数学建模中常见的十大模型

合集下载

数学建模常用模型方法总结

数学建模常用模型方法总结

数学建模常用模型方法总结无约束优化 线性规划 非线性规划 整数规划组合优化 多目标规划 目标规划 动态规划 网络规划 多层规划等 …运筹学模型 (优化模型)图论模型存 储论模型排 队论模型博 弈论模型可靠性理论模型等 …运筹学应用重点: ①市场销售 ②生产计划 ③库存管理 ④运输问题 ⑤财政和 会计 ⑥人事管理 ⑦设备维修、更新和可靠度、项目选择和评价 ⑧工程的最佳 化设计 ⑨计算器和讯息系统 ⑩城市管理优化模型四要素: ①目标函数 ②决策变量 ③约束条件④求解方法(MATLAB--通用软件 LINGO--专业软件)连续优化离散优化从其他角度分类数学规划模型概率论与数理统计模型多元分析模型假设检验模型相关分析回归分析聚类分析、主成分分析因子分析判别分析典型相关性分析对应分析多维标度法方差分析贝叶斯统计模型时间序列分析模型决策树逻辑回归马尔萨斯人口预测模型Logistic 人口预测模型灰色预测模型回归分析预测模型预测分析模型差分方程模型马尔可夫预测模型时间序列模型插值拟合模型神经网络模型系统动力学模型(SD)模糊综合评判法模型数据包络分析综合评价与决策方法灰色关联度主成分分析秩和比综合评价法理想解读法等旅行商(TSP)问题模型背包问题模型车辆路径问题模型物流中心选址问题模型经典 NP 问题模型路径规划问题模型着色图问题模型多目标优化问题模型车间生产调度问题模型最传染病模型微分方程模型人口预测控制模型经济增长模型优树问题模型二次分配问题模型模拟退火算法(SA)遗传算法(GA)智能算法(启发式)神经网络算法常用算法模型蒙特卡罗算法元胞自动机算法穷蚁群算法(ACA)举搜索算法小波分析算法确定性数学模型三类数学模型随机性数学模型。

比较好用的数学模型

比较好用的数学模型

比较好用的数学模型
在实际生活中,数学模型被广泛应用于各种问题的解决。

以下是一些比较好用的数学模型:
1. 线性回归模型:用于预测一个因变量与一个或多个自变量之间的线性关系。

2. 逻辑回归模型:用于预测一个二元因变量与一个或多个自变量之间的关系。

3. 时间序列模型:用于预测时间上的变化,包括季节性和趋势性变化。

4. 聚类模型:用于将一组数据分成不同的群组,每个群组内数据的相似性最大,而不同群组之间的差异最大。

5. 决策树模型:用于帮助做出决策,通过将数据分成不同的子集并逐步做出决策。

这些模型都有着广泛的应用,可以帮助人们更好地理解和解决各种实际问题。

但是,在使用这些模型时,我们需要注意模型的局限性,以及模型预测的不确定性。

- 1 -。

数学建模中常见的十大模型讲课稿

数学建模中常见的十大模型讲课稿

数学建模中常见的十大模型数学建模常用的十大算法==转(2011-07-24 16:13:14)转载▼1. 蒙特卡罗算法。

该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟来检验自己模型的正确性,几乎是比赛时必用的方法。

2. 数据拟合、参数估计、插值等数据处理算法。

比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用MA TLAB 作为工具。

3. 线性规划、整数规划、多元规划、二次规划等规划类算法。

建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo 软件求解。

4. 图论算法。

这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备。

5. 动态规划、回溯搜索、分治算法、分支定界等计算机算法。

这些算法是算法设计中比较常用的方法,竞赛中很多场合会用到。

6. 最优化理论的三大非经典算法:模拟退火算法、神经网络算法、遗传算法。

这些问题是用来解决一些较困难的最优化问题的,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用。

7. 网格算法和穷举法。

两者都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具。

8. 一些连续数据离散化方法。

很多问题都是实际来的,数据可以是连续的,而计算机只能处理离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的。

9. 数值分析算法。

如果在比赛中采用高级语言进行编程的话,那些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用。

10. 图象处理算法。

赛题中有一类问题与图形有关,即使问题与图形无关,论文中也会需要图片来说明问题,这些图形如何展示以及如何处理就是需要解决的问题,通常使用MATLAB 进行处理。

十大经典数学模型

十大经典数学模型

1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟来检验自己模型的正确性,是比赛时必用的方法)2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具)3、线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo软件实现)4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备)5、动态规划、回溯搜索、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中)6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用)元胞自动机7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具)8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的)9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用)10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用Matlab进行处理)以上为各类算法的大致介绍,下面的内容是详细讲解,原文措辞详略得当,虽然不是面面俱到,但是已经阐述了主要内容,简略之处还望大家多多讨论。

数学建模常用算法和模型全集

数学建模常用算法和模型全集

数学建模常用算法和模型全集数学建模是一种将现实世界的问题转化为数学问题,并通过建立数学模型来求解的方法。

在数学建模中,常常会用到各种算法和模型,下面是一些常用的算法和模型的全集。

一、算法1.线性规划算法:用于求解线性规划问题,例如单纯形法、内点法等。

2.非线性规划算法:用于求解非线性规划问题,例如牛顿法、梯度下降法等。

3.整数规划算法:用于求解整数规划问题,例如分支定界法、割平面法等。

4.动态规划算法:用于求解具有最优子结构性质的问题,例如背包问题、最短路径问题等。

5.遗传算法:模拟生物进化过程,用于求解优化问题,例如遗传算法、粒子群算法等。

6.蚁群算法:模拟蚂蚁寻找食物的行为,用于求解优化问题,例如蚁群算法、人工鱼群算法等。

7.模拟退火算法:模拟固体退火过程,用于求解优化问题,例如模拟退火算法、蒙特卡罗模拟等。

8.蒙特卡罗算法:通过随机抽样的方法求解问题,例如蒙特卡罗模拟、马尔科夫链蒙特卡罗等。

9.人工神经网络:模拟人脑神经元的工作原理,用于模式识别和函数逼近等问题,例如感知机、多层感知机等。

10.支持向量机:用于分类和回归问题,通过构造最大间隔超平面实现分类或回归的算法,例如支持向量机、核函数方法等。

二、模型1.线性模型:假设模型的输出与输入之间是线性关系,例如线性回归模型、线性分类模型等。

2.非线性模型:假设模型的输出与输入之间是非线性关系,例如多项式回归模型、神经网络模型等。

3.高斯模型:假设模型的输出服从高斯分布,例如线性回归模型、高斯朴素贝叶斯模型等。

4.时间序列模型:用于对时间序列数据进行建模和预测,例如AR模型、MA模型、ARMA模型等。

5.最优化模型:用于求解优化问题,例如线性规划模型、整数规划模型等。

6.图论模型:用于处理图结构数据的问题,例如最短路径模型、旅行商问题模型等。

7.神经网络模型:用于模式识别和函数逼近等问题,例如感知机模型、多层感知机模型等。

8.隐马尔可夫模型:用于对具有隐藏状态的序列进行建模,例如语音识别、自然语言处理等。

数学建模中的常见模型

数学建模中的常见模型

数学建模中的常见模型数学建模综合评价模型是一种通过对各个评价指标进行量化,并将它们按照权重进行加权,最终得到一个综合评价值的方法。

这个模型可以应用于多指标决策问题,用于对被评价对象进行排名或分类。

常见的数学建模综合评价模型包括模糊综合评价模型、灰色关联分析模型、Topsis(理想解法)、线性加权综合评价模型、熵值法和秩和比法等。

模糊综合评价模型是一种基于模糊数学理论的方法,它将评价指标的模糊程度考虑在内,得到一个模糊评价结果。

该模型的步骤包括确定评价指标及其权重、构建模糊评价矩阵、进行模糊运算、得到模糊评价结果。

灰色关联分析模型是一种用于分析指标间关联性的方法,它可以帮助我们确定各个指标对被评价对象的影响程度。

该模型的步骤包括确定关联度计算方法、计算各个指标的关联度、得到综合关联度。

Topsis(理想解法)是一种基于距离的方法,它通过计算每个评价对象与理想解的距离,得到一个综合评价值。

该模型的步骤包括确定正负理想解、计算距离、得到综合评价值。

线性加权综合评价模型是一种常用的多指标决策方法,它将各个评价指标的权重与指标值线性组合起来,得到一个综合评价值。

该模型的优点是简单易操作,计算方便,可以对各个指标的重要性进行量化,并将其考虑在评价中。

但是,该模型的权重确定较为主观,且假设指标之间相互独立,不考虑相关性。

熵值法是一种基于信息熵理论的方法,它通过计算每个指标的熵值,得到一个综合评价值。

该模型的步骤包括计算指标的熵值、计算权重、得到综合评价值。

秩和比法是一种用于处理多指标决策问题的方法,它通过计算指标的秩和比,得到一个综合评价值。

该模型的步骤包括编秩、计算秩和比、得到综合评价值。

根据具体的评价需求和问题特点,我们可以选择合适的数学建模综合评价模型来进行评价。

每个模型都有其优点和缺点,需要根据具体情况进行选择和应用。

<span class="em">1</span><spanclass="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [数学建模——评价模型]()[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_sourc e":"vip_chatgpt_mon_search_pc_result","utm_medium":"di stribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_itemstyle="max-width: 100%"] [ .reference_list ]。

数学建模中的多分类模型

数学建模中的多分类模型

数学建模中的多分类模型是一种用于解决多类别分类问题的算法。

在多分类问题中,输入变量x 对应着多个输出变量y,其中每个输出变量表示一个类别。

多分类模型的目标是根据输入变量x 的取值,预测其对应的输出变量y 的类别。

以下是一些常见的多分类模型:1. 感知机(Perceptron):感知机是一种二分类模型,它可以扩展到多分类问题。

在多分类问题中,感知机需要训练多个模型,每个模型对应一个类别。

训练过程中,感知机通过调整权重和阈值来实现分类。

2. 决策树(Decision Tree):决策树是一种基于树结构的分类模型,它可以根据输入变量的取值将数据划分为不同的类别。

在多分类问题中,决策树通常采用树状结构,每个叶子节点对应一个类别。

3. 支持向量机(Support Vector Machine,SVM):支持向量机是一种基于最大间隔原则的二分类模型,它可以扩展到多分类问题。

在多分类问题中,SVM 通常采用“一对一”(one-vs-one)或“一对多”(one-vs-all)策略。

4. 贝叶斯分类器(Bayesian Classifier):贝叶斯分类器基于贝叶斯定理,通过计算输入变量x 属于每个类别的概率来确定其类别。

在多分类问题中,贝叶斯分类器可以采用多项式分布或高斯分布等概率模型。

5. 神经网络(Neural Network):神经网络是一种模拟人脑神经元结构的计算模型,它可以用于多分类问题。

神经网络通过多层神经元组成,每层神经元根据前一层的输入进行计算,最终输出类别。

常见的神经网络有多层感知机(MLP)和深度神经网络(DNN)等。

6. 集成学习(Ensemble Learning):集成学习是一种组合多个弱分类器的方法,以提高分类性能。

常见的集成学习方法有Bagging(Bootstrap Aggregating,引导随机森林)、Boosting(如Adaboost)等。

7. 聚类算法(Clustering Algorithm):聚类算法可以将无标签的数据划分为多个类别。

大学生数学建模--常用模型与算法

大学生数学建模--常用模型与算法

数学建模常用模型与算法一、常用模型☐(一)、评价模型:☐AHP(层次分析法)(确定权重)、模糊评价、聚类分析、因子分析、主成份分析、回归分析、神经网络、多指标综合评价、熵值法(确定权重)等☐(二)、预测模型:☐指数平滑法、灰色预测法、回归模型、神经网络预测、时间序列模型、马尔科夫预测、差分微分方程☐(三)、统计模型:☐方差分析、均值比较的假设检验☐(四)、方程模型:☐常微分方程、差分方程、偏微分方程、以及各种方程的求解(数值解和解析解)☐(五)运筹优化类:☐线性规划、非线性规划、目标规划、整数规划、图论模型(最短路、最大流、遍历问题等)、排队论、对策论、以及各种模型的算法☐(六)其他模型:☐随机模拟模型、等二、十大算法1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法)2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具)3、线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo软件实现)4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备)5、动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中)6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用)7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具)8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的)9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用)10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用Matlab进行处理)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学建模常用的十大算法==转
(2011-07-24 16:13:14)
转载▼
1. 蒙特卡罗算法。

该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟来检验自己模型的正确性,几乎是比赛时必用的方法。

2. 数据拟合、参数估计、插值等数据处理算法。

比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用MA TLAB 作为工具。

3. 线性规划、整数规划、多元规划、二次规划等规划类算法。

建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo 软件求解。

4. 图论算法。

这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备。

5. 动态规划、回溯搜索、分治算法、分支定界等计算机算法。

这些算法是算法设计中比较常用的方法,竞赛中很多场合会用到。

6. 最优化理论的三大非经典算法:模拟退火算法、神经网络算法、遗传算法。

这些问题是用来解决一些较困难的最优化问题的,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用。

7. 网格算法和穷举法。

两者都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具。

8. 一些连续数据离散化方法。

很多问题都是实际来的,数据可以是连续的,而计算机只能处理离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的。

9. 数值分析算法。

如果在比赛中采用高级语言进行编程的话,那些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用。

10. 图象处理算法。

赛题中有一类问题与图形有关,即使问题与图形无关,论文中也会需要图片来说明问题,这些图形如何展示以及如何处理就是需要解决的问题,通常使用MA TLAB 进行处理。

以下将结合历年的竞赛题,对这十类算法进行详细地说明。

以下将结合历年的竞赛题,对这十类算法进行详细地说明。

2 十类算法的详细说明
2.1 蒙特卡罗算法
大多数建模赛题中都离不开计算机仿真,随机性模拟是非常常见的算法之一。

举个例子就是97 年的A 题,每个零件都有自己的标定值,也都有自己的容差等级,而求解最优的组合方案将要面对着的是一个极其复杂的公式和108 种容差选取方案,根本不可能去求解析解,那如何去找到最优的方案呢?随机性模拟搜索最优方案就是其中的一种方法,在每个零件可行的区间中按照正态分布随机的选取一个标定值和选取一个容差值作为一种方案,然后通过蒙特卡罗算法仿真出大量的方案,从中选取一个最佳的。

另一个例子就是去年的彩票第二问,要求设计一种更好的方案,首先方案的优劣取决于很多复杂的因素,同样不可能刻画出一个模型进行求解,只能靠随机仿真模拟。

2.2 数据拟合、参数估计、插值等算法
数据拟合在很多赛题中有应用,与图形处理有关的问题很多与拟合有关系,一个例子就是98 年美国赛A 题,生物组织切片的三维插值处理,94 年A 题逢山开路,山体海拔高度的插值计算,还有吵的沸沸扬扬可能会考的“非典”问题也要用到数据拟合算法,观察数据的
走向进行处理。

此类问题在MA TLAB中有很多现成的函数可以调用,熟悉MA TLAB,这些方法都能游刃有余的用好。

2.3 规划类问题算法
竞赛中很多问题都和数学规划有关,可以说不少的模型都可以归结为一组不等式作为约束条件、几个函数表达式作为目标函数的问题,遇到这类问题,求解就是关键了,比如98年B 题,用很多不等式完全可以把问题刻画清楚,因此列举出规划后用Lindo、Lingo 等软件来进行解决比较方便,所以还需要熟悉这两个软件。

2.4 图论问题
98 年B 题、00 年B 题、95 年锁具装箱等问题体现了图论问题的重要性,这类问题算法有很多,包括:Dijkstra、Floyd、Prim、Bellman-Ford,最大流,二分匹配等问题。

每一个算法都应该实现一遍,否则到比赛时再写就晚了。

2.5 计算机算法设计中的问题
计算机算法设计包括很多内容:动态规划、回溯搜索、分治算法、分支定界。

比如92 年B 题用分枝定界法,97 年B 题是典型的动态规划问题,此外98 年B 题体现了分治算法。

这方面问题和ACM 程序设计竞赛中的问题类似,推荐看一下《计算机算法设计与分析》(电子工业出版社)等与计算机算法有关的书。

2.6 最优化理论的三大非经典算法
这十几年来最优化理论有了飞速发展,模拟退火法、神经网络、遗传算法这三类算法发展很快。

近几年的赛题越来越复杂,很多问题没有什么很好的模型可以借鉴,于是这三类算法很多时候可以派上用场,比如:97 年A 题的模拟退火算法,00 年B 题的神经网络分类算法,象01 年B 题这种难题也可以使用神经网络,还有美国竞赛89 年A 题也和BP 算法有关系,当时是86 年刚提出BP 算法,89 年就考了,说明赛题可能是当今前沿科技的抽象体现。

03 年B 题伽马刀问题也是目前研究的课题,目前算法最佳的是遗传算法。

2.7 网格算法和穷举算法
网格算法和穷举法一样,只是网格法是连续问题的穷举。

比如要求在N 个变量情况下的最优化问题,那么对这些变量可取的空间进行采点,比如在[a; b] 区间内取M +1 个点,就是a; a+(b-a)/M; a+2 (b-a)/M; ……; b 那么这样循环就需要进行(M + 1)N 次运算,所以计算量很大。

比如97 年A 题、99 年B 题都可以用网格法搜索,这种方法最好在运算速度较快的计算机中进行,还有要用高级语言来做,最好不要用MATLAB 做网格,否则会算很久的。

穷举法大家都熟悉,就不说了。

2.8 一些连续数据离散化的方法
大部分物理问题的编程解决,都和这种方法有一定的联系。

物理问题是反映我们生活在一个连续的世界中,计算机只能处理离散的量,所以需要对连续量进行离散处理。

这种方法应用很广,而且和上面的很多算法有关。

事实上,网格算法、蒙特卡罗算法、模拟退火都用了这个思想。

2.9 数值分析算法
这类算法是针对高级语言而专门设的,如果你用的是MA TLAB、Mathematica,大可不必准备,因为象数值分析中有很多函数一般的数学软件是具备的。

2.10 图象处理算法
01 年A 题中需要你会读BMP 图象、美国赛98 年A 题需要你知道三维插值计算,03 年
B 题要求更高,不但需要编程计算还要进行处理,而数模论文中也有很多图片需要展示,因此图象处理就是关键。

做好这类问题,重要的是把MA TLAB 学好,特别是图象处理的部分。

相关文档
最新文档