第十章数学模型常用例子

合集下载

简单数学建模应用例子

简单数学建模应用例子
的基本性质可知,必存在 0(0< 0<90)使 h(0)=0, 即f(0)=g(0).
最后由于g(0)f(0)=0 ,即g(0)= f(0)=0.
建模实例
评注:这个模型的巧妙之处在于用一元变量
表示椅子的位置,用 的两个函数表示椅子的 四脚与地面的距离,利用正方形的中心对称及 旋转900并不是本质的,大家可以考虑四脚呈 长方形的情形(作业)
x (t t) x (t) r(tx ) t
建模实例
于是x(t)满足如下方程:
dx rx dt x ( 0 ) x 0
易知其解为 x(t) x0ert
(2) (3)
建模实例
上式表明了人口增长的指数规律,此时将t离 散化,并认为r较小,则可得(1)式,即(1) 为指数增长模型的一种离散形式的近似表示。 人们发现,在地广人稀的加拿大领土上,法国 移民后代的人口比较符合指数增长模型,而同 一血统的法国本土居民人口的增长却远低于这 个模型。
建模实例
在xoy坐标系上画出如图所示的方格,方格点 上的坐标同时也表示状态s = ( x , y ). 允许状 态集是沿方格 线移动1或2格,k为奇数时向左、 下方移动,k为偶数
时向右、上方移动。 要确定一系列的dk使 由s1=(3,3)经过那些 点最终移至原点(0, 0),左图中给出了 一种决策方案,最终 有s12=(0,0).
建模实例
安全渡河条件下的状态集称为允许状态集合, 记作S,不难写出
S={(x,y)|x=0, y=0, 1, 2, 3; x=y=1,2} - (1)
记第k次渡船上的商人数为uk ,随从数为vk ,将 二维向量dk = (uk,vk)定义为决策,允许决集合 记作D,由小船的容量可知
D={(u,v)| u + v = 1 , 2 }-

离散数学课件第十章 几种图的介绍

离散数学课件第十章 几种图的介绍

前言
在图论的历史中,还有一个最著名的问题——四色猜想。这个猜想说 ,在一个平面或球面上的任何地图能够只用四种颜色来着色,使得没 有两个相邻的国家有相同的颜色。每个国家必须由一个单连通域构成 ,而两个国家相邻是指它们有一段公共的边界,而不仅仅只有一个公 共点。四色猜想有一段有趣的历史。每个地图可以导出一个图,其中 国家都是点,当相应的两个国家相邻时这两个点用一条线来连接。所 以四色猜想是图论中的一个问题。它对图的着色理论、平面图理论、 代数拓扑图论等分支的发展起到推动作用。
10.2 哈密尔顿图
定理10.7 设图 G是具有n(≥3)个结点的无向简单图,如果 G中每一 对结点度数之和大于等于n-1,则在 G 中存在一条哈密尔顿路。 定理10.8 若G是具有n(≥3)个结点的无向简单图,对于G中每一对不
相邻的结点 u , v 均有 d(u)d(v)≥n,则G是一个哈密尔顿图。
图10.6
10.2 哈密尔顿图
定义10.3 给定无向图G,图G中包含其所有顶点的简单开路径称为图G 的哈密尔顿路径,图G中包含其所有顶点的简单闭路径称为G的哈密尔顿 回路。具有哈密顿回路的图称为哈密尔顿图。
由定义可知哈密尔顿圈与哈密尔顿路通过图G中的每个结点一次且仅 一次,例如图10.6(b)就是哈密尔顿图(哈密尔顿圈用实线标出)。
10.2 哈密尔顿图
例10.4 图10.8(a)不是哈密尔顿图。
图10.8
图10.8(a)中共有9个结点,如果取结点集S={3个白点},即 S 3 。而
这时 (GS)4(如图(b))。这说明图10.8(a)不是哈密尔顿图。但要注
意若一个图满足定理10.6的条件也不能保证这个图一定是哈密尔顿图,如图10.8 (c)。
定理10.7和10.8都是充分条件,即满足这些条件的图一定是哈密尔顿图。但不是所 有的哈密尔顿图都满足这些条件。例如图10.9是哈密尔顿图,但它不满足上述定理的 条件。

(完整版)高中常见数学模型案例

(完整版)高中常见数学模型案例

高中常见数学模型案例中华人民共和国教育部2003年4月制定的普通高中《数学课程标准》中明确指出:“数学探究、数学建模、数学文化是贯穿于整个高中数学课程的重要内容”,“数学建模是数学学习的一种新的方式,它为学生提供了自主学习的空间,有助于学生体验数学在解决问题中的价值和作用,体验数学与日常生活和其他学科的联系,体验综合运用知识和方法解决实际问题的过程,增强应用意识;有助于激发学生学习数学的兴趣,发展学生的创新意识和实践能力。

”教材中常见模型有如下几种:一、函数模型用函数的观点解决实际问题是中学数学中最重要的、最常用的方法。

函数模型与方法在处理实际问题中的广泛运用,两个变量或几个变量,凡能找到它们之间的联系,并用数学形式表示出来,建立起一个函数关系(数学模型),然后运用函数的有关知识去解决实际问题,这些都属于函数模型的范畴。

1、正比例、反比例函数问题例1:某商人购货,进价已按原价a 扣去25%,他希望对货物订一新价,以便按新价让利销售后仍可获得售价25%的纯利,则此商人经营者中货物的件数x 与按新价让利总额y 之间的函数关系是___________。

分析:欲求货物数x 与按新价让利总额y 之间的函数关系式,关键是要弄清原价、进价、新价之间的关系。

若设新价为b ,则售价为b (1-20%),因为原价为a ,所以进价为a (1-25%) 解:依题意,有25.0)2.01()25.01()2.01(⋅-=---b a b 化简得a b 45=,所以x a bx y ⋅⋅==2.0452.0,即+∈=N x x a y ,42、一次函数问题例2:某人开汽车以60km/h 的速度从A 地到150km 远处的B 地,在B 地停留1h 后,再以50km/h 的速度返回A 地,把汽车离开A 地的路x (km )表示为时间t (h )的函数,并画出函数的图像。

分析:根据路程=速度×时间,可得出路程x 和时间t 得函数关系式x (t );同样,可列出v(t)的关系式。

第十章-结构优化例子-机械

第十章-结构优化例子-机械

( D , h ) y ——为起作用约束
D * 6 .43 cm
h* 76 cm
m*=8.47kg
五. 讨论
若将许用应力
(虚线—强度曲线) * * T T 解析法得到: x1 [ D , h ] [3 .84 cm ,76 cm ]
y由420提高到703Mpa,可行域变化
——等值线与强度曲 线的交点,但不是最 优解 (不满足稳定约 束条件) 实际最优点 x1* [ D * , h * ]T
[ 4.75cm,513cm ] (两约束交点处) * m1 5.45 kg
(过x1点的等值线)
T
最优点的三种情况
1. 最优点的等值线在可行域内中心点 ——约束不起作用(无约束问题) 2.最优点在可行域边界与等值线切点处 ——一个起作用约束 3.多个约束交点处 ——多个起作用约束
x2 1
x3 1
x2 x3 6
x2 x3 4
最终得到最优方案: x 4.1286
* 2 * x3 2.3325
f * 0.0156
二. 薄板包装箱的优化设计
设计一个体积为5m3的薄板包装箱,如图所示,其中 一边的长度不小于 4m,要求使薄板材料消耗最少,试确 定包装箱的尺寸参数,即确定包装箱的长、宽和高。
曲柄摇杆机构的优化数学模型
x x2
minT
x3 R 2
f ( x) f ( x2 , x3 ) ( i ji ) 2
i 0
s
i 0,1, 2......s
s.t.
x x 2x2 x3 cos135 36 0
2 2 2 3
2 2 x2 x3 2x2 x3 cos 45 16 0

数学建模简单13个例子

数学建模简单13个例子

另建模型研究,从而L1=v*t1。刹车距离 L2既可用曲线
拟合方法得出,也可利用牛顿第二定律计算出来
黄灯究竟应当亮多久现在已经变得清楚多了。
第一步,先计算出L应多大才能使看见黄灯的司机停
得住车。
第二步,黄灯亮的时间应当让已过线
的车顺利穿过马路,
D
即T 至少应当达到 (L+D)/v。
L
返回
9、砖块延伸
出,黄灯起的是警告的作用,意思是马上
要转红灯了,假如你能停住,请立即停车。
停车是需要时间的,在这段时间内,车辆
仍将向前行驶一段距离 L。这就是说,在
离街口距离为 L处存在着一条停车线(尽
管它没被画在地上),见图。对于那些黄
D
灯亮时已过线的车辆,则应当保证它们仍 能穿过马路。
L
马路的宽度D是容易测得的,问题的关键在于L的确
总距离为 n 1 ,
故有砖点n块 出向人右意可料时 叠。k1至, 2knk任1 2意1k远,n这1 一21n结果多少返回
10、寻找黑匣子
飞机失事时,黑匣子会自动打开,发射出某种 射线。为了搞清失事原因,人们必须尽快找回匣子。 确定黑匣子的位置,必须确定其所在的方向和距离, 试设计一些寻找黑匣子的方法。由于要确定两个参 数,至少要用仪器检测两次,除非你事先知道黑匣 子发射射线的强度。
I2 I1
1
方法二
A
在方法一中,两检测点与黑匣子
位于β一α a
直线上,这一点比较容易 点是结果对照度测
量的精C做度到要, 求主 较要 高缺 ,B
很少的误差会造成结果的很大变化,即敏感性很
强,现提出另一方法,在 A点测得黑匣子方向后 ,
到B点再测方向 ,AB 距离为a ,∠BAC=α,

数学建模

数学建模
8.8
微分方程应用实例
许多实际问题的解决归结为寻找变量间的函数关 系。但在很多情况下,函数关系不能直接找到,而只 能间接的得到这些量及其导数之间的关系,从而使得 微分方程在众多领域都有非常重要的应用。本节只举 几个实例来说明微分方程的应用。进一步的介绍见第 十章。 一。嫌疑犯问题(尸体温度的变化率正比于尸
人口(亿)5
可以看出,人口每增长十亿的时间,由一百 年缩短为十二三年。我们赖以生存的地球,已经带 着它的60亿子民踏入了21世纪。 长期以来,人类的繁衍一直在自发地进行着。 只是由于人口数量的迅速膨胀和环境质量的急剧恶 化,人们才猛然醒悟,开始研究人类和自然的关系, 人口数量的变化规律,以及如何进行人口控制等问 题。
当T 37。 时,有21.1 11.5e 0.110 t 37,所以 C t 2.95小时 2小时57分 所以 Td 8小时20分 2小时57分 5小时23分 即被害人死亡时间大约 在下午5: ,因此张某不 23 能被排除在嫌疑犯之外 。
二、微分方程模型
引言
体温度与室温的差)
受害者的尸体于晚上7:30被发现。法医于晚上
32.6。 ,一小时 C 8:20赶到凶案现场,测得尸体体温为
后,当尸体即将被抬走时,测得尸体温度为 31.4。C
室温在几小时内始终保持21.1。C ,此案最大的嫌疑犯是 张某,但张某声称自己是无罪的,并有证人说:“下 午张某一直在办公室上班,5:00时打了一个电话,打 完电话后就离开了办公室。”从张某的办公室到受害 者家(凶案现场)步行需5分钟,现在的问题:是张某 不在凶案现场的证言能否使他被排除在嫌疑犯之外 ? 解设T (t ) 表示时刻t尸体的温度,并记晚 : 为t 0,则 8 20
返回

高级计量经济学 第十章 消费行为模型[精]

高级计量经济学 第十章 消费行为模型[精]
消费支出C是可支配收入Y的函数
边际消费倾向满足0<<1 Ct=+Yt+ut
相对收入假说
消费水平不仅受消费者当前收入水平的影响,还受其 过去最高收入水平的影响。
Ct=+1Yt+ 2Ytmax+ut 当收入呈现稳定增长趋势时,可能会有Ytmax=Yt-1。
3
宏观消费函数:理论基础
?支出弹性??????bpj??ap2lnlnnijijjkkijkmmp????????????????????????????????????????????????i????????10ijij?????????????bp??ap12?1lniiiimw????????????????分层消费模型弹性计算?前面给出的计算公式针对不分层的模型可以看作是有条件弹性取决于类支出计算基于总消费支出的无条件弹性需要做必要的假定
CPt=YPt+ut
YP可以用现期和过去收入的加权平均值来表示,过去收入的效应 随时间推移而逐步减小到零。
Ct=+tYt+ut
4
宏观消费函数:理论基础
相对收入假说和持久收入假说均可以用几何分布滞后模型 来反映:
Ct=+1Yt+ 2Ct-1+ut
对该模型也可以直接解释为,消费行为的变化非常缓慢,前期消 费行为和现期可支配收入共同影响现期消费行为。
局部均衡分析框架(假定该商品市场上发生的变化不 会影响到其他市场)
应用模型常常根据研究需要扩展进其他解释变量
持久收入(家庭资产) 政策干预(定量供给、补贴…) 人口学特征(年龄、教育、家庭人口构成…) 市场环境
15
单一商品需求模型:理论基础

数学建模简单13个例子_2022年学习资料

数学建模简单13个例子_2022年学习资料

7、气象预报问题-在气象台A的正西方向300km处有一台风中心,它以-40km/h的速度向东北方向移动;根 台风的强度,在距-其中心250km以内的地方将受到影响,问多长时间后气象-台所在地区将遭受台风的影响?持续 间多长?-此问题是某气象台所遇到的实际问题,为了搞好气象-预报,现建立解析几何模型加以探-以气象台A为坐标 点建立-平而直角坐标系,设台风中心为B,-如图
某人第一天由A地去B地,第二天由B地沿原路-返回A地。问:在什么条件下,可以保证途中-至少存在一地,此人在 天中的同一时间到达该-假如我们换一种想法,把第二天的返回改变成另一-人在同一天由B去A,问题就化为在什么条 下,两-人至少在途中相遇一次,这样结论就很容易得出了:-只要任何一人的到达时间晚于另一人的出发时间,-两人 会在途中相遇。
1.皮的厚度一样2.汤圆(饺子)的形状-假设-R大皮的半径,r小皮的半-模型-S=ns-S=k R,V=k R3V=kS2-s=kr2,v=kr3 v=ks2-=n32v-应用-V=√nv≥vv是nv是√n倍-若1 0个汤圆(饺子包1公斤馅,-则50个汤圆(-问题杀羊方案-现有26只羊,要求7天杀完且每天必须杀奇数只,-问各天分别杀几只?-分析:-1 这是一个有限问题,解决此类问题的一-类方法是枚举,你可以试试。-建模:-2.依题意,设第i天杀2k,+1k 自然数只,-则所提问题变为在自然数集上求解方程-之2k,+10=26-i=1-于是,我们有了该问题的数学语 表达—数学模型-求解:-用反证法容易证明本问题的解不存在。-返回
x+y=l-y+z=m-x+7=n-由三元一次线性方程组解出x,y,z即得三根-电线的电阻。-说明:此问题 难,点也是可贵之处是用方程-“观点”、”立场”去分析,用活的数学思想使实-际问题转到新剑设的情景中去。-返
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5
0
0.2
0.4
6
7
0.6 x1
x1=0.2
8 x2
7.5 -0.2

10.5 10 9.5 9 8.5 8 5
0
0.2
0.4
6
7
0.6 x1 8 x2
交互作用影响的讨论 y ˆ0 ˆ 1 x 1 ˆ2 x 2 ˆ3 x 2 2 ˆ4 x 1 x 2
价格差 x1=0.1
y ˆx1 0.13.2 027 6 .775x25 0.8 67x2 21
2
-3.6956
[-7.4989 0.1077 ]
x1和x2对y 的影响有
交互作用
3
0.3486
[0.0379 0.6594 ]
R2=0.9054 F=82.9409 p=0.0000
y 0 1 x 1 2 x 2 3 x 2 2 4 x 1 x 2
参数
参数估计值
置信区间
0
29.1133
3
0.3486
[0.0379 0.6594 ]
R2=0.9054 F=82.9409 p=0.0000
y的90.54%可由模型确定 F远超过F检验的临界值
p远小于=0.05
模型从整体上看成立
2的置信区间包含零点 (右端点距零点很近)
x2对因变量y 的 影响不太显著
x22项显著
可将x2保留在模型中
销售量预测 y ˆˆ0ˆ1 x 1ˆ2x 2ˆ3 x 2 2
控制价格差x1=0.2元,投入广告费x2=6.5百万元
y ˆˆ0ˆ1x 1ˆ2x2ˆ3x2 2 yˆ 8.2933(百万支) 区间 [7.8230,8.7636]
yˆ 8.3272(百万支)
y ˆ0 ˆ 1 x 1 ˆ2 x 2 ˆ3 x 2 2 ˆ4 x 1 x 2
区间 [7.8953,8.7592]
中学程度薪金比更 高的少2994
R2,F, p 模型整体上可用
x1~资历(年) x2 = 1~ 管理,x2 = 0~ 非管理
中学:x3=1, x4=0;大 学:x3=0, x4=1; 更高:
x3=0, x4=0.
大学程度薪金比更 高的多148
a4置信区间包含零点, 解释不可靠!
结果分析 残差分析方法
若估计x3=3.9,设定x4=3.7,则可以95%的把握 知道销售额在 7.83203.7 29(百万元)以上
模型改进 y01 x 12 x 23 x 2 2
x1和x2对y 的影响独立
参数
0 1
参数估计值 17.3244 1.3070
置信区间 [5.7282 28.9206] [0.6829 1.9311 ]
第十章 统计回归模型
10.1 牙膏的销售量 10.2 软件开发人员的薪金 10.3 酶促反应 10.4 投资额与国民生产总值和
物价指数
数学建模的基本方法 机理分析 测试分析
由于客观事物内部规律的复杂及人们认识程度的限制, 无法分析实际对象内在的因果关系,建立合乎机理规 律的数学模型。
通过对数据的统计分析,找出与数据拟合最好的模型
输入 y~n维数据向量
输出 b~的估计值
x= [1 x1 x2 x22] ~n4数
据矩阵, 第1列为全1向量
bint~b的置信区间 r ~残差向量y-xb
alpha(置信水平,0.05)
rint~r的置信区间
参数
0 1 2 3
参数估计值 17.3244 1.3070 -3.6956 0.3486
置信区间 [5.7282 28.9206] [0.6829 1.9311 ] [-7.4989 0.1077 ] [0.0379 0.6594 ]
价格差x1=其它厂家价格x3-本公司价格x4
估计x3 调整x4 控制x1
通过x1, x2预测y
控制价格差x1=0.2元,投入广告费x2=650万元
y ˆˆ0ˆ1 x 1ˆ2x 2ˆ3 x 2 2 8 .29(百3 万支3)
销售量预测区间为 [7.8230,8.7636](置信度95%)
上限用作库存管理的目标值 下限用来把握公司的现金流
[13.7013 44.5252]
1
11.1342
[1.9778 20.2906 ]
2
-7.6080
[-12.6932 -2.5228 ]
3
0.6712
[0.2538 1.0887 ]
4
-1.4777
[-2.8518 -0.1037 ]
R2=0.9209 F=72.7771 p=0.0000
两模型销售量预测比较
参数 参数估计值 置信区间
500
a0
11204
[11044 11363] 0
a1
497
[486 508] -500
a2
7048
[6841 7255]
e ~ x1
a3
-1727
[-1939 -1514]
-1000 0
5
10
15
20
a4
-348
[-545 –152]
500
a5
-3071
[-3372 -2769] 0
a6
1836
[1571 2101]
-500 e ~组合
R2=0.999 F=554 p=0.000
-1000
1
2
3
4
5
6
R2,F有改进,所有回归系数置信
消除了不正常现象
区间都不含零点,模型完全可用
异常数据(33号)应去掉
去掉异常数据后的结果
参数 参数估计值 置信区间
a0
11200
[11139 11261]
10844
4
1
2
a0+a2+a4+a6
19882
5
0
3
a0
11200
6
1
3
a0+a2
18241
大学程度管理人员比更高程度管理人员的薪金高
资历每加一年薪金的增长是常数;
管理、教育、资历之间无交互作用
线性回归模型 y a 0 a 1 x 1 a 2 x 2 a 3 x 3 a 4 x 4
a0, a1, …, a4是待估计的回归系数,是随机误差
模型求解 y a 0 a 1 x 1 a 2 x 2 a 3 x 3 a 4 x 4
价格差 x1=0.3
y ˆx1 0 .33.4 258 3 .055x21 0 .3 67x2 21

yˆ yˆ x2 7.5357 x10.3
10.5
x10.1 10
价格优势会使销售量增加 9.5 9
8.5
加大广告投入使销售量增加
8
( x2大于6百万元)
ห้องสมุดไป่ตู้
7.5 5
x1=0.3 x1=0.1
6
7
8 x2
0 200 100
0 -100 -200
1
e ~ x1
5
10
15
20
e ~组合
2
3
4
5
6
R2: 0.957 0.999 0.9998
残差图十分正常
F: 226 554 36701 最终模型的结果可以应用 置信区间长度更短
模型应用 y ˆ a ˆ 0 a ˆ 1 x 1 a ˆ 2 x 2 a ˆ 3 x 3 a ˆ 4 x 4 a ˆ 5 x 2 x 3 a ˆ 6 x 2 x 4
广告费用,及同期其它厂家同类牙膏的平均售价
销售 周期
1 2 29 30
本公司价 格(元) 3.85 3.75 3.80 3.70
其它厂家 价格(元)
3.80 4.00 3.85 4.25
广告费用 (百万元)
5.50 6.75 5.80 6.80
价格差 (元) -0.05
0.25 0.05 0.55
制订6种管理—教育组合人员的“基础”薪金(资历为0)
x1= 0; x2 = 1~ 管理,x2 = 0~ 非管理 中学:x3=1, x4=0 ;大学:x3=0, x4=1; 更高:x3=0, x4=0
组合 管理 教育
系数
“基础”薪金
1
0
1
a0+a3
9463
2
1
1
a0+a2+a3+a5
13448
3
0
2
a0+a4
a1
498
[494 503]
a2
7041
[6962 7120]
a3
-1737
[-1818 -1656]
a4
-356
[-431 –281]
a5
-3056
[-3171 –2942]
a6
2019
[1894 2100]
R2= 0.9998 F=36701 p=0.0000
200 100
0 -100 -200
参数 参数估计值
置信区间
a0
11032
[ 10258 11807 ]
a1
546
[ 484 608 ]
a2
6883
[ 6248 7517 ]
a3
-2994
[ -3826 -2162 ]
a4
148
[ -636 931 ]
R2=0.957 F=226 p=0.000
资历增加1年薪 金增长546
管理人员薪金多 6883
回归模型是用统计分析方法建立的最常用的一类模型
• 不涉及回归分析的数学原理和方法
• 通过实例讨论如何选择不同类型的模型
相关文档
最新文档