数学建模中常见的十大模型
数学建模常用模型方法总结

数学建模常用模型方法总结无约束优化线性规划非线性规划整数规划组合优化多目标规划目标规划动态规划网络规划多层规划等…运筹学模型(优化模型)图论模型存储论模型排队论模型博弈论模型可靠性理论模型等…运筹学应用重点: ①市场销售②生产计划③库存管理④运输问题⑤财政和会计⑥人事管理⑦设备维修、更新和可靠度、项目选择和评价⑧工程的最佳化设计⑨计算器和讯息系统⑩城市管理优化模型四要素:①目标函数②决策变量③约束条件④求解方法(MATLAB--通用软件 LINGO--专业软件)概率论与数理统计模型多元分析模型假设检验模型相关分析回归分析聚类分析、主成分分析因子分析判别分析典型相关性分析对应分析多维标度法连续优化离散优化从其他角度分类数学规划模型方差分析贝叶斯统计模型时间序列分析模型决策树逻辑回归马尔萨斯人口预测模型Logistic 人口预测模型灰色预测模型回归分析预测模型预测分析模型差分方程模型马尔可夫预测模型时间序列模型插值拟合模型神经网络模型系统动力学模型(SD)模糊综合评判法模型数据包络分析综合评价与决策方法灰色关联度主成分分析秩和比综合评价法理想解读法等旅行商(TSP)问题模型背包问题模型车辆路径问题模型物流中心选址问题模型经典 NP 问题模型路径规划问题模型着色图问题模型多目标优化问题模型车间生产调度问题模型最优树问题模型二次分配问题模型模拟退火算法(SA)遗传算法(GA)智能算法(启发式)神经网络算法蒙特卡罗算法元胞自动机算法穷蚁群算法(ACA)传染病模型微分方程模型人口预测控制模型经济增长模型战争模型等等。
常用算法模型举搜索算法小波分析算法确定性数学模型三类数学模型随机性数学模型。
比较好用的数学模型

比较好用的数学模型
在实际生活中,数学模型被广泛应用于各种问题的解决。
以下是一些比较好用的数学模型:
1. 线性回归模型:用于预测一个因变量与一个或多个自变量之间的线性关系。
2. 逻辑回归模型:用于预测一个二元因变量与一个或多个自变量之间的关系。
3. 时间序列模型:用于预测时间上的变化,包括季节性和趋势性变化。
4. 聚类模型:用于将一组数据分成不同的群组,每个群组内数据的相似性最大,而不同群组之间的差异最大。
5. 决策树模型:用于帮助做出决策,通过将数据分成不同的子集并逐步做出决策。
这些模型都有着广泛的应用,可以帮助人们更好地理解和解决各种实际问题。
但是,在使用这些模型时,我们需要注意模型的局限性,以及模型预测的不确定性。
- 1 -。
初中数学建模教学常见的几种模型

初中数学建模教学常见的几种模型1 变量图模型变量图模型是中学数学建模教学中最基础的内容,它具有多个变量,每个变量可以表示一定的实际情况。
通常,该模型采用点与线来描述变量之间的关系。
例如,有一个变量x表示学习时间,另一个变量y表示成绩,则可以用线来表示X和Y之间的关系。
变量图模型可以帮助学生通过对比不同变量之间的关系,对实际情况产生清晰的认识。
2 数学模型数学模型是研究某一特定问题的数学方法,以及表示不同元素之间的关系的数学表达式。
数学模型可以帮助学生进行抽象思维,假设相关元素的关系,代入数学表达式,从而分析与实际情况的关系,以及可能存在的解决方案。
使用这种模型的时候,学生可以用更客观的方式来理解问题,把方程或比例式当作一种数学工具,用它来处理实际情况。
3 概率模型概率模型是用于表示随机事件发生的可能性的模型,它比较突出事件发生可能性的概念。
教师在实际教学中,可以让学生根据实际情况,按照概率模型分析不同事件的可能性,以求出比较科学的判断。
因为概率模型是针对不同的实际场景,提出判断可能性的一种更加客观的方法,使学生具备较强的实际分析能力。
4 线性规划模型线性规划模型是一种广泛运用的建模方法,它利用线性规划、其他组合优化手段和对约束条件的考虑,来解决实际生活、管理和技术等方面的某些问题。
在数学建模教学中,教师可以让学生根据实际生活中的一些问题,通过线性规划模型来解决实际问题,从而让学生以更加清晰的视角理解数学原理,具备更强的实际分析能力。
5 统计模型统计模型是一组应用统计学原理和方法、用于定义某些应用场景下的问题、及求解方案的模型。
统计模型在数学建模教学中具有很强的应用价值,它可以让学生认识到,统计学中的定理和准则,能够指导我们对实际场景中各种现象与现象之间的相关性进行量化分析、建立有限的模型。
数学建模中常见的十大模型讲课稿

数学建模中常见的十大模型数学建模常用的十大算法==转(2011-07-24 16:13:14)转载▼1. 蒙特卡罗算法。
该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟来检验自己模型的正确性,几乎是比赛时必用的方法。
2. 数据拟合、参数估计、插值等数据处理算法。
比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用MA TLAB 作为工具。
3. 线性规划、整数规划、多元规划、二次规划等规划类算法。
建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo 软件求解。
4. 图论算法。
这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备。
5. 动态规划、回溯搜索、分治算法、分支定界等计算机算法。
这些算法是算法设计中比较常用的方法,竞赛中很多场合会用到。
6. 最优化理论的三大非经典算法:模拟退火算法、神经网络算法、遗传算法。
这些问题是用来解决一些较困难的最优化问题的,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用。
7. 网格算法和穷举法。
两者都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具。
8. 一些连续数据离散化方法。
很多问题都是实际来的,数据可以是连续的,而计算机只能处理离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的。
9. 数值分析算法。
如果在比赛中采用高级语言进行编程的话,那些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用。
10. 图象处理算法。
赛题中有一类问题与图形有关,即使问题与图形无关,论文中也会需要图片来说明问题,这些图形如何展示以及如何处理就是需要解决的问题,通常使用MATLAB 进行处理。
数学建模 模型 大全

Scheafer微分方程模型
Lanchester战斗模型
350
SIR模型
军备竞赛的经济模型
355
混沌与分形模型
连续优化问题
Steiner树
库存模型
制造模型
最陡上升梯度方法
375
石油转运模型
Lagrange乘子法
注意里面涉及到的经济学概念和意义
381
航天飞机的水箱模型
渔业模型
注意各种“最优”的意义
155
港口系统模型
改变参数时,改善情况的分析
164
离散概率模型
马尔可夫链
汽车租赁模型
要结合蒙特卡罗算法
176
投票趋势模型
177
Markov决策
串联和并联系统模型
178
线性规划模型
无约束类
生产计划模型
192
取整数类
载货模型
194
动态规划类
1Hale Waihona Puke 7多目标规划类投资问题
有时须对目标进行取舍。可采取加权
系统层次分析
97
海湾收成模型
多项式拟合
磁带播放模型
高阶多项式敏感度很强
光滑化
115
停止距离模型(2)
三阶样条法。有自然和强制样条两种
134
预测
时间序列
GM(1,1),指数平滑,线性平滑
因果分析法
聚类分析
灰色关联度分析
聚类分析
因子分析
模拟方法
蒙特卡罗算法
硬币投掷模型
149
汽油储存模型
逆线性样条(可改变随机数范围)
图标模型
军备竞赛模型
民防、移动发射台、多弹头
数学建模中的常见模型

数学建模中的常见模型数学建模综合评价模型是一种通过对各个评价指标进行量化,并将它们按照权重进行加权,最终得到一个综合评价值的方法。
这个模型可以应用于多指标决策问题,用于对被评价对象进行排名或分类。
常见的数学建模综合评价模型包括模糊综合评价模型、灰色关联分析模型、Topsis(理想解法)、线性加权综合评价模型、熵值法和秩和比法等。
模糊综合评价模型是一种基于模糊数学理论的方法,它将评价指标的模糊程度考虑在内,得到一个模糊评价结果。
该模型的步骤包括确定评价指标及其权重、构建模糊评价矩阵、进行模糊运算、得到模糊评价结果。
灰色关联分析模型是一种用于分析指标间关联性的方法,它可以帮助我们确定各个指标对被评价对象的影响程度。
该模型的步骤包括确定关联度计算方法、计算各个指标的关联度、得到综合关联度。
Topsis(理想解法)是一种基于距离的方法,它通过计算每个评价对象与理想解的距离,得到一个综合评价值。
该模型的步骤包括确定正负理想解、计算距离、得到综合评价值。
线性加权综合评价模型是一种常用的多指标决策方法,它将各个评价指标的权重与指标值线性组合起来,得到一个综合评价值。
该模型的优点是简单易操作,计算方便,可以对各个指标的重要性进行量化,并将其考虑在评价中。
但是,该模型的权重确定较为主观,且假设指标之间相互独立,不考虑相关性。
熵值法是一种基于信息熵理论的方法,它通过计算每个指标的熵值,得到一个综合评价值。
该模型的步骤包括计算指标的熵值、计算权重、得到综合评价值。
秩和比法是一种用于处理多指标决策问题的方法,它通过计算指标的秩和比,得到一个综合评价值。
该模型的步骤包括编秩、计算秩和比、得到综合评价值。
根据具体的评价需求和问题特点,我们可以选择合适的数学建模综合评价模型来进行评价。
每个模型都有其优点和缺点,需要根据具体情况进行选择和应用。
<span class="em">1</span><spanclass="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [数学建模——评价模型]()[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_sourc e":"vip_chatgpt_mon_search_pc_result","utm_medium":"di stribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_itemstyle="max-width: 100%"] [ .reference_list ]。
常用几何模型总结

常用几何模型总结
几何模型是数学和物理学中用来描述特定现象或系统的抽象数学模型。
根据不同的应用领域,有许多不同的几何模型。
以下是一些常用的几何模型:
欧几里得几何模型:描述二维平面和三维空间中的点和线段的性质和关系。
拓扑几何模型:研究拓扑空间中元素之间的关系,包括连通性、紧致性、同胚等概念。
解析几何模型:通过解析式或函数来描述几何对象的位置、形状和大小。
微分几何模型:研究曲线、曲面等几何对象的微分性质,包括曲率、挠率等。
线性代数模型:描述向量空间和矩阵运算的性质和关系,广泛应用于物理学、工程学等领域。
极坐标模型:通过极坐标系来描述平面上的点和线段的性质和关系。
参数方程模型:通过参数方程来描述几何对象的形状和位置,常用于计算机图形学等领域。
代数几何模型:结合代数和几何的思想,研究代数方程组在几何空间中的解和性质。
概率几何模型:通过概率论和几何学的结合,描述随机现象的分布和性质。
微分流形模型:将流形和微分结构结合起来,描述复杂的几何对象和现象。
以上是一些常用的几何模型,每种模型都有其特定的应用场景和优势。
在实际应用中,需要根据具体问题选择合适的几何模型来进行描述和分析。
数学建模中的多分类模型

数学建模中的多分类模型是一种用于解决多类别分类问题的算法。
在多分类问题中,输入变量x 对应着多个输出变量y,其中每个输出变量表示一个类别。
多分类模型的目标是根据输入变量x 的取值,预测其对应的输出变量y 的类别。
以下是一些常见的多分类模型:1. 感知机(Perceptron):感知机是一种二分类模型,它可以扩展到多分类问题。
在多分类问题中,感知机需要训练多个模型,每个模型对应一个类别。
训练过程中,感知机通过调整权重和阈值来实现分类。
2. 决策树(Decision Tree):决策树是一种基于树结构的分类模型,它可以根据输入变量的取值将数据划分为不同的类别。
在多分类问题中,决策树通常采用树状结构,每个叶子节点对应一个类别。
3. 支持向量机(Support Vector Machine,SVM):支持向量机是一种基于最大间隔原则的二分类模型,它可以扩展到多分类问题。
在多分类问题中,SVM 通常采用“一对一”(one-vs-one)或“一对多”(one-vs-all)策略。
4. 贝叶斯分类器(Bayesian Classifier):贝叶斯分类器基于贝叶斯定理,通过计算输入变量x 属于每个类别的概率来确定其类别。
在多分类问题中,贝叶斯分类器可以采用多项式分布或高斯分布等概率模型。
5. 神经网络(Neural Network):神经网络是一种模拟人脑神经元结构的计算模型,它可以用于多分类问题。
神经网络通过多层神经元组成,每层神经元根据前一层的输入进行计算,最终输出类别。
常见的神经网络有多层感知机(MLP)和深度神经网络(DNN)等。
6. 集成学习(Ensemble Learning):集成学习是一种组合多个弱分类器的方法,以提高分类性能。
常见的集成学习方法有Bagging(Bootstrap Aggregating,引导随机森林)、Boosting(如Adaboost)等。
7. 聚类算法(Clustering Algorithm):聚类算法可以将无标签的数据划分为多个类别。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学建模常用的十大算法==转
(2011-07-24 16:13:14)
转载▼
1. 蒙特卡罗算法。
该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟来检验自己模型的正确性,几乎是比赛时必用的方法。
2. 数据拟合、参数估计、插值等数据处理算法。
比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用MA TLAB 作为工具。
3. 线性规划、整数规划、多元规划、二次规划等规划类算法。
建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo 软件求解。
4. 图论算法。
这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备。
5. 动态规划、回溯搜索、分治算法、分支定界等计算机算法。
这些算法是算法设计中比较常用的方法,竞赛中很多场合会用到。
6. 最优化理论的三大非经典算法:模拟退火算法、神经网络算法、遗传算法。
这些问题是用来解决一些较困难的最优化问题的,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用。
7. 网格算法和穷举法。
两者都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具。
8. 一些连续数据离散化方法。
很多问题都是实际来的,数据可以是连续的,而计算机只能处理离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的。
9. 数值分析算法。
如果在比赛中采用高级语言进行编程的话,那些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用。
10. 图象处理算法。
赛题中有一类问题与图形有关,即使问题与图形无关,论文中也会需要图片来说明问题,这些图形如何展示以及如何处理就是需要解决的问题,通常使用MA TLAB 进行处理。
以下将结合历年的竞赛题,对这十类算法进行详细地说明。
以下将结合历年的竞赛题,对这十类算法进行详细地说明。
2 十类算法的详细说明
2.1 蒙特卡罗算法
大多数建模赛题中都离不开计算机仿真,随机性模拟是非常常见的算法之一。
举个例子就是97 年的A 题,每个零件都有自己的标定值,也都有自己的容差等级,而求解最优的组合方案将要面对着的是一个极其复杂的公式和108 种容差选取方案,根本不可能去求解析解,那如何去找到最优的方案呢?随机性模拟搜索最优方案就是其中的一种方法,在每个零件可行的区间中按照正态分布随机的选取一个标定值和选取一个容差值作为一种方案,然后通过蒙特卡罗算法仿真出大量的方案,从中选取一个最佳的。
另一个例子就是去年的彩票第二问,要求设计一种更好的方案,首先方案的优劣取决于很多复杂的因素,同样不可能刻画出一个模型进行求解,只能靠随机仿真模拟。
2.2 数据拟合、参数估计、插值等算法
数据拟合在很多赛题中有应用,与图形处理有关的问题很多与拟合有关系,一个例子就是98 年美国赛A 题,生物组织切片的三维插值处理,94 年A 题逢山开路,山体海拔高度的插值计算,还有吵的沸沸扬扬可能会考的“非典”问题也要用到数据拟合算法,观察数据的
走向进行处理。
此类问题在MA TLAB中有很多现成的函数可以调用,熟悉MA TLAB,这些方法都能游刃有余的用好。
2.3 规划类问题算法
竞赛中很多问题都和数学规划有关,可以说不少的模型都可以归结为一组不等式作为约束条件、几个函数表达式作为目标函数的问题,遇到这类问题,求解就是关键了,比如98年B 题,用很多不等式完全可以把问题刻画清楚,因此列举出规划后用Lindo、Lingo 等软件来进行解决比较方便,所以还需要熟悉这两个软件。
2.4 图论问题
98 年B 题、00 年B 题、95 年锁具装箱等问题体现了图论问题的重要性,这类问题算法有很多,包括:Dijkstra、Floyd、Prim、Bellman-Ford,最大流,二分匹配等问题。
每一个算法都应该实现一遍,否则到比赛时再写就晚了。
2.5 计算机算法设计中的问题
计算机算法设计包括很多内容:动态规划、回溯搜索、分治算法、分支定界。
比如92 年B 题用分枝定界法,97 年B 题是典型的动态规划问题,此外98 年B 题体现了分治算法。
这方面问题和ACM 程序设计竞赛中的问题类似,推荐看一下《计算机算法设计与分析》(电子工业出版社)等与计算机算法有关的书。
2.6 最优化理论的三大非经典算法
这十几年来最优化理论有了飞速发展,模拟退火法、神经网络、遗传算法这三类算法发展很快。
近几年的赛题越来越复杂,很多问题没有什么很好的模型可以借鉴,于是这三类算法很多时候可以派上用场,比如:97 年A 题的模拟退火算法,00 年B 题的神经网络分类算法,象01 年B 题这种难题也可以使用神经网络,还有美国竞赛89 年A 题也和BP 算法有关系,当时是86 年刚提出BP 算法,89 年就考了,说明赛题可能是当今前沿科技的抽象体现。
03 年B 题伽马刀问题也是目前研究的课题,目前算法最佳的是遗传算法。
2.7 网格算法和穷举算法
网格算法和穷举法一样,只是网格法是连续问题的穷举。
比如要求在N 个变量情况下的最优化问题,那么对这些变量可取的空间进行采点,比如在[a; b] 区间内取M +1 个点,就是a; a+(b-a)/M; a+2 (b-a)/M; ……; b 那么这样循环就需要进行(M + 1)N 次运算,所以计算量很大。
比如97 年A 题、99 年B 题都可以用网格法搜索,这种方法最好在运算速度较快的计算机中进行,还有要用高级语言来做,最好不要用MATLAB 做网格,否则会算很久的。
穷举法大家都熟悉,就不说了。
2.8 一些连续数据离散化的方法
大部分物理问题的编程解决,都和这种方法有一定的联系。
物理问题是反映我们生活在一个连续的世界中,计算机只能处理离散的量,所以需要对连续量进行离散处理。
这种方法应用很广,而且和上面的很多算法有关。
事实上,网格算法、蒙特卡罗算法、模拟退火都用了这个思想。
2.9 数值分析算法
这类算法是针对高级语言而专门设的,如果你用的是MA TLAB、Mathematica,大可不必准备,因为象数值分析中有很多函数一般的数学软件是具备的。
2.10 图象处理算法
01 年A 题中需要你会读BMP 图象、美国赛98 年A 题需要你知道三维插值计算,03 年
B 题要求更高,不但需要编程计算还要进行处理,而数模论文中也有很多图片需要展示,因此图象处理就是关键。
做好这类问题,重要的是把MA TLAB 学好,特别是图象处理的部分。