数学建模图论模型(1)
数学建模图论

图论一.最短路问题问题描述:寻找最短路径就是在指定网络中两结点间找一条距离最小的路。
最短路不仅仅指一般地理意义上的距离最短,还可以引申到其它的度量,如时间、费用、线路容量等。
将问题抽象为赋权有向图或无向图G ,边上的权均非负 对每个顶点定义两个标记(()l v ,()z v ),其中:()l v :表示从顶点到v 的一条路的权 ()z v :v 的父亲点,用以确定最短路的路线S :具有永久标号的顶点集1.1Dijkstra 算法:即在每一步改进这两个标记,使最终()l v 为最短路的权 输入:G 的带权邻接矩阵(,)w u v 步骤:(1) 赋初值:令0()0l u =,对0v u ≠,令()l v =∞,0={u }S ,0i =。
(2) 对每个(\)i i i v S S V S ∈=(即不属于上面S 集合的点),用min{(),()()}iu S l v l u w uv ∈+代替()l v ,这里()w uv 表示顶点u 和v 之间边的权值。
计算min{()}iu S l v ∈,把达到这个最小值的一个顶点记为1i u +,令11{}i i i S S u ++=⋃。
(3) 若1i V =-,则停止;若1i V <-,则用1i +代替i ,转(2)算法结束时,从0u 到各顶点v 的距离由v 的最后一次编号()l v 给出。
在v 进入i S 之前的编号()l v 叫T 标号,v 进入i S 之后的编号()l v 叫P 标号。
算法就是不断修改各顶点的T 标号,直至获得P 标号。
若在算法运行过程中,将每一顶点获得P 标号所由来的边在图上标明,则算法结束时,0u 至各顶点的最短路也在图上标示出来了。
理解:贪心算法。
选定初始点放在一个集合里,此时权值为0初始点搜索下一个相连接点,将所有相连接的点中离初始点最近的点纳入初始点所在的集合,并更新权值。
然后以新纳入的点为起点继续搜索,直到所有的点遍历。
《数学建模图论》PPT课件

问题:如何从状态(1,1,1,1)转移到(0,0,0,0)?
方法:从(1,1,1,1)开始,沿关联边到达没有到达 的相邻顶点,到(0,0,0,0)终止,得到有向图即是。
16
h
图论的基本概念
例2、考虑中国象棋的如下问题: (1)下过奇数盘棋的人数是偶数个。 (2)马有多少种跳法? (3)马跳出后又跳回起点,证明马跳了偶数步。 (4)红方的马能不能在自己一方的棋盘上不重复 的跳遍每一点,最后跳回起点?
……
7
h
图论的基本概念
问题4(关键路径问题): 一项工程任务,大到建造一座大坝,一座体育中心,
小至组装一台机床,一架电视机, 都要包括许多工序.这 些工序相互约束,只有在某些工序完成之后, 一个工序 才能开始. 即它们之间存在完成的先后次序关系,一般 认为这些关系是预知的, 而且也能够预计完成每个工序 所需要的时间.
① 赋初值. 对所有i, j, dij = aij, rij = j. k = 1. 转v向5 ②.
② 更新dij , rij . 对所有i, j, 若dik + dk j<dij , 则令dij = dik + dkj , rij = k, 转向③;
③ 终止判断. 若k = n终止; 否则令k = k + 1, 转向
径P ( u, v) 的权或长度(距离).
定义 2 若P0 ( u, v) 是G 中连接u, v的路径, 且对 任意在G 中连接u, v的路径P (u, v)都有F ( P0 ) ≤F ( P ), 则称P0 ( u, v) 是G 中连接u, v的最短路.
26
数学建模-图论模型

思路分析
• 每学期任课老师都有一定工作量的要求往往可能要上不止一门课 程。
• 每位同学需要在学期内完成若干门课程的学习。 • 某些对上课设施有特殊要求的课程,也不可以安排在同一时间。 • 为了方便开展一些全校性的活动,有些时段不安排课程。 • 受到教室数量的限制,在同一时段无法安排太多的课程。
模型建立
• 以每个课程为顶点,任何两个顶点之间连一条边当且仅当两门课 程的任课老师为同一人,或有学生同时选了这两门课或上课教室 冲突。
• 那么一个合理的课程安排就是将图中的点进行分化,使得每一个 部分里的点为一个独立集。
• 通过极小覆盖找出图中的极 大独立集,然后删去该极大 独立集,在剩下的图中找出 极大独立集,直到剩下的图 为一个独立集。
匈牙利算法
• 饱和点:M是图G的一个匹配,若G中顶点v是M中某条边的端 点,则称M饱和v,否则称v是M的非饱和点。
• 可扩路:一条连接两个非饱和点x和y的由M外的边和M的边交错 组成的路称为M的(x,y)可扩路。
• 算法基本步骤:
Kuhn-Munkres算法
1.2 图的独立集应用
• 问题描述:各大学学期临近结束时,需要根据老师任课 计划和学生选课情况,再结合教室资源情况安排下一学 期的课程及上课时间和地点。下表所示是某大学电信学 院的大三各专业部分课程情况。该学院每届学生按专业 分班,统一选课。另外,学院只有一间普通机房和一间 高级机房。那么应该如何合理地排这些课程呢?
则称其是双连通或强连通的。对于不是双连通的图,都可以分解成 若干个极大的双连通分支,且任意两分支之间的边是同向的。
举例:
• 右图所示竞赛图不是双连通的
•
为一条有向
的D哈密尔A顿路B。 C E
数学建模-图论模型及算法

问题二:若巡视人员要在乡停留T=2小时,村停留t=1小时,汽车时 速V=35公里/小时,那么至少分几组能在24小时内走完?并找出最佳巡 视路线。
乡镇、村的公路网示意图
问题分析
根据53组数据我们得到它的邻接矩阵,利用Kruskal算法用Matlab编 程处理后得到加权网络图的最小生成树。
例1 最短路问题(SPP-shortest path problem)
一名货车司机奉命在最短的时间内将一车货物从甲地运 往乙地。从甲地到乙地的公路网纵横交错,因此有多种行车 路线,这名司机应选择哪条线路呢?假设货车的运行速度是 恒定的,那么这一问题相当于需要找到一条从甲地到乙地的 最短路。
例2 公路连接问题
最小生成树的Kruskal算法: function [T c]=krusf(d,flag) if nargin==1
n=size(d,2); m=sum(sum(d~=0))/2; b=zeros(3,m); k=1; for i=1:n
for j=(i+1):n if d(i,j)~=0 b(1,k)=i;b(2,k)=j; b(3,k)=d(i,j); k=k+1; end
求最小生成树问题有很广泛的实际应用. 例如, 把n个乡镇 用高压电缆连接起来建立一个电网, 使所用的电缆长度之和最 短, 即费用最小, 就是一个求最小生成树问题.
最小生成树算法—Kruskal算法
• 思想:将图中所有边按权值从大到小排列,依次选所剩最 小的边加入边集T,只要不和前面加入的边构成回路,直到 T中有n-1条边,则T是最小生成树。
A
0 1 1
0 0 0
数学建模图论模型

任意两点均有通路的图称为连通图。
连通而无圈的图称为树,常用T=<V,E>表示树。
若图G’是图 G 的生成子图,且G’又是一棵树, 则称G’是图G 的生成树。
例 Ramsey问题
图1
图2
并且常记: V = v1, v2, … , vn, |V | = n ; E = {e1, e2, … , em}ek=vivj , |E | = m
称点vi , vj为边vivj的端点 在有向图中, 称点vi , vj分别为边vivj的 始点和终点. 该图称为n,m图
8
对于一个图G = V, E , 人们常用图形来表示它, 称其 为图解 凡是有向边, 在图解上都用箭头标明其方向.
4、P'代替P,T'代替T,重复步骤2,3
定理2 设 T为V的子集,P=V-T,设 (1)对P中的任一点p,存在一条从a到p的最短路径,这条路径仅有P中的
点构成, (2)对于每一点t,它关于P的指标为l(t),令x为最小指标所在的点, 即:
l(x)mli(tn )} t{ ,T
(3)令P’=P Ux,T’=T-{x},l’(t)表示T'中结点t关于P'的指标,则
解:用四维01向量表示人,狼,羊,菜例在过河西河岸问的题状态(在
岸则分量取1;否则取0),共有24 =16 种状态; 在河东岸 态类似记作。
由题设,状态(0,1,1,0),(0,0,1,1),(0,1,1,1)是不允许的
其对应状态:(1,0,0,1), (1,1,0,0),(1,0,0,0)也是不允许
数学建模方法之图论模型

定理 d (v) 2.
vV
推论 任何图中奇点 的个数为偶数. d (v1) 4
d (u3) 1
d (u3) 2
一个顶点记为 ui1,置 Si1 Si {ui1}.
3) 若 i 1,则停Hale Waihona Puke ;若 i 1,则用 i+1 代
替i,并转2).
S0 {u0},l(u j ) , j 1,2,...,7.
u1 S0 l(u1) min{,0 1}
Dijkstra算法: 求G中从顶点u0到其余顶点的最短路.
G[{v1,v2,v3}] G[{e3,e4,e5,e6}]
3) 若 V V,且 V ,以 V 为顶点集,以两端点 均在V 中的边的全体为边集的图 G 的子图,称 为G的由V 导出的子图,记为 G[V ] .
4) 若E E,且 E ,以 E为边集,以 E 的端点 集为顶点集的图 G 的子图,称为 G 的由E 导出的
第二讲 图论模型
1. 问题引入与分析
2. 图论的基本概念
3. 最短路问题及算法
4. 最小生成树及算法
回
5. 旅行售货员问题
停
6. 模型建立与求解 下
1. 问题引入与分析
1) 98年全国大学生数学建模竞赛B题“最佳灾 情巡视路线”中的前两个问题是这样的:
今年(1998年)夏天某县遭受水灾. 为考察灾情、 组织自救,县领导决定,带领有关部门负责人到 全县各乡(镇)、村巡视. 巡视路线指从县政府 所在地出发,走遍各乡(镇)、村,又回到县政 府所在地的路线.
数学建模模型分类
制造模型
优
化
问
石油转运模型
题 航天飞机的水箱模型
渔业模型
模拟退火法
神经网络
B 遗传算法
最 优
分治算法
化 差分进化
蚁行算法
粒子群
不 灰色系统
确 数理统计 定
模 模糊数学 型
聚类分析
363页:相应的 Euler 法使用
350 355
最陡上升 梯度方法
375
Lagrange 乘子法
注意里面涉及 到的经济学概
10,
大象群落的稳定性分析
11,
火车便餐最有价格方案
12,
施肥效果分析
13,
迷宫问题
14,
锁具装箱问题
15,
密码问题
16, 17,
席位分配模型 双重玻璃窗功效模型
初等模型
18, 19,
储存模型 森林救火模型
优化模型
20,
消费者均衡模型
21, 22,
加工奶制品模型 自来水输送模型
数学规划模型
23,
混合泳接力模型
多步骤形 的规划
黄金分割 搜索法
还有二分搜索 法
233
最大树 最大流
最短路
B
网络计划
网
布点问题
络
流
运输问题
分配问题
旅行推销问题 中国邮递员问题
非 分式规划 线
性 凸规划
规
划 几何规划
对 策
2人0种对策
鞍点对策 混合对策
合作
单摆模型 量
纲
分
爆炸模型
析 模
烤火鸡模型
型 阻力模型
图
标
模 型
美赛 7:图论模型、分类模型(十大模型篇)
目录五、图论模型1.迪杰斯特拉(Dijkstra)算法、贝尔曼-福特(Bellman-Ford)算法2.弗洛伊德(Floyd)算法六、分类模型1.逻辑回归2.Fisher线性判别分析五、图论模型图论模型主要解决最短路径问题,根据图的不同,对应采用迪杰斯特拉(Dijkstra)算法、贝尔曼-福特(Bellman-Ford)算法、弗洛伊德算法(Floyd)。
Matlab代码:% Matlab中的图节点要从1开始编号s = [9 9 1 1 2 2 2 7 7 6 6 5 5 4];t = [1 7 7 2 8 3 5 8 6 8 5 3 4 3];w = [4 8 3 8 2 7 4 1 6 6 2 14 10 9];G =graph(s,t,w);plot(G, 'EdgeLabel', G.Edges.Weight, 'linewidth', 2) set ( gca, 'XTick', [], 'YTick', [] );%% Matlab作无向图% (1)无权重(每条边的权重默认为1)% 函数graph(s,t):可在 s 和 t 中的对应节点之间创建边,并生成一个图% s 和 t 都必须具有相同的元素数;这些节点必须都是从1开始的正整数,或都是字符串元胞数组% 注意:编号从1开始连续编号s1 = [1,2,3,4];t1 = [2,3,1,1];G1 = graph(s1, t1);plot(G1)% 注意字符串元胞数组是用大括号包起来s2 = {'学校','电影院','网吧','酒店'};t2 = {'电影院','酒店','酒店','KTV'};G2 = graph(s2, t2);% 设置线的宽度plot(G2, 'line width', 2) % 画图后不显示坐标set( gca, 'XTick', [], 'YTick', [] ); % (2)有权重% 函数graph(s,t,w):可在 s 和 t 中的对应节点之间以w的权重创建边,并生成一个图s = [1,2,3,4];t = [2,3,1,1];w = [3,8,9,2];G = graph(s, t, w); plot(G, 'EdgeLabel', G.Edges.Weight, 'linewidth', 2) set( gca, 'XTick', [], 'YTick', [] ); %% Matlab作有向图% 无权图 digraph(s,t)s = [1,2,3,4, 1];t = [2,3,1,1,4];G = digraph(s, t);plot(G)set( gca, 'XTick', [], 'YTi ck', [] ); % 有权图 digraph(s,t,w)s = [1,2,3,4];t = [2,3,1,1];w = [3,8, 9,2];G = digraph(s, t, w);plot(G, 'EdgeLabel', G.Edges.Weight, 'linewidth', 2) set( gca, 'XTick', [], 'YTick', [] );1.迪杰斯特拉(Dijkstra)算法、贝尔曼-福特(Bellman-Ford)算法迪杰斯特拉算法是基于贪婪算法的思想,从起点出发逐步找到通向终点的最短距离。
数模培训图论模型
根据此图便可找到渡河方法.
2020/11/21
数模培训图论模型
(1,1,1,1) (1,1,1,0) (1,1,0,1) (1,0,1,1) (1,0,1,0) (0,0,0,0) (0,0,0,1) (0,0,1,0) (0,1,0,0) (0,1,0,1)
2020/11/21
数模培训图论模型
图的定义
图论中的“图”并不是通常意义下的几何图形或物 体的形状图, 而是以一种抽象的形式来表达一些确定的 事物之间的联系的一个数学系统.
定义1 一个有序二元组(V, E ) 称为一个图, 记为G = (V, E ), 其中
① V称为G的顶点集, V≠, 其元素称为顶点或结点,
例 一摆渡人欲将一只狼,一头羊,一篮菜从河西渡过 河到河东.由于船小,一次只能带一物过河,并且狼与羊, 羊与菜不能独处.给出渡河方法.
解:用四维0-1向量表示(人,狼,羊,菜)在河西岸的 状态(在河西岸则分量取1,否则取0),共有24 =16 种状态. 在河东岸的状态类似记作.
由题设,状态(0,1,1,0),(0,0,1,1),(0,1,1,1)是不允许的, 从而对应状态(1,0,0,1), (1,1,0,0), (1,0,0,0)也是不允许的.
数模培训图论模型
2020/11/21
数模培训图论模型
图论模型
1. 图论基本概念 2. 最短路径算法 3. 最小生成树算法 4. 遍历性问题 5. 二分图与匹配
6. 网络流问题 7. 关键路径问题 8. 系统监控模型 9. 着色模型
2020/11/21
数模培训图论模型
1、图论的基本概念
数学建模模拟题,图论,回归模型,聚类分析,因子分析等 (1)
11.1抗生素显著性检验问题摘要在已知抗生素效果情况服从正态分布,且方差相同条件下。
通过用SPSS13.0软件编写程序,进行单因素方差分析。
检验五种抗生素之间是否存在明显差异。
关键词:抗生素方差分析显著性检验一问题重述抗生素注入人体后会与人体血浆蛋白质结合,以致减少了药效。
现在将常用的抗生素注入到牛的体内,得到抗生素与血浆蛋白质结合的百分比。
在总体服从正态分布,且方差相同的条件下分析五种抗生素效果是否存在显著性差异。
二问题分析题目显示各类抗生素效果情况服从正态分布,为了进一步说明抗生素使用效果的差异,需要检查不同抗生素是否有显著性差异,即对数据进行显著性检验。
首先,应该提出抗生素之间没有显著性差异的假设。
然后通过SPSS13.0版本软件进行单因素方差检验[1]。
验证假设是否成立。
三模型假设四符号说明五模型建立与求解题目显示各类抗生素与血浆蛋白质结合的百分比情况属于正态总体,要对各类抗生素是否存在显著性差异。
应用软件SPSS13.0进行单因素方差检验。
其检验步骤如下:Step1. 提出假设:H:各类抗生素之间没有显著性差异;H:各类抗生素之间有显著性差异。
1α0.05。
Step2. 选定显著性水平=Step3. 用软件SPSS13.0进行单因素方差检验用SPSS13.0编写程序得到问题的解:即不同抗生素效果明显不同。
(各抗生素之间具体分析见附录一)六模型评价与改进参考文献[1]薛薇 ,《SPSS统计分析方法及应用》,出版地:电子工业出版社,2009。
[编号] 作者,论文名,杂志名,卷期号:起止页码,出版年。
[编号] 作者,资源标题,网址,访问时间(年月日)。
附录附录一PSS13.0编写程序得到问题的解:11.2化肥与小麦种子的不同对小麦产量的影响问题摘要化肥与小麦的品种的差异将影响小麦的产量,进而影响农民的生活水平。
本文建立数学模型,就化肥的不同,小麦品种的不同这两种因素定量分析化肥与小麦品种对小麦实际产量的影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
e1 e2
e3 e4
e5
1 0 1 1 0 u1 1 1 0 0 回 0 u2 M 0 1 1 0 1 u3 0 0 0 1 1 u 停 4
u1 u2 u3 u4 0 0 A 0 0 1 1 1 u1 0 0 0 u2 回 1 0 0 u3 0 1 0 u4
下
停
3) 对有向赋权图 G (V , E ) , 其邻接矩阵 A (aij ) , 其中: wij , 若(vi , v j ) E , 且wij为其权, aij 0, i j, , 若(vi , v j ) E.
回
a4 (u4 , u5 ) , a5 (u4 , u3 ) , a6 (u3 , u4 ) , a7 (u1, u3 ) . (见右图 3)
下
停
常用术语
1) 边和它的两端点称为互相关联. 2)与同一条边关联的两个端点称 为相邻的顶点,与同一个顶点 点关联的两条边称为相邻的边. 3) 端点重合为一点的边称为环, 端点不相同的边称为连杆.
1) 图的概念 2) 赋权图与子图 3) 图的矩阵表示 4) 图的顶点度 5) 路和连通
停 下 回
1) 图的概念
定义 一个图G是指一个二元组(V(G),E(G)),其中 : 1) V (G) {v1, v2 ,, v }是非空有限集,称为顶点集, 其中元素称为图G的顶点. 2) E(G)是顶点集V(G)中的无序或有序的元素偶对 (vi , v j ) 组成的集合,即称为边集,其中元素称为边.
下
图的矩阵表示
⑴ 邻接矩阵 A = (aij )n×n ,
1, vi v j E aij 0, vi v j E
例 写出右图的邻接矩阵
0 0 A 1 1 1 0 0 0 0 1 0 1 1 0 1 0
回Leabharlann 解:停 下图的矩阵表示
⑵ 权矩阵A = (aij ) n×n
G[{v1, v2 , v3}]
G[{e3 , e4 , e5 , e6}]
3) 若 V V,且 V ,以 V 为顶点集,以两端点 回 均在 V 中的边的全体为边集的图 G 的子图,称 为 G 的由 V 导出的子图,记为 G[V ] . 4) 若E E ,且 E ,以 E 为边集,以 E 的端点停 集为顶点集的图 G 的子图,称为 G 的由 E 导出的 下 边导出的子图,记为 G[ E] .
问题4(关键路径问题)
一项工程任务,大到建造一座大坝,一座体育中心, 小至组装一台机床,一架电视机, 都要包括许多工序.这 些工序相互约束,只有在某些工序完成之后, 一个工序 才能开始. 即它们之间存在完成的先后次序关系,一般 认为这些关系是预知的, 而且也能够预计完成每个工序 所需要的时间. 回 这时工程领导人员迫切希望了解最少需要多少时间 才能够完成整个工程项目, 影响工程进度的要害工序是 哪几个? 停
下
一、涉及图论的历年数学建模题目
1、93B 足球队排名次(图论特征向量、整数规划 ) 2、94A 逢山开路 3、94B 锁具装箱问题(图论、组合数学) 4、95B 天车与冶炼炉的作业调度(图论动态规划 ) 5、97B 截断切割(最短路) 回 6、98B 灾情巡视(最小生成树、最短回路、 旅行商问题) 停 7、99B 钻井布局(最大完全子图) 下 8、00B 管道订购(最短路)
有图有真相,有你更精彩
数学建模图论模型
2015/03
回
停 下
不积硅步,无以至千里 --荀子· 劝学
回
停 下
主要内容
图模型 图论的基本概念 最短路问题 最小生成树问题 旅行售货员问题 最大流问题
下 回
停
匹配问题
1. 基本概念
1. 几个引例 2. 基本概念 3. 最短路问题及算法 4. 简单应用
下
问题5 药品存储问题
• 有8种化学药品A、B、C、D、P、R、S和T要放 进贮藏室保管,出于安全原因,下列各组药品不能 贮在同一室内:A—R,A—C,A—T,R—P, P—S,S—T,T—B,B—D,D—C,R—S, R—B,P—D,S—C,S—D,试为这8种药品设 计一个使用房间数最少的贮藏方案。 回
回
4) 若一对顶点之间有两条以上的边联结,则这些边 称为重边. 停
下 5) 既没有环也没有重边的图,称为简单图.
常用术语 6) 任意两顶点都相邻的简单图,称为完全图. 记为Kv.
X Y ,且X 中任意两顶点不 7) 若 V (G ) X Y, 相邻,Y 中任意两顶点不相邻,则称为二部图或 偶图;若X中每一顶点皆与Y 中一切顶点相邻,称为 完全二部图或完全偶图,记为 Km,n (m=|X|,n=|Y|). 8) 图 K1,n 叫做星. X : x1 x2 x3 X : x1 x2 x3
例 设 H (V ( H ), E ( H )) ,其中:
V ( H ) {u1, u2 , u3 , u4 , u5},
E ( H ) {a1, a2 , a3 , a4 , a5 , a6 , a7 }, a1 (u1, u2 ) , a2 (u2 , u2 ) , a3 (u4 , u2 ) ,
回
停 下
问题3:四色问题
对任何一张地图进行着色,两个共同边界的 国家染不同的颜色,则只需要四种颜色就够了。
德· 摩尔根致哈密顿的信(1852年10月23日) 我的一位学生今天请我解释一个我过去不知道,现在仍不甚 了了的事实。他说如果任意划分一 个图形并给各部分着上颜色,使任 回 何具有公共边界的部分颜色不同, 那么需要且仅需要四种颜色就够了 。下图是需要四种颜色的例子 停 (图1)。 下 ……
1 1 0 1 1
0 0 v1 0 0 v 2 回 1 1 v3 0 0 v4 0 下0 v5
停
2) 对有向图 G (V , E ) ,其邻接矩阵 A (aij ) ,其中:
1, 若(vi , v j ) E , aij 0, 若(vi , v j ) E.
回 定义 图G的阶是指图的顶点数|V(G)|, 用 v 来表示; 图的边的数目|E(G)|用 来表示.
用 G (V (G ), E (G )) 表示图,简记 G (V , E ). 下 也用 vi v j 来表示边 (vi , v j ).
停
例 设 G (V (G ), E (G )) , 其 中 : V (G) {v1, v2 , v3 , v4} ,
u1 u2 u3 u4 0 3 7 8 u1 0 u 2回 A 6 0 u3 4 0 u 4
对于无向赋权图的邻接矩阵可类似定义下 .
停
关联矩阵 1) 对无向图 G (V , E ) ,其关联矩阵 M (mij ) , 其中: 1, 若vi与e j 相关联, mij 0, 若vi与e j不关联.
所有图都称为非平凡图.
定义若图G中的边均为有序偶对 (vi , v j ),称G为有向 图. 称边 e (vi , v j ) 为有向边或弧,称 e (vi , v j )是从vi 连接 v j ,称 vi为e的尾,称 v j为e的头. 若图G中的边均为无序偶对 vi v j,称G为无向图.称 边 e viv j 为无向边,称e连接 vi 和 v j,顶点 vi 和 v j 称 为e的端点. 既有无向边又有有向边的图称为混合图.
F vi v j , aij 0, ,
vi v j E i j vi v j E
回
例
写出右图的权矩阵: 0 6 8 解: 0 7 A 3 0 2 4 5 0
停 下
4) 图的顶点度
定义 1) 在无向图G中,与顶点v关联的边的数目(环 算两次),称为顶点v的度或次数,记为d(v)或 dG(v). 称度为奇数的顶点为奇点,度为偶数的顶点为偶点 . 2) 在有向图中,从顶点v引出的边的数目称为顶点 v的出度,记为d+(v),从顶点v引入的边的数目称为 v的入度,记为d -(v). 称d(v)= d+(v)+d -(v)为顶点v的 度或次数. 定理 d (v) 2 .
停 下 回
1. 几个引例
问题1:七桥问题
能否从任一陆地出发通过每座桥恰好一次而回 到出发点?
C
A
B
回
停
D
哥尼斯堡七桥示意图
下
七桥问题模拟图
C
A
B
D
回
欧拉指出:如果每块陆地所连接的桥都是偶数座,则 停 从任一陆地出发,必能通过每座桥恰好一次而回到出 发地。 下
问题2:哈密顿圈(环球旅行游戏)
十二面体的20个顶点代表世界上20个城市,能 否从某个城市出发在十二面体上依次经过每个 城市恰好一次最后回到出发点?
3) 图的矩阵表示 (以下均假设图为简单图). 邻接矩阵: 1) 对无向图 G,其邻接矩阵 A (aij ) ,其中: 1, 若vi与v j 相邻, aij 0, 若vi与v j不相邻. v1 v2 v3 v4 v5
0 1 A 1 0 0
1 0 1 0 0
回
,
K6
Y : y1 y2 y3 y4 Y : y1 y2 y3 y4 K3,4 二部图
下
K1,4
停
2) 赋权图与子图 定义 若图 G (V (G ), E (G )) 的每一条边e 都赋以 一个实数w(e),称w(e)为边e的权,G 连同边上的权 称为赋权图. 定义 设 G (V , E )和 G (V , E) 是两个图. 1) 若V V , E E ,称 G 是 G 的一个子图,记 G G. E E ,则称 G 是 G 的生成子图. 2) 若 V V, 3) 若 V V,且 V ,以 V 为顶点集,以两端点 回 均在 V 中的边的全体为边集的图 G 的子图,称 为 G 的由 V 导出的子图,记为 G[V ] . 4) 若E E ,且 E ,以 E 为边集,以 E 的端点停 集为顶点集的图 G 的子图,称为 G 的由 E 导出的 下 边导出的子图,记为 G[ E] .