实验一低碳钢和铸铁拉伸时力学性能地测定
低碳钢和铸铁在拉伸和压缩时的力学性能

低碳钢和铸铁在拉伸和压缩时地力学性能根据材料在常温,静荷载下拉伸试验所得地伸长率大小,将材料区分为塑性材料和脆性材料.它是由试验来测定地.工程上常用地材料品种很多,下面我们以低碳钢和铸铁为主要代表,分析材料拉伸和压缩时地力学性能..低碳钢拉伸实验在拉伸实验中,随着载荷地逐渐增大,材料呈现出不同地力学性能:()弹性阶段在拉伸地初始阶段,σε曲线为一直线,说明应力与应变成正比,即满足胡克定理,此阶段称为线形阶段.线性段地最高点则称为材料地比例极限(σ),线性段地直线斜率即为材料地弹性摸量.线性阶段后,σε曲线不为直线,应力应变不再成正比,但若在整个弹性阶段卸载,应力应变曲线会沿原曲线返回,载荷卸到零时,变形也完全消失.卸载后变形能完全消失地应力最大点称为材料地弹性极限(σ),一般对于钢等许多材料,其弹性极限与比例极限非常接近.(2)屈服阶段超过弹性阶段后,应力几乎不变,只是在某一微小范围内上下波动,而应变却急剧增长,这种现象成为屈服.使材料发生屈服地应力称为屈服应力或屈服极限(σ).当材料屈服时,如果用砂纸将试件表面打磨,会发现试件表面呈现出与轴线成°斜纹.这是由于试件地°斜截面上作用有最大切应力,这些斜纹是由于材料沿最大切应力作用面产生滑移所造成地,故称为滑移线.()强化阶段经过屈服阶段后,应力应变曲线呈现曲线上升趋势,这说明材料地抗变形能力又增强了,这种现象称为应变硬化.若在此阶段卸载,则卸载过程地应力应变曲线为一条斜线,其斜率与比例阶段地直线段斜率大致相等.当载荷卸载到零时,变形并未完全消失,应力减小至零时残留地应变称为塑性应变或残余应变,相应地应力减小至零时消失地应变称为弹性应变.卸载完之后,立即再加载,则加载时地应力应变关系基本上沿卸载时地直线变化.因此,如果将卸载后已有塑性变形地试样重新进行拉伸实验,其比例极限或弹性极限将得到提高,这一现象称为冷作硬化.在硬化阶段应力应变曲线存在一个最高点,该最高点对应地应力称为材料地强度极限(σ),强度极限所对应地载荷为试件所能承受地最大载荷.()局部变形阶段试样拉伸达到强度极限σ之前,在标距范围内地变形是均匀地.当应力增大至强度极限σ之后,试样出现局部显著收缩,这一现象称为颈缩.颈缩出现后,使试件继续变形所需载荷减小,故应力应变曲线呈现下降趋势,直至最后在点断裂.试样地断裂位置处于颈缩处,断口形状呈杯状,这说明引起试样破坏地原因不仅有拉应力还有切应力.()伸长率和断面收缩率试样拉断后,由于保留了塑性变形,标距由原来地变为.用百分比表示地比值δ()*称为伸长率.试样地塑性变形越大,δ也越大.因此,伸长率是衡量材料塑性地指标.原始横截面面积为地试样,拉断后缩颈处地最小横截面面积变为,用百分比表示地比值Ψ()*称为断面收缩率.Ψ也是衡量材料塑性地指标.所以,低碳钢拉伸破坏变形很大,断口缩颈后,端口有度茬口,由于该方向上存在最大剪应力τ造成地,属于剪切破坏力..铸铁拉伸实验铸铁是含碳量大于并含有较多硅,锰,硫,磷等元素地多元铁基合金.铸铁具有许多优良地性能及生产简便,成本低廉等优点,因而是应用最广泛地材料之一.铸铁在拉伸时地力学性能明显不同于低碳钢,铸铁从开始受力直至断裂,变形始终很小,既不存在屈服阶段,也无颈缩现象.断口垂直于试样轴线,这说明引起试样破坏地原因.铸铁拉伸破坏断口与正应力方向垂直说明由拉应力拉断地,属于拉伸破坏,正应力大于了许用值.三、低碳钢和铸铁在拉伸和压缩时力学性质地异同点综述在工程建设中,低碳钢是典型地塑性材料,铸铁是典型地脆性材料.塑性材料和脆性材料在力学性能上地主要特征是:塑性材料在断裂前地变形较大,塑性指标(断后伸长率和断面收缩率)较高,抗拉能力较好,其常用地强度指标是屈服强度,一般地说,在拉伸和压缩时地屈服强度相同:脆性材料在断裂前地保存较小,塑性指标较低,其强度指标是强度极限,而且其拉伸强度远低于压缩强度.但是,材料不管是塑性地还是脆性地,将随材料所处地温度、应变速率和应力状态等条件地变化而不同.。
实验一低碳钢和铸铁的拉伸实验

第一部分基本实验实验一低碳钢和铸铁的拉伸实验一、实验目的:1、测定低碳钢在拉伸时屈服极限σs 、强度极限σb、延伸率δ和截面收缩率Ψ。
2、观察低碳钢拉伸过程中的各种现象(包括屈服、强化、颈缩等现象),及拉伸图(P-ΔL曲线)。
3、测定铸铁拉伸时的强度极限σb。
4、比较低碳钢与铸铁抗拉性能的特点,并进行断口分析。
二、实验设备:1、万能材料实验机2、游标卡尺三、试件:由于试件的形状和尺寸对实验结果有一定的影响。
为了便于互相比较应按统一规定加工成标准试件。
试件加工须按《金属拉伸实验试样》(GB6397-86)的有关要求进行。
本实验的试件采用国家标准(GB6397-86)所规定的圆棒试件,尺寸为d=10mm,标距长度L=100mm,见图1-1。
为测定低碳钢的断后延伸率δ,须用刻线机在试样标距范围内刻划圆周线,将标距L分为等长的10格。
图1-1 圆形拉伸试件四、实验原理和方法拉伸实验是测定材料力学性能最基本的实验之一。
材料的力学性能如:屈服极限、强度极限、延伸率、截面收缩率等均是由拉伸破坏实验确定的。
1、低碳钢(1)力-伸长曲线的绘制:通过实验机绘图装置可自动绘成以轴向力P为纵坐标、试件伸长量ΔL为横坐标的力-伸长曲线(P-ΔL图),如图1-2所示。
低碳钢的力-伸长曲线是一种典型的形式,整个拉伸变形分四个阶段:弹性阶段、屈服阶段、强化阶段和颈缩阶段。
应当指出,绘图仪所绘出的拉伸变形ΔL是整个试件(不只是标距部分)的伸长,而且还包括机器本身的弹性变形和试件头部在夹头中的滑动等。
试件开始受力时,头部夹头中的滑动很大,故绘出的拉伸图最初一般是曲线。
图1-2 低碳钢拉伸图(2)屈服极限的测定:随着荷载的增加,变形也与荷载呈正比增加,P-ΔL图上为一直线,此即直线弹性段。
过了直线弹性段,尚有一极小的非直线弹性段。
弹性阶段包括直线弹性段和非直线弹性段。
当荷载增加到一定程度,测力指针往回偏转,继而缓慢的来回摆动,相应地在P-ΔL图上画出一段锯齿形曲线,此段即屈服阶段。
实验项目1: 低碳钢、铸铁的拉伸实验

邵 阳 学 院 实 验 报 告实验项目1: 低碳钢、铸铁的拉伸实验实验日期 实验地点 成 绩 院 系 班 级 指导老师 同组成员 学生姓名 学生学号一、实验内容和目的1. 测定拉伸时低碳钢的屈服极限s σ、强度极限b σ、延伸率δ、截面收缩率ψ。
2. 测定拉伸时铸铁的强度极限b σ。
3. 观察低碳钢和铸铁在拉伸过程中表现的现象,绘出外力和变形间的关系曲线(L F ∆-曲线)。
4. 比较低碳钢和铸铁两种材料的拉伸性能和断口情况5. 掌握电子万能试验机的原理及操作方法。
二、实验设备及仪器(规格、型号)1. WD-P6105微机控制电子万能材料试验机2. 游标卡尺三、实验原理 1、低碳钢拉伸实验低碳钢的拉伸图如图所示低碳钢拉伸图工程上均以下屈服点 (图C 点对应的载荷)作为材料屈服时的载荷F S ,以试样的初始横截面积A 0除F S ,即得屈服极限: 0s s /A F =σ载荷到达最大值F b 时,以试样的初始横截面面积A 0除F b 得强度极限: 0b b /A F =σ试样的标距原长为l 0拉断后将两段试样紧密地对接在一起,量出拉断后的标距长为l 1延伸率应为: %10001⨯-=l l l δ 试样拉断后,设颈缩处的最小横截面面积为A 1,由于断口不是规则的圆形,应在两个相互垂直的方向上量取最小截面的直径,以其平均值计算A 1,然后按下式计算断面收缩率: %10010⨯-=AA A ψ 2. 铸铁的拉伸试验铸铁拉伸曲线,如图所示。
铸铁拉伸图铸铁为脆性材料在变形很小的情况下就会断裂,没有屈服和颈缩现象,铸铁的延伸率和截面收缩率很小,很难测出。
铸铁的强度极限为: 0b b /A F =σ。
四、实验步骤1. 检查试验机的夹具是否安装好,各种限位是否在实验状态下就位;2. 启动试验机的动力电源及计算机的电源;3. 调出试验机的操作软件,按提示逐步进行操作,设置好参数;4. 安装试件,进行调零,回到试验初始状态;5. 根据实验设定,启动实验开关进行加载,注意观察试验中的试件及计算机上的曲线变化;6. 实验完成,保存记录数据;7. 关闭试验机的动力系统及计算机系统。
低碳钢和铸铁在拉伸和压缩时的力学性能

低碳钢和铸铁在拉伸和压缩时的力学性能根据材料在常温,静荷载下拉伸试验所得的伸长率大小,将材料区分为塑性材料和脆性材料。
它是由试验来测定的。
工程上常用的材料品种很多,下面我们以低碳钢和铸铁为主要代表,分析材料拉伸和压缩时的力学性能。
1.低碳钢拉伸实验在拉伸实验中,随着载荷的逐渐增大,材料呈现出不同的力学性能:(1)弹性阶段在拉伸的初始阶段,σ-ε曲线为一直线,说明应力与应变成正比,即满足胡克定理,此阶段称为线形阶段。
线性段的最高点则称为材料的比例极限(σp),线性段的直线斜率即为材料的弹性摸量E。
线性阶段后,σ-ε曲线不为直线,应力应变不再成正比,但若在整个弹性阶段卸载,应力应变曲线会沿原曲线返回,载荷卸到零时,变形也完全消失。
卸载后变形能完全消失的应力最大点称为材料的弹性极限(σe),一般对于钢等许多材料,其弹性极限与比例极限非常接近。
(2)屈服阶段超过弹性阶段后,应力几乎不变,只是在某一微小范围内上下波动,而应变却急剧增长,这种现象成为屈服。
使材料发生屈服的应力称为屈服应力或屈服极限(σs)。
当材料屈服时,如果用砂纸将试件表面打磨,会发现试件表面呈现出与轴线成45°斜纹。
这是由于试件的45°斜截面上作用有最大切应力,这些斜纹是由于材料沿最大切应力作用面产生滑移所造成的,故称为滑移线。
(3)强化阶段经过屈服阶段后,应力应变曲线呈现曲线上升趋势,这说明材料的抗变形能力又增强了,这种现象称为应变硬化。
若在此阶段卸载,则卸载过程的应力应变曲线为一条斜线,其斜率与比例阶段的直线段斜率大致相等。
当载荷卸载到零时,变形并未完全消失,应力减小至零时残留的应变称为塑性应变或残余应变,相应地应力减小至零时消失的应变称为弹性应变。
卸载完之后,立即再加载,则加载时的应力应变关系基本上沿卸载时的直线变化。
因此,如果将卸载后已有塑性变形的试样重新进行拉伸实验,其比例极限或弹性极限将得到提高,这一现象称为冷作硬化。
实验一 低碳钢和铸铁的拉伸实验

实验一 金属材料(低碳钢和铸铁)的拉伸实验一、目的:1.测定低碳钢的屈服极限σs ,强度极限σb ,延伸率δ和截面收缩率ψ;2.掌握万能材料试验机的工作原理和使用方法。
3.观察两种材料拉伸过程中的各种现象、拉断后的断口情况,分析二者的力学性能。
二、设备及试样: 1.万能材料试验机. 2.游标卡尺3.PC 机一台 三、拉伸试件根据不同的材料和要求,对试样的形状、尺寸和加工在国家标准中有规定,必须遵照执行。
在拉伸试验中,试样按试件长度不同可划分为长试样(L 0=10d 0)和短试样(L 0=5d 0)。
本次材料拉伸试验采用L 0=10d 0 (L 0为标距即工作段长度,d 0 为直径,d 0 =10mm )圆形截面试样,见图1-1。
为确保材料处于单向拉伸状态以衡量它的各种性能,拉伸试样有工作部分、过渡部分和夹持部分。
其中工作部分即标距处必须表面光滑,以保证材料表面的单向应力状态;过渡部分必须有适当的台肩和圆角,以降低应力集中,保证该处不会变形或断裂;试样两端的夹持部分是装入试验机夹头中的,起传递拉力的作用。
试验前,需对低碳钢试样打标距,用试样打点机或手工的方法在试样工作段确定L 0=100mm 的标记。
由于塑性材料径缩局部及其影响区的塑性变形在断后延伸率中占很大比重,显然同种材料的断后延伸率不仅取决于材质、而且取决于试样的标距。
试样越短,局部变形所占比例越大,δ也就越大。
为便于相互比较,试样的长度应当标准化。
图1—1 拉伸试样四、试验原理及方法常温下的拉伸试验是测定材料力学性能的基本试验。
可用以测定弹性常数E ,比例极限σp ,屈服极限σs (或非比例伸长应力σP 0.2),强度极限σb ,延伸率δ和截面收缩率ψ等。
这些指标都是工程设计的主要依据。
1.弹性模量E的测定弹性模量是材料在比例极限内,应力和应变的比值。
即可见,在比例极限内,对试样作用拉力P ,并量出标矩0l 的相应伸长l ∆,即可求得弹性模量E 。
低碳钢和铸铁在拉伸和压缩时的力学性能

低碳钢和铸铁在拉伸和压缩时的力学性能根据材料在常温,静荷载下拉伸试验所得的伸长率大小,将材料区分为塑性材料和脆性材料。
它是由试验来测定的。
工程上常用的材料品种很多,下面我们以低碳钢和铸铁为主要代表,分析材料拉伸和压缩时的力学性能。
1.低碳钢拉伸实验在拉伸实验中,随着载荷的逐渐增大,材料呈现出不同的力学性能:(1)弹性阶段在拉伸的初始阶段,σ-ε曲线为一直线,说明应力与应变成正比,即满足胡克定理,此阶段称为线形阶段。
线性段的最高点则称为材料的比例极限(σp),线性段的直线斜率即为材料的弹性摸量E。
线性阶段后,σ-ε曲线不为直线,应力应变不再成正比,但若在整个弹性阶段卸载,应力应变曲线会沿原曲线返回,载荷卸到零时,变形也完全消失。
卸载后变形能完全消失的应力最大点称为材料的弹性极限(σe),一般对于钢等许多材料,其弹性极限与比例极限非常接近。
(2)屈服阶段超过弹性阶段后,应力几乎不变,只是在某一微小范围内上下波动,而应变却急剧增长,这种现象成为屈服。
使材料发生屈服的应力称为屈服应力或屈服极限(σs)。
当材料屈服时,如果用砂纸将试件表面打磨,会发现试件表面呈现出与轴线成45°斜纹。
这是由于试件的45°斜截面上作用有最大切应力,这些斜纹是由于材料沿最大切应力作用面产生滑移所造成的,故称为滑移线。
(3)强化阶段经过屈服阶段后,应力应变曲线呈现曲线上升趋势,这说明材料的抗变形能力又增强了,这种现象称为应变硬化。
若在此阶段卸载,则卸载过程的应力应变曲线为一条斜线,其斜率与比例阶段的直线段斜率大致相等。
当载荷卸载到零时,变形并未完全消失,应力减小至零时残留的应变称为塑性应变或残余应变,相应地应力减小至零时消失的应变称为弹性应变。
卸载完之后,立即再加载,则加载时的应力应变关系基本上沿卸载时的直线变化。
因此,如果将卸载后已有塑性变形的试样重新进行拉伸实验,其比例极限或弹性极限将得到提高,这一现象称为冷作硬化。
实验一--低碳钢和铸铁拉伸时力学性能的测定讲解学习
实验一 低碳钢和铸铁拉伸时力学性能的测定一、实验目的1.观察分析低碳钢的拉伸过程,了解其力学性能;绘制拉伸曲线F-△L ,由此了解试样在拉伸过程中变形随载荷的变化规律以及有关物理现象;2.测定低碳钢材料在拉伸过程中的几个力学性能指标:s σ、b σ、δ、ψ;3.了解万能材料试验机的结构原理,能正确独立操作使用。
二、实验设备1.SHT5305拉伸试验机。
2.x —Y 记录仪。
3.游标卡尺。
三、拉伸试样四、实验原理和方法首先将试件安装于试验机的夹头内,之后匀速缓慢加载,试样依次经过弹性、屈服、强化和颈缩四个阶段,其中前三个阶段是均匀变形的。
1.弹性阶段 是指拉伸图上的OA ´段,没有任何残留变形。
在弹性阶段,存在一比例极限点A ,对应的应力为比例极限p σ,此部分载荷与变形是成比例,εσE =。
2.屈服阶段 对应拉伸图上的BC 段。
金属材料的屈服是宏观塑性变形开始的一种标志,是位错增值和运动的结果,是由切应力引起的。
在低碳钢的拉伸曲线上,当载荷增加到一定数值时出现了锯齿现象。
屈服阶段中一个重要的力学性能就是屈服点,对应的屈服应力为0/A F SL S =σ3.强化阶段 对应于拉伸图中的CD 段。
变形强化标志着材料抵抗继续变形的能力在增强。
这也表明材料要继续变形,就要不断增加载荷。
D 点是拉伸曲线的最高点,载荷为F b ,对应的应力是材料的强度极限或抗拉极限,记为b σ0/A F b b =σ4.颈缩阶段 对应于拉伸图的DE 段。
载荷达到最大值后,塑性变形开始局部进行。
这是因为在最大载荷点以后,形变强化跟不上变形的发展,由于材料本身缺陷的存在,于是均匀变形转化为集中变形,导致形成颈缩。
材料的塑性性能通常用试样断后残留的变形来衡量。
轴向拉伸的塑性性能通常用伸长率δ和断面收缩率ψ来表示,计算公式为%100/001⨯-=l l l )(δ%100/010⨯-=A A A )(ψ式中,l 0、A 0分别表示试样的原始标距和原始面积;l 1、A 1分别表示试样标距的断后长度和断口面积。
低碳钢拉伸试验报告
低碳钢拉伸试验报告篇一:实验一低碳钢拉伸试验报告实验一低碳钢拉伸试验报告实验一低碳钢和铸铁的拉伸实验一、实验目的1、测定低碳钢拉伸时的屈服极限σs 、强度极限σb、伸长率和断面的收缩率;测定铸铁的抗拉强度。
2、观察低碳钢拉伸时的屈服和颈缩现象,对低碳钢和铸铁试件拉伸的断口进行分析。
二、实验设备万能试验机、试件、游标卡尺。
(点击图标看大图片或视频)万能试验机低碳钢和铸铁拉伸视频低碳钢和铸铁游标卡尺低碳钢拉断三、实验原理(一)低碳钢和铸铁拉伸时力学性能的测定。
实验时,试验机可自动绘出低碳钢和铸铁的拉伸图。
从图中可以看出低碳钢拉伸过程中材料经历的四个阶段:1、正比例阶段,拉伸图是一条直线。
2、屈服阶段,拉伸图成锯齿状。
读数盘上原来匀速转动的指针来回摆动,记录这时候的荷载即为屈服荷载PS。
进而可以计算出屈服极限。
3、强化阶段,屈服后,曲线又缓慢上升,这段曲线的最高点,拉力达到最大值——最大荷载Pb,即可计算出强度极限。
4、颈缩阶段,拉伸图上荷载迅速减小,曲线下滑,试件开始产生局部伸长和颈缩,直至试件在颈缩处断裂。
测量断裂后试件标距的长度和断口处的直径,可计算材料的伸长率和断面的收缩率。
四、实验步骤(一)低碳钢的拉伸试验1、准备试件,通过试件落地的声音来判定是低碳钢还是铸铁。
声音清脆的是钢,沉闷的是铸铁。
2、测量试件的直径,并量出试件的标距,打上明显的标记。
在标距中间和两端相互垂直的方向各量一次直径,取最小处的平均值来计算截面面积。
3、估算最大载荷,配置相应的摆锤,选择合适的测力度盘。
开动试验机使工作台上升一点。
调主动指针到零点,从动指针与主动指针靠拢,调整好绘图装置。
4、安装试件。
5、开动试验机并缓慢均匀加载。
注意观察指针的转动和自动绘图情况。
注意捕捉屈服荷载的值并记录下来。
注意观察颈缩现象。
试件断裂后立即停车,记录最大荷载Pb。
6、取下试件,用油标卡尺测量断后标距、最小直径。
(二)铸铁拉伸实验1、准备试件(除不确定标距外其余同低碳钢)。
低碳钢和铸铁拉伸实验报告
竭诚为您提供优质文档/双击可除低碳钢和铸铁拉伸实验报告篇一:低碳钢、铸铁的拉伸试验工程力学实验报告实验名称:试验班级:实验组号:试验成员:实验日期:一、试验目的1、测定低碳钢的屈服点?s,强度极限?b,延伸率?,断面收缩率?。
2、测定铸铁的强度极限?b。
3、观察低碳钢拉伸过程中的各种现象(如屈服、强化、颈缩等),并绘制拉伸曲线。
4、熟悉试验机和其它有关仪器的使用。
二、实验设备1.液压式万能实验机;2.游标卡尺三、设备简介万能试验机简介具有拉伸、压缩、弯曲及其剪切等各种静力实验功能的试验机称为万能材料试验机,万能材料试验机一般都由两个基本部分组成;1、加载部分:利用一定的动力和传动装置强迫试件发生变形,从而使试件受到力的作用,即对试件加载。
2、测控部分:指示试件所受载荷大小及变形情况。
四、实验原理低碳钢和铸铁是工程上最广泛使用的材料,同时,低碳钢试样在拉伸试验中所表现出的变形与抗力间的关系也比较典型。
低碳钢的整个试验过程中工作段的伸长量与荷载的关系由拉伸图表示。
做实验时,可利用万能材料试验机的自动绘图装置绘出低碳钢试样的拉伸图即下图中拉力F与伸长量△L的关系曲线。
需要说明的是途中起始阶段呈曲线是由于试样头部在试验机夹具内有轻微滑动及试验机各部分存在间隙造成的。
大致可分为四个阶段:(1)弹性阶段(ob段)在拉伸的初始阶段,ζ-ε曲线(oa段)为一直线,说明应力与应变成正比,即满足胡克定理,此阶段称为线形阶段。
线性段的最高点则称为材料的比例极限(ζp),线性段的直线斜率即为材料的弹性摸量e。
线性阶段后,ζ-ε曲线不为直线(ab段),应力应变不再成正比,但若在整个弹性阶段卸载,应力应变曲线会沿原曲线返回,载荷卸到零时,变形也完全消失。
卸载后变形能完全消失的应力最大点称为材料的弹性极限(ζe),一般对于钢等许多材料,其(:低碳钢和铸铁拉伸实验报告)弹性极限与比例极限非常接近。
(2)屈服阶段(bc段)超过弹性阶段后,应力几乎不变,只是在某一微小范围内上下波动,而应变却急剧增长,这种现象成为屈服。
低碳钢和铸铁在拉伸和压缩时的力学性能
低碳钢和铸铁在拉伸和压缩时的力学性能根据材料在常温,静荷载下拉伸试验所得的伸长率大小,将材料区分为塑性材料和脆性材料。
它是由试验来测定的。
工程上常用的材料品种很多,下面我们以低碳钢和铸铁为主要代表,分析材料拉伸和压缩时的力学性能。
1.低碳钢拉伸实验在拉伸实验中,随着载荷的逐渐增大,材料呈现出不同的力学性能:(1)弹性阶段在拉伸的初始阶段,ζ-ε曲线为一直线,说明应力与应变成正比,即满足胡克定理,此阶段称为线形阶段。
线性段的最高点则称为材料的比例极限(ζp),线性段的直线斜率即为材料的弹性摸量E。
线性阶段后,ζ-ε曲线不为直线,应力应变不再成正比,但若在整个弹性阶段卸载,应力应变曲线会沿原曲线返回,载荷卸到零时,变形也完全消失。
卸载后变形能完全消失的应力最大点称为材料的弹性极限(ζe),一般对于钢等许多材料,其弹性极限与比例极限非常接近。
(2)屈服阶段超过弹性阶段后,应力几乎不变,只是在某一微小范围内上下波动,而应变却急剧增长,这种现象成为屈服。
使材料发生屈服的应力称为屈服应力或屈服极限(ζs)。
当材料屈服时,如果用砂纸将试件表面打磨,会发现试件表面呈现出与轴线成45°斜纹。
这是由于试件的45°斜截面上作用有最大切应力,这些斜纹是由于材料沿最大切应力作用面产生滑移所造成的,故称为滑移线。
(3)强化阶段经过屈服阶段后,应力应变曲线呈现曲线上升趋势,这说明材料的抗变形能力又增强了,这种现象称为应变硬化。
若在此阶段卸载,则卸载过程的应力应变曲线为一条斜线,其斜率与比例阶段的直线段斜率大致相等。
当载荷卸载到零时,变形并未完全消失,应力减小至零时残留的应变称为塑性应变或残余应变,相应地应力减小至零时消失的应变称为弹性应变。
卸载完之后,立即再加载,则加载时的应力应变关系基本上沿卸载时的直线变化。
因此,如果将卸载后已有塑性变形的试样重新进行拉伸实验,其比例极限或弹性极限将得到提高,这一现象称为冷作硬化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验一 低碳钢和铸铁拉伸时力学性能的测定一、实验目的1.观察分析低碳钢的拉伸过程,了解其力学性能;绘制拉伸曲线F-△L ,由此了解试样在拉伸过程中变形随载荷的变化规律以及有关物理现象;2.测定低碳钢材料在拉伸过程中的几个力学性能指标:s σ、b σ、δ、ψ;3.了解万能材料试验机的结构原理,能正确独立操作使用。
二、实验设备1.SHT5305拉伸试验机。
2.x —Y 记录仪。
3.游标卡尺。
三、拉伸试样四、实验原理和方法首先将试件安装于试验机的夹头,之后匀速缓慢加载,试样依次经过弹性、屈服、强化和颈缩四个阶段,其中前三个阶段是均匀变形的。
1.弹性阶段 是指拉伸图上的OA ´段,没有任何残留变形。
在弹性阶段,存在一比例极限点A ,对应的应力为比例极限p σ,此部分载荷与变形是成比例,εσE =。
2.屈服阶段 对应拉伸图上的BC 段。
金属材料的屈服是宏观塑性变形开始的一种标志,是位错增值和运动的结果,是由切应力引起的。
在低碳钢的拉伸曲线上,当载荷增加到一定数值时出现了锯齿现象。
屈服阶段中一个重要的力学性能就是屈服点,对应的屈服应力为0/A F SL S =σ3.强化阶段 对应于拉伸图中的CD 段。
变形强化标志着材料抵抗继续变形的能力在增强。
这也表明材料要继续变形,就要不断增加载荷。
D 点是拉伸曲线的最高点,载荷为F b ,对应的应力是材料的强度极限或抗拉极限,记为b σ0/A F b b =σ4.颈缩阶段 对应于拉伸图的DE 段。
载荷达到最大值后,塑性变形开始局部进行。
这是因为在最大载荷点以后,形变强化跟不上变形的发展,由于材料本身缺陷的存在,于是均匀变形转化为集中变形,导致形成颈缩。
材料的塑性性能通常用试样断后残留的变形来衡量。
轴向拉伸的塑性性能通常用伸长率δ和断面收缩率ψ来表示,计算公式为%100/001⨯-=l l l )(δ%100/010⨯-=A A A )(ψ式中,l 0、A 0分别表示试样的原始标距和原始面积;l 1、A 1分别表示试样标距的断后长度和断口面积。
五、实验步骤1.取实验材料,并用游标卡尺量取其直径(量三次取平均值),记为d 0;2.量取试样标记围的长度(量三次取平均值),记为l 0;3.将试样架在万能试验机上夹紧;4.通过电脑控制给试样加载,并观察材料的变形过程,同时电脑将自动绘制出拉伸曲线;5.待材料拉断为止,取下试样测量拉伸后试验的直径和长度(均测量三次),分别记作d 1,l 1。
六、数据记录及处理1.拉伸试样拉伸前后的直径和长度2.实验数据及处理结果七、思考题1.低碳钢和灰铸铁在常温静载拉伸时的力学性能和破坏形式有何异同?答、低碳钢是塑性材料,在拉伸破坏时会有明显的屈服、强化和颈缩阶段,断裂后有较大的塑性变形。
灰铸铁是脆性材料,没有屈服、颈缩阶段,断裂变形很小。
2.测定材料的力学性能有何实用价值?答、材料的力学性能反映了材料在外力作用下表现出的变形、破坏等方面的特性,是构件进行强度和刚度设计的依据。
3.你认为产生试验结果误差的因素有哪些?应如何避免或减小其影响?答、产生试验结果误差的因素:加载速率、夹头的滑动、试样尺寸测量误差。
减小影响的方法:缓慢加载,夹头夹紧,加预载荷,多测量几次试样的尺寸,取平均值。
实验二 材料切变模量G 的测定一、实验目的测定碳钢的剪切弹性模量G 。
二、设备和仪器1.游标卡尺,百分表,钢板尺 2.XH180型G 值测定实验台三、试验原理试样直径d=10mm ,标距L=230mm ,表臂130mm ,力臂200mm 。
砝码四个,每个重 △F=1.96N(200克)。
在弹性围进行圆截面试样扭转实验时,扭矩T 与扭转转角中之间的关系符合扭转变形的克定律P GI TL /=φ,式中:32/4d I P π=为截面的极惯性矩。
当试样长度L 和极惯性矩I P 均为已知时,只要测得扭矩增量△T 和相应的扭转角增量△Φ,可由式P I L T G ⨯∆⨯∆=φ/计算得到材料的切变模量。
试样受扭后,加力杆绕试样轴线转动,使右端产生铅垂位移B(单位为mm),该位移由安装在B 端的百分表测量。
当铅垂位移很小时,加力杆的转动角(亦即试样扭转角) △Φ也很小,应有tan(△Φ)=B /b ≈△Φ,式中b 为百分表触头到式样端面圆心的距离,加力杆的转角△Φ即为圆截面试样两端面的相对扭转角△Φ(单位为弧度)。
四、试验步骤1.试验前用手指轻轻敲击砝码盘,观察百分表是否灵活摆动,以检查装卡是否正确。
2.记录百分表初末读数或将百分表调零。
3.逐级加载,每级增加一个砝码后记录百分表初末读数,共加载四次,由于顶丝有微小滑动,每个砝码多次加卸记录其引起的位移不一样,然后卸载,重复上述步骤,共测量三次。
五、注意事项1.砝码要轻拿轻放,不要冲击加载。
不要在加力臂或砝码盘上用手施加过大力气。
2.不要拆卸或转动百分表,保证表杆与刚性臂间稳定、良好的接触。
六、实验结果处理七、思考题1.实验过程中,有时会出现加了砝码而百分表指针不动的现象,这是为什么?应采取什么措施?答、加载砝码时百分表指针不动的原因:百分表可能出现故障,百分表触头没接触转角臂,转角臂与试样联接松动。
应采取的措施:检查百分表;百分表触头接触转角臂,并且预压一圈;转角臂与试样联接牢固,不能有相对转动。
2.用等增量法加载测剪切弹性模量G与一次直接加载到允许的最大载荷测得的G值有何不同?答、逐级加载方法所求出的弹性模量与一次加载到最终值所求出的弹性模量不相同,采用逐级加载方法所求出的弹性模量可降低误差,同时可以验证材料此时是否处于弹性状态,以保证实验结果的可靠性。
3.试件的形状和尺寸,选取的标距长度,对测定剪切弹性模量G有无影响?答、弹性模量是材料的固有性质,与试件的尺寸和形状无关。
实验四 纯弯曲梁的正应力实验一、实验目的1.测定梁在纯弯曲时横截面上正应力大小和分布规律; 2.验证纯弯曲梁的正应力计算公式。
二、实验仪器设备和工具1.BDCL-3材料力学多功能实验台; 2.力&应变综合参数测试仪; 3.游标卡尺、钢板尺三、实验原理及方法梁横截面上任一点的正应力,计算公式为z y I M /=σ式中:M 为弯矩,I z 为横截面中性轴的惯性矩;y 为所求应力点到中性轴的距离。
为了测量梁在纯弯曲时横截面上正应力的分布规律,在梁的纯弯曲段沿梁侧面不同高度,平行于轴线贴有应变片。
实验可采用半桥单臂、公共补偿、多点测量方法。
加载采用增量法,即每增加等量的载荷△P ,测出各点的应变增量ε∆,然后分别取各点应变增量的平均值i 实ε∆,一次求出各点的应变增量i i E 实实εσ∆=∆将实测应力值与理论应力值进行比较,以验证弯曲正应力公式。
四、实验步骤1.设计好本实验所需的各类数据表格。
2.测量矩形截面梁的宽度b 和高度h 、载荷作用电到梁支点距离a 及各应变片到中性层的距离y i ,见附表13.拟定加载方案。
先选取适当的初载荷P o (一般取P o =lO %P max 左右),估算P max (该实验载荷围P max ≤2000N),分4~6级加载。
4.按实验要求接好线,调整好仪器,检查整个测试系统是否处于正常工作状态。
5.加载。
均匀缓慢加载至初载荷Po ,记下各点应变的初始读数;然后分级等增量加载,每增加一级载荷,依次记录各点电阻应变片的应变值i ε,直到最终载荷。
实验至少重读两次。
五、实验结果处理1.数据记录2.实验值计算根据测得的各点应变值i ε求出应变增量平均值i ε∆,代入克定律计算各点的实验应力值,因εμε6101-=,所以各点实验应力计算:610-⨯∆⨯==i i i E E εεσ实实3.理论值计算载荷增量△P=500N弯矩增量△M=△P·a/2 各点理论计算:z ii I yM⋅∆=理σ4.绘出实验应力值和理论应力值的分布图六、思考题1.实验中为什么要进行温度补偿这?如何实现温度补偿?答、温度的变化会引起材料的体积与长度的变化,进而影响应变片的长度变化,导致测量值有误,温度补偿片就是要消除这个误差,那么得用同样的材料,它的线变系数和体变系数就相同,在同样温度变化下,变化值就相同,接上桥式电路就可以抵消掉温度的影响。
2.影响实验结果准确性的主要因素是什么?答、应变片、拉力传感器、试样尺寸的测量准确性。
3.梁的自重对测试结果有无影响?答、施加的荷载和测试应变成线性关系。
实验时,在加外载荷前,首先进行了测量电路的平衡(或记录初读数),然后加载进行测量,所测的数(或差值)是外载荷引起的,与梁自重无关。
实验六 等强度梁弯曲试验实验容:一般情况下,梁不同横截面的弯矩不同。
因而在按最大弯矩所设计的等截面梁中,除最大弯矩所在截面,其余截面的材料强度均未得到充分利用。
因此,在工程中,常根据弯矩沿梁轴的变化情况,将梁也相应设计成变截面的。
从弯曲角度考虑,理想的变截面梁,是使所有横截面上的最大弯曲正应力均等于许用应力,即要求[]σσ==)()(max x W x M 由此得抗弯截面系数: []σ)()(x M x W =根据)(x W 设计梁的截面,各个横截面具有同样强度,这种梁称为等强度梁。
实验目的与要求:(1)测定梁上下表面的应力,验证梁的弯曲理论。
(2)设计宽度不变、高度变化的等强度悬臂梁。
设计思路:将试件固定在实验台架上,梁弯曲时,同一截面上表面产生压应变,下表面产生拉应变,上下表面产生的拉压应变绝对值相等。
计算公式26x FxEb h ε=式中: F 一梁上所加的载荷; x 一载荷作用点到测试点的距离;E 一弹性模量;b x 一梁的宽度; h 一梁的厚度在梁的上下表面分别粘贴上应变片R 1、R 2;如图6-1所示,当对梁施加载荷P 时,梁产生弯曲变形,在梁引起应力。
图6-1等强度梁外形图及布片图关键技术分析:梁任意截面上的弯矩:Fx x M =)( 根据梁弯曲正应力的计算公式:26)()(h b Fxx W x M x l ==σ 根据克定律得梁表面各点的应变:εσE s = 理论值与实验值比较:-=100%σσδσ⨯理实理如果截面宽度b 沿梁轴保持不变,得截面高度为:bFxx h l σ6)(= 实验过程1.拟定加载方案。
选取适当的初载荷P 0(一般取P o =10%Pmax 左右),估算最大载荷Pmax(该实验载荷围≤100N),一般分4~6级加载。
2.实验采用多点测量中半桥单臂公共补偿接线法。
将悬臂梁上两点应变片按序号接到电阻应变仪测试通道上,温度补偿片接电阻应变仪公共补偿端。
3.按实验要求接好线,调整好仪器,检查整个系统是否处于正常工作状态。
4.实验加载,旋转手轮向拉的方向加载。
要均匀慢速加载至初载荷P 0。
记下各点应变片的初读数或应变与加载力同时清零;然后逐级加载,每增加一级载荷,依次记录各点电阻应变仪的的读数,直到最终载荷。