区域 ) B厂位 于 城 区 ( 中 的 , 图
附 加 费 用/ 元/ m 万 k
2l 2 4
公 司 三
2 0
I区域 ) 两个 区域 的 分 界 线 用 图 中 的 虚 线 表 示. I ,
・
l O・
兰 州 工 业 高 等 专 科 学 校 学 报
第 l 卷 8
2 问题 分 析
由于 A、 曰两个 炼 油 厂在 铁 路 的 同一侧 , 我 故 们 根据 厂 与 厂 的左 右 位 置 、 离铁 路 的远 近 距
及 A、 B两 厂之 间的距离来 分情 况 讨论并 给 出管线 最佳 布置方 案及相 应 的 费用 . 后 , 然 在前 面设 计 好 的方 案 中加 以 条件 , 给定 两炼 油厂 的具 体 位 置 及
【全国大学生数学建模竞赛获奖优秀论文作品学习借鉴】2010数学建模C题,输油管的布置、获奖论文

承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则。
我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。
如有违反竞赛规则的行为,我们将受到严肃处理。
我们参赛选择的题号是(从A/B/C/D中选择一项填写): C我们的参赛报名号为(如果赛区设置报名号的话):1328303所属学校(请填写完整的全名):武汉职业技术学院参赛队员(打印并签名):1. XXX2. XXX3. X X指导教师或指导教师组负责人(打印并签名):数模指导组日期:2010年9月12日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):输油管的布置摘要本文对输油管线的布置主要从建设费用最省的角度进行研究。
首先,对问题一,我们按照共用管线与非共用管线铺设费用相同或不相同,进行分类讨论。
为了更好的说明,我们根据共用管线与非共用管线铺设费用相同或不同及两炼油厂连线与铁路线垂直或不垂直分成四类讨论。
其次,对问题二,由于需要考虑在城区中铺设管线,涉及到拆迁补偿费等。
通过对三个公司的估算费用加权,求得期望值021.5P (万元)。
并利用建立的规划模型②求得管道建设的最省费用为282.70万元。
其中共用管线长度为1.85千米,炼油厂B在城区铺设的管道线对城郊分界线的射影为0.63千米。
最后,对问题三,由于炼油厂A和B的输油管线铺设费用不同,所以最短管道长度和未必能保证铺设总费用最省,因而我们又建立了规划模型③,通过LINGO软件求得管道建设的最省费用为251.97万元,三种管道的结合点O到炼油厂A与铁路垂线的距离为6.13千米,结合点O到铁路的距离为0.14千米,炼油厂B在城区铺设的管道线对城郊分界线的射影为0.72千米。
数学建模之输油管布置方案

数学建模之输油管的部署方案一、问题的重述某油田计划在铁路线一侧建筑两家炼油厂,同时在铁路线上增建一个车站,用来运送成品油。
因为这类模式拥有必定的广泛性,油田希望成立管线建设花费最省的一般数学模型与方法。
1.针对两炼油厂到铁路线距离和两炼油厂间距离的各样不一样情况,提出你的设计方案。
在方案设计时,如有共用管线,应试虑共用管线花费与非共用管线花费同样或不一样的情形。
2.当前需对复杂情况进行详细的设计。
两炼油厂的详细地点由附图所示,此中A厂位于郊区(图中的I 地区), B 厂位于城区(图中的II地区),两个地区的分界限用图中的虚线表示。
图中各字母表示的距离(单位:千米)分别为 a = 5, b = 8, c = 15, l = 20。
若全部管线的铺设花费均为每千米 7.2 万元。
铺设在城区的管线还需增添拆迁和工程赔偿等附带花费,为对此项附带花费进行预计,邀请三家工程咨询企业(此中企业一拥有甲级资质,企业二和企业三拥有乙级资质)进行了估量。
估量结果以下表所示:工程咨询企业企业一企业二企业三附带花费(万元/ 千米)212420请为给出管线部署方案及相应的花费。
3.在该实质问题中,为进一步节俭花费,能够依据炼油厂的生产能力,采纳相适应的油管。
这时的管线铺设花费将分别降为输送A 厂成品油的每千米 5.6 万元,输送 B 厂成品油的每千米 6.0 万元,共用管线花费为每千米7.2 万元,拆迁等附带花费同上。
请给出管线最佳部署方案及相应的花费。
二、模型假定1、管道均以直线段铺设,不考虑地形影响。
2、不考虑管道的接头处花费。
3、忽视铺设过程中的劳动力花费,只考虑管线花费。
4、将两炼油厂和车站近似看作三个点。
5、将铁路近似看作一条直线。
6、不考虑施工之中的不测状况,全部工作均可顺利进行。
7、共用管线的价钱假如和非公用管线不一致,则共用管线价钱大于随意一条非公用管线价钱,小于两条非公用管线价钱之和。
8、依据查问资料我们能够为所给出的三个工程咨询企业进行分权,甲级资质分权,乙级资质分权为 0.3 。
数学建模在工程中的应用案例——输油管的布置

数学建模在工程中的应用案例——输油管的布置输油管的布置是石油工业中至关重要的问题,它涉及到输油系统的安全、可靠和经济性。
在实际应用中,输油管的布置受到多种因素的影响,如地形、管道材料、输油量、管道长度、压力损失、维修等。
数学建模可以帮助工程师优化输油管的布置方案,以满足工程要求和经济效益。
下面介绍一种数学建模方法来解决输油管布置问题。
1.问题描述某石油公司需要在一座山地地区建设一条长距离输油管道来输送原油。
由于地形崎岖,管道必须蜿蜒穿过山区,长度为1000公里。
为了降低管道的成本,工程师需要确定最佳的输油管布置方案,以在保证输油安全和可靠的前提下尽可能地降低成本。
2.数学模型(1)建立成本模型沿着输油管道,安装每一段管道的成本由以下因素决定:(a)管道长度(b)管道材料(c)安装费用我们可以将输油管道的总成本表示为:C=\sum_{i=1}^{N}c_il_i+m_i+k_i其中,N是管道的段数,c_i是每一段管道的单位长度成本,l_i是每一段管道的长度,m_i是每一段管道的材料成本,k_i是每一段管道的安装费用。
(2)建立规划模型工程师需要确定每一段管道的长度,以满足下列约束条件:(a)安全约束:管道必须能够承受设计条件下的最大压力和温度,以确保输油系统的安全运行。
(b)可靠性约束:管道必须经过密集的检查和维护,以保证管道的可靠性和安全性。
(c)经济性约束:在满足安全和可靠性的前提下,工程师需要尽可能地降低管道的总成本。
我们可以将这个问题表示为一个数学规划模型:Minimize C=\sum_{i=1}^{N}(c_il_i+m_i+k_i)Subject to:a_{i,j}l_j\geq b_i,i=1,2,\cdots,ml_j\geq 0,j=1,2,\cdots,N其中,a_{i,j}表示第j段管道能够承受的最大压力和温度,b_i 表示设计条件下的压力和温度,m是检查和维护的次数。
这个模型可以通过数学规划算法进行求解,例如线性规划、整数规划等。
输油管的布置(3)

承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。
如有违反竞赛规则的行为,我们将受到严肃处理。
我们参赛选择的题号是(从A/B/C/D中选择一项填写): C我们的参赛报名号为(如果赛区设置报名号的话):Y3302所属学校(请填写完整的全名):西安科技商贸职业学院参赛队员(打印并签名) :1. 杨文兵2. 张瑞3. 雷前莉指导教师或指导教师组负责人(打印并签名):董明星日期:2011年 09月 5 日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):输油管的布置摘要:本文针对输油管的布置问题,建立了输油建设费用最省的优化模型,运用光的传播原理、权重分析法和LINGO软件编程得出了输油管布置的最优方案。
对问题一,在模型建立时,先假设共用管道存在,在此基础上建立直角坐标系,计算共用管线与非共用管线的距离,再根据两炼油厂与铁路之间位置的不同,建立相应模型,确定最优路径模型。
在不考虑共用管线价格差异的情况下,只考虑如何设计最短的路线,根据已知条件利用勾股定理可列出最短路径函数;在考虑共用管线价格差异的情况下,则需建立两个未知变量,再带入已知常量,即可解出变量的值。
对问题二,假设共用管道存在,在问题一的基础上,考虑城区管线铺设需要增加拆迁和工程补偿等附加费用,根据光的传播原理建立目标函数得出最优管线布置模型;并根据权重分析法,利用LINGO软件得出三家咨询公司的权重系数,从而确定附加费用为21万元/千米,可得管线铺设最优费用为280.1771万元,城区与郊区的管线交接点离铁路的垂直距离为7.3564千米,共用管线的长度为1.8481千米。
数学建模在工程中的应用案例——输油管的布置

数学建模在工程中的应用案例——输油管的布置输油管的布置在油气工程中起着至关重要的作用。
合理的输油管布置可以有效地提高输送效率、降低能耗、减少工程投资,并确保管道系统的安全运行。
因此,如何通过数学建模来优化输油管的布置问题成为工程领域中一个重要的研究课题。
在石油行业,输油管道系统是将原油从生产地运送到加工厂或终端市场的关键环节。
合理布置输油管道可以减少能源消耗和成本,并提高原油运输效率。
然而,由于地理环境、生产规模和市场需求等因素的不同,每个项目都有其独特的要求和限制。
因此,在设计和规划过程中,需要综合考虑多个因素,并通过数学建模来寻找最佳方案。
首先,在进行数学建模之前,需要收集有关项目区域地理特征、气候条件、土壤性质等方面的数据。
这些数据将用于确定最佳路径以及确定最佳布置方案所需考虑的限制条件。
其次,在进行数学建模时,需要确定优化目标和约束条件。
优化目标可以是最小化总成本、最小化能源消耗、最小化运输时间等。
约束条件可以包括最大坡度、最大弯曲半径、最大压力等。
通过将这些目标和约束条件转化为数学方程,可以建立数学模型。
然后,可以使用数学优化算法来求解建立的数学模型。
常用的优化算法包括线性规划、整数规划、遗传算法等。
通过这些算法,可以找到满足约束条件的最优解。
在输油管布置问题中,还需要考虑到安全性和可靠性因素。
例如,需要考虑管道的抗震性能和抗腐蚀性能等方面。
通过将这些因素纳入数学模型中,并进行综合评估,可以找到既满足经济要求又满足安全要求的最佳布置方案。
此外,在进行输油管布置问题的研究时还需要考虑到环境保护因素。
例如,在敏感地区或生态保护区域内进行布置时需要遵守相关环境保护法规,并减少对生态环境的影响。
在实际工程中,输油管道系统通常由多个节点组成,每个节点都有多个可能的连接点和路径选择。
因此,在进行数学建模时,需要考虑到这些节点之间的相互关系,并通过数学模型来确定最佳的节点连接和路径选择。
最后,通过数学建模和优化算法求解,可以得到最佳的输油管布置方案。
输油管线布置模型

输油管道的布置濮阳职业技术学院范志远苏玉洁袁文飞指导老师:任艳敏目录一摘要 (1)二问题的重述 (2)三模型的假设 (2)四符号的约定 (2)五模型的建立与求解 (3)5.2.1 问题分析, (9)5.2.2 模型的求解 (12)5.2.3 考虑炼油厂的生产能力,选用相适应的油管。
(13)六模型的评价 (14)七参考文献 (15)一摘要输油管地布置数学建模目的是设计最优化的路线,建立一条费用最省的输油管线路,但是不同于普通的最短路径问题。
该题需要考虑多种情况,例如,城区和郊区费用的不同,采用共用管线和非共用管线价格的不同等。
我们基于最短路径模型,对于题目实际情况进行研究和分析,对三个问题都设计了适合的数学模型,做出了相应的解答和处理。
问题一:此问只需要考虑两个炼油厂和铁路之间的位置关系,根据位置的不同设计相应的模型,有无共用管线的情况下,考虑如何设计最短线路,设一些变量列出最短途径函数;在有共管线的情况下,考虑共用管线与非共管线的格不同,建立未知变量,列出相应函数并解答。
问题二:此问给出了两个炼油厂的具体位置,并且增加了城区和郊区的特殊情况,我们进一步改进数学模型,输油管线路横跨两个不同区域,管道建设费用也有不同;我们在平面上建立坐标系,设两非共管线与共用管线连接口位置为(x,y),根据图像列出函数并用偏导求出极值点的坐标,进而确定车站的具体位置,再列出费用函数并求解。
问题三:该问题的解答方法和问题二类似,但是由于A炼油厂的输油管道,B炼油厂的输油管道,以及共用管道三者的价值均不相同,我们利用问题二中设计的数学模型,进行求解。
关键词:输油管,费用最省,最优解,路径最短,车站,权重问题,二元函数二问题的重述某油田计划在铁路线一侧建造两家炼油厂,同时在铁路线上增建一个车站,来运送成品油。
由于这种模式具有一定的普遍性,油田设计院希望建立管线建设费用最省,但是不同于普通的最短路径问题。
(1)两个炼油厂和铁路之间位置的关系的数学模型,并对无共用管线,以及共用管线与非共用管线价格的相同于不同情况下说明费用最省问题。
2010数学建模c题---输油管道布置的优化模型

承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。
如有违反竞赛规则的行为,我们将受到严肃处理。
我们参赛选择的题号是(从A/B/C/D中选择一项填写):我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):参赛队员 (打印并签名) :1.2.3.指导教师或指导教师组负责人 (打印并签名):日期年月日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):输油管道布置的优化模型摘要本模型遵从“保证工程质量,节约建设费用”的原则,针对共线与非共线两种不同的管道铺设方案,建立了优化模型并求得最优解,给出最优管道铺设方案及最小费用。
在此基础上,充分考虑城区和郊区有无附加费用的情况,建立了优化模型解决问题二。
再进一步深化模型,考虑了因两厂生产能力不同单位距离铺设费用不同,再进一步深化模型,得出更符合实际的最佳布置方案及最少费用。
针对问题一:运用非线性规划将问题分为有共用管线和无共用管线两方面考虑,建立直角坐标系,对于有共用管线的情况,建立二元函数模型,模型一:kuy b y l x u a y x u y x f +-+-+-+=2222)()()(),(m in ,求解模型一,得到最优解,l b a f 632325m in --=,l 为f 的变量,讨论b a ,与l 的关系,并求出最优值和最优值点:()a Q b f ,0,min ==。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2010高教社杯全国大学生数学建模竞赛承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。
如有违反竞赛规则的行为,我们将受到严肃处理。
我们参赛选择的题号是(从A/B/C/D中选择一项填写):我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):参赛队员(打印并签名) :1.2.3.指导教师或指导教师组负责人(打印并签名):日期:年月日赛区评阅编号(由赛区组委会评阅前进行编号):2010高教社杯全国大学生数学建模竞赛编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):赛区评阅记录(可供赛区评阅时使用):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):输油管的布置摘要“输油管的布置”数学建模的目的是建立起数学模型寻求使铺设管道费用最低的设计方案。
但是不同于普遍的最短路径问题,他受各种实际情况影响,例如,城区和郊区费用的不同,采用共用管线和非公用管线价格的不同等都会对设计产生影响。
我们基于最短路径模型,对于题目实际情况进行研究和分析,对三个问题都设计了合适的数学模型做出了相应的解答和处理。
问题一:此问只需考虑两个炼油厂和铁路之间的位置关系,根据位置的不同设计相应的模型,我们根据光的传播原理和两大间线段最短的原则设计了最短路径模型,在不考虑共用管线价格差异时,只需考虑如何设计最短路线即可得到最低费用的设计方案;在考虑共用管线差价的情况下,只需建立两个未知变量,当代入已知常量,就可以解出变量的值。
问题二:此问给出了两个加油站的具体位置,在此基础上增加了城区和郊区铺设管线单位价格的不同,我们进一步改进了数学模型,由于铺设费用存在差异,输油管在城区和郊区的铺设将不会是直线方式,基于该模型,我们在模型基础上建立直角坐标系,设计2个变量就可以列出最低费用函数,利用C++编辑程序求借出最小值。
问题三:该问题的解答方法和问题二类似,但由于城郊管线和共用管线三者的价格均不一样,我们利用问题二中设计的数学模型进行改进,在坐标系内增加一个变量,建立最低费用函数,并且利用C++解出最低费用和路径坐标。
关键字: c++程序设计光的传播原理数学模型最低费用输油管的布置一、问题的重述某油田计划在铁路线一侧建造两家炼油厂,同时在铁路线上增建一个车站,用来运送成品油。
由于这种模式具有一定的普遍性,油田设计院希望建立管线建设费用最省的一般数学模型与方法。
1. 针对两炼油厂到铁路线距离和两炼油厂间距离的各种不同情形,提出你的设计方案。
在方案设计时,若有共用管线,应考虑共用管线费用与非共用管线费用相同或不同的情形。
2. 设计院目前需对复杂情形进行具体的设计。
两炼油厂的具体位置由附图所示,其中A厂位于郊区(图中的I区域),B厂位于城区(图中的II区域),两个区域的分界线用图中的虚线表示。
图中各字母表示的距离(单位:千米)分别为a = 5,b = 8,c = 15,l = 20。
若所有管线的铺设费用均为每千米7.2万元。
铺设在城区的管线还需增加拆迁和工程补偿等附加费用,为对此项附加费用进行估计,聘请三家工程咨询公司(其中公司一具有甲级资质,公司二和公司三具有乙级资质)进行了估算。
估算结果如下表所示:工程咨询公司公司一公司二公司三附加费用(万元/千米)21 24 20请为设计院给出管线布置方案及相应的费用。
3. 在该实际问题中,为进一步节省费用,可以根据炼油厂的生产能力,选用相适应的油管。
这时的管线铺设费用将分别降为输送A厂成品油的每千米5.6万元,输送B厂成品油的每千米6.0万元,共用管线费用为每千米7.2万元,拆迁等附加费用同上。
请给出管线最佳布置方案及相应的费用。
二、模型假设1、管道均以直线段铺设,不考虑地形影响。
2、不考虑管道的接头处费用。
3、忽略铺设过程中的劳动力费用,只考虑管线费用。
4、将两炼油厂和车站近似看作三个点。
5、将铁路近似看作一条直线。
6、不考虑施工之中的意外情况,所有工作均可顺利进行。
7、共用管线的价格如果和非公用管线不一致,则共用管线价格大于任意一条非公用管线价格,小于两条非公用管线价格之和。
8、根据查询资料我们可以为所给出的三个工程咨询公司进行分权,甲级资质分权0.4,乙级资质分权为0.3。
9、假设共用管线与非共用管线存在价格差时,共用管线价格大于非共用管线价格低于两倍的非共用管线价格。
10、默认A炼油厂距离铁路比B炼油厂近。
三、符号说明W:方案的经费a:A厂到铁路的距离b:B厂到铁路的距离c: A厂到城郊分界线的距离l: A、B两厂之间的铁路长度m:共用管道的费用(万元/千米)n:非共用管道费用(万元/千米)L: 为管线总长度h:共用管线的长度x1:车站的横坐标(问题二)y1:城郊分界处拐点的纵坐标(问题二)x2:共用管线和非共用管线交点的横坐标(问题三)y2:城郊分界处拐点的纵坐标(问题三)p:附加费用的估计值。
四、问题分析问题一:首先要考虑两个工厂是否在铁路的同一侧,如果两个工厂在铁路的同一侧那么一定要考虑共用管线的问题。
如果不在铁路的同一侧那么就没有必要考虑共用管线这个问题。
当两个工厂在铁路两边时,根据两点之间线段最短的原理只要求出两厂之间的距离,就可以得到最低费用设计;当两个工厂在铁路的同一侧时,且当没有共用管线时,只需利用光的传播原理可得到最短路径;在考虑到有共用管线时,需建立方程求解最低消费设计方案。
问题二:这个问题从市区和郊区分两个部分分析,火车站建立在郊区费用要少;因为郊区非共用管线与共用管线的费用相同,所以可以用最短路径的方法来考虑,同时又要求费用最小,可以通过方程解出最低费用及对应的铺设线路。
问题三:通过建立坐标系设两个点的坐标,同时也是表示出管线的长度,然后再与各自的费用之积确定总的费用,从而算出两点的坐标值。
即确定了管线的路线。
五、模型的建立与求解5.1关于问题1的模型建立与求解对于管线布置的分析,分为两种情况: 1、两个炼油厂在铁路两侧,如图所示:两炼油厂A,B 直接的连线与铁路的交点E 为车站位置 此时此时为最低费用设计方案。
2、两个炼油厂位于铁路的同一侧,则需考虑有无共用管线两种情况: a.当没有公用管线时,此时找出两厂与铁路交点连线的最近路线即可,如图:A过铁路CD 作A 点的对称点A ’,连接A ’B ,与铁路相交于点E 即为车站所在位置,此时此时为最低费用设计方案。
b .当存在共用管线时:A 、当共用管线与非共用管线价格相同,均为m 时: 设计方案如图所示假设公共管线长度为h ;(0<h <b )x=a-h (1)(2)A’(3)(4)当实际情况下已知a,b,l的情况下,上式只存在一个未知数h,再结合h的范围即可得出最低费用的设计方案。
B、当共用管线价格为m,非共用管线价格为n;(n<m<2n)设计方案如图所示:其中: 0<x<l;0<h<b;实际情况下的费用可以根据已知道的常量a、b、l再结合x、h的取值范围可以得出最小费用。
5.2关于问题2的模型建立与求解因为在城区和郊区铁路管线的费用相同,而在城区有拆迁和工程补偿等费用,所以城区和郊区要分为两部分来考虑。
我们从三家咨询公司给出的三个方案来看,我们考虑到甲级资质和乙级资质的评估准确性,所以我们对三家公司进行分权,甲级资质的权重为40%,乙级资质的权重为30%所需要的附加费预估值为p=0.4*21+0.3*24+0.3*20=21.6(万元/千米)由于城区管线铺设所花费的费用比较大,所以车站站点建设在郊区才是相对节约经费的。
我们根据共用管线与非共用价格相同设计出如下图所示模型:如上图所示建立坐标系,在城区部分我们可以得到每千米铺设管线费用为21.6+7.2=28.8万元。
W=7.2*(h+22(152)15y x -++)+28.8*22(81)5y -+ (1) x=5-h (2) W= 7.2*(h+22(152)15y h +-+)+28.8*22(81)5y -+ (3) 其中 0<h <8 0<y1<8利用C++程序编辑器编辑程序求解:最小费用W=283.201万。
5.3关于问题3的模型建立与求解F (x1,h )G (5,y1)A5ChEBD82015 x 2x Y X根据城郊管线之间以及共用管线之间存在价格差异,我们建立出如下图的模型:G为B管线与分界线之间的交点;F为A,B管线间的交点;A厂到F点距离:GF之间距离:B厂到G点距离:共用管道FE距离为h;0<h<8;5<x2<20;0<y2<8;总费用:W=5.6*AF+6*GF+7.2*EF+(21.6+6)*BG (1) W=5.6*22(5)(202)h x -+-+6*22(25)(2)x y h -+-+7.2*h+27.6*225(82)y +-利用C++程序编辑器编辑程序求解:得到最低的费用为W=252.474万元。
六、模型的评价与应用从实际的生活出发输油管道是石油生产过程中的重要环节,石油工业始终离不开输油管线的铺设问题。
它是炼油厂、车站、用户、产地之间的重要环节。
优点:利用数学模型的建立,是复杂的实际问题简单化,同时又与实际情况相联系。
建立合适的数学模型可以使设计达到最优的目的,使解决复杂的时间问题更加简单化,更加得节约和快捷。
缺点:该模型进行了很多假设,比如忽略接头问题,和施工费用问题,以及忽略了地形对施工的影响。
在计算过程中由于C++程序编程循环过于庞大,即采用由粗至细的运算方法,存在一定误差。
应用:模型在实际运用中,不仅仅可以用在成品油运输管布置,还可运用到原 油输送和污水处理,电线电缆的布置还有公路铁路的修建等一些列的线路布置问 题。
附录问题二的C++程序片段#include<iostream.h>#include<math.h>void main(){double h,y1,w;double a,b;h=0;int i,j;double min=10000;for(j=0;j<=80000;j++){h=h+0.0001;y1=0;for(i=0;i<=80000;i++){y1=y1+0.0001;w=28.8*sqrt((8-y1)*(8-y1)+25)+(sqrt((y1+5-2*h)*(y1+5-2*h)+225) +h)*7.2;if(min>w){min=w;a=h;b=y1;}}}cout<<"w="<<min<<'\n';cout<<"h="<<a<<'\n';cout<<"y1="<<b<<'\n'; }问题二的C++程序片段:#include<iostream.h>#include<math.h>void main(){double h,y2,x2,w;double a,b,c;h=0;y2=0;x2=5;int i,j,k;double min=10000;for(i=0;i<=8;i++){h=h+1;y2=0;for(j=0;j<=8;j++){y2=y2+1;x2=5;for(k=0;k<=15;k++){x2=x2+1;w=27.6*sqrt((8-y2)*(8-y2)+25)+5.6*sqrt((5-h)*(5-h)+(20-x2)*(20 -x2))+6*sqrt((x2-5)*(x2-5)+(y2-h)*(y2-h))+7.2*h;if(min>w){min=w;a=h;进一步细化:#include<iostream.h>#include<math.h>void main(){double h,y2,x2,w;double a,b,c;h=0.13;y2=0;x2=5;int i,j,k;double min=10000;for(i=0;i<=20;i++){h=h+0. 1;y2=6;for(j=0;j<=20;j++){y2=y2+0. 1;x2=12;for(k=0;k<=20;k++){x2=x2+0.1;w=27.6*sqrt((8-y2)*(8-y2)+25)+5.6*sqrt((5-h)*(5-h)+(20-x2)*(20 -x2))+6*sqrt((x2-5)*(x2-5)+(y2-h)*(y2-h))+7.2*h;if(min>w){min=w;a=h;循环最终可得到。