七年级数学下册各单元试卷

合集下载

七年级下册数学试卷全套

七年级下册数学试卷全套

精品试卷,请参考使用,祝老师、同学们取得好成绩!七年级下册数学试卷全套第五章相交线与平行线测试题一、选择:1、一辆汽车在笔直的公路上行驶,两次拐弯后,仍在原来的方向上平行前进,那么两次拐弯的角度是 ( )A 第一次右拐50°,第二次左拐130 °B 第一次左拐50 °,第二次右拐50 °C 第一次左拐50 °,第二次左拐130 °D 第一次右拐50 °,第二次右拐50 °2、下列句子中不是命题的是 ( )A 、两直线平行,同位角相等。

B 、直线AB 垂直于CD 吗?C 、若︱a ︱=︱b ︱,则a 2 = b 2。

D 、同角的补角相等。

3、平面内有两两相交的4条直线,如果最多有m 个交点,最少有n 个交点,则m-n=( )A 3B 4C 5D 64、“两直线相交只有一个交点”题设是( )A 两直线B 相交C 只有一个交点D 两直线相交5、如图所示,把一个长方形纸片沿EF 折叠后,点D ,C 分别落在D′,的位置.若∠EFB =65°,则∠AED′等于 ( )A .70°B .65°C .50°D .25°6、如图,直线AB CD 、相交于点E ,若°=∠100AEC ,则D ∠等于( )A .70°B .80°C .90°D .100°7、如图直线1l ∥2l ,则∠ 为( ).8、如图,已知AB ∥CD,若∠A=20°,∠E=35°,则∠C 等于( ).A.20°B. 35°C. 45°D.55°9、在直线AB 上任取一点O ,过点O 作射线OC 、OD ,使OC ⊥OD ,当∠AOC=30o 时,∠BOD 的度数是( ).A .60oB .120oC .60o 或 90oD .60o 或120o 10、30°角的余角是( )A .30°角B .60°角C .90°角D .150°角二、填空:1、x 的补角是3y,x=30°,则|x-y|的值是( )。

最新人教版初中数学七年级下册第8章《二元一次方程组》单元测试题(含答案解析)(1)

最新人教版初中数学七年级下册第8章《二元一次方程组》单元测试题(含答案解析)(1)

人教版七年级数学下册第 8 章《二元一次方程组》单元检测题人教版七年级下册第八章二元一次方程组单元检测题考试时间: 100 分钟; 满分: 120 分班级:姓名:学号:分数:一、选择题(本题共 10 个小题,每题 3 分,共 30 分) 1.以下各式是二元一次方程的是()A .1b2 B . 2m3n5C . 2x+3=5D . xy3a2.若x2是方程 ax -3y=2 的一个解,则 a 为 ()y 7A .8B. 23C.-23D .-192223.解方程组 4x 3 y 7时,较为简单的方法是()4x3y 5A .代入法B.加减法 C .试值法 D .没法确立4.方程组2xy的解为x2,则被掩盖的两个数分别为()x y3yA .1,2 B.1,3C .5,1(D) 2,4 5.以下方程组,解为x1是()y2A . x y 1B . x y 1C . x y 3D .x y33x y53x y53xy 1 3x y56.买钢笔和铅笔共 30 支,此中钢笔的数目比铅笔数目的 2 倍少 3 支.若设买钢笔 x 支,铅笔 y 支,依据题意,可得方程组()A . x y 30B . x y 30C . x y 30D .x y 30 y 2x 3y 2x 3x 2 y 3x 2 y 37.已知 x 、y 知足方程组x 2y8,则 x +y 的值是( )2x y 7A .3B .5C .7D .98.已知 3x m n y m n 与- 9x 7-m y 1+n 的和是单项式,则 m ,n 的值分别是()5A .m=- 1, n=-7B .m=3,n=1C .m=29, n=6D.m=5,n=- 210 549.依据图中供给的信息,可知一个杯子的价钱是( )A .51 元B .35元C .8 元D .7.5 元10.已知二元一次方程 3x +y =0 的一个解是xa,此中 a ≠ 0,那么( )y bA.b>0B.b=0C.b< 0D. 以上都不对aaa二、填空题(本题共 6 个小题,每题 4 分,共 24 分)11.请你写出一个有一解为的二元一次方程:.12.已知方程 3x +5y - 3=0,用含 x 的代数式表示 y ,则 y=________..若 x a-b-2-2y a + b是二元一次方程,则 a=________ , b=________.13 =314.方程 4x +3y =20 的全部非负整数解为:.15.某商品成本价为 t 元,商品上架前订价为 s 元,按订价的 8 折销售后赢利 45元。

最新华东师大版七年级数学下册单元测试题及答案

最新华东师大版七年级数学下册单元测试题及答案

最新华东师大版七年级数学下册单元测试题及答案1.下列四组等式变形中,正确的是()。

A。

由=2,得x=2B。

由5x=7,得x=7/5C。

由5x+7=0,得5x=-7D。

由2x-3=0,得2x=32.下列各题的“移项”正确的是()。

A。

由2x=3y-1得-1=3y-2xB。

由6x+4=3-x得6x+x=3-4C。

由8-x+4x=7得-x=7-4xD。

由x+9=3x-7得2x=163.在下列方程中,解是2的方程是()。

A。

3x=x+3B。

-x+3=0C。

2x=6D。

5x-2=84.汽车队运送一批货物,若每辆车装4吨,还剩下8吨未装;若每辆车装4.5吨,恰好装完,求这个车队有多少辆车?设这个车队有x辆车,可列方程为()。

A。

4x-8=4.5xB。

4x+8=4.5xC。

4(x-8)=4.5xD。

4(x+8)=4.5x5.已知关于x的方程2x-3m-12=0的解是x=3,则m的值为()。

A。

-2B。

2C。

-6D。

66.若方程4x-1=3x+1和2m+x=1的解相同,则m的值为()。

A。

-3B。

1C。

0D。

27.XXX存入银行2500元,定期一年到期后扣除20%的利息税后得到本息和为2650元,若这种储蓄的年利率为x,那么可得方程()。

A。

2500(1+x)-2500(1+x)×0.2=2650B。

2500(1+x/100)-2500(1+x/100)×0.2=2650C。

2500(1+0.8x)-2500=2650D。

2500(1+0.2x)-2500=26508.如图是某月的月历表,从表的竖列任取三个数相加,不可能得到的是()。

A。

33B。

42C。

55D。

549.朵朵幼儿园的阿姨给小朋友分苹果,如果每人3个还少3个,如果每人2个又多2个,请问共有多少个小朋友?()。

A。

4个B。

5个C。

10个D。

12个10.XXX在做解方程作业时,不小心将方程中的一个常数弄脏了而看不清楚,被弄脏的方程是(- =1+x),这该怎么办呢?他想了一想,然后看了一下书后面的答案,知道此方程的解是x=5,于是,他很快便补好了这个常数,并迅速地做完了作业。

人教版七年级下册数学《相交线与平行线》单元测试检测试卷

人教版七年级下册数学《相交线与平行线》单元测试检测试卷

相交线与平行线章末训练一.选择题1.如图,直线b,c被直线a所截,则∠1与∠2是()A.对顶角B.同位角C.内错角D.同旁内角2.要说明命题“若|a|>5,则a>5”是假命题,可以举的一个反例是()A.a=5B.a=﹣5C.a=6D.a=﹣63.要在墙上钉牢一根木条,至少要钉两颗钉子.能正确解释这一现象的数学知识是()A.两点之间,线段最短B.垂线段最短C.两点确定一条直线D.经过一点有且只有一条直线与已知直线垂直4.直线a、b、c中,a∥b,b⊥c,则直线a与直线c的关系是()A.相交B.平行C.垂直D.不能确定5.如图,给出了过直线外一点作已知直线的平行线的方法,其依据是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.同旁内角互补,两直线平行D.对顶角相等,两直线平行6.如图,把△ABC沿AC方向平移得到△FDE,AF=8,EC=2,则平移的距离为()A.3B.4C.5D.67.如图,将射线AB沿着直线l平移得到射线CD,若∠1=115°,则∠2的度数是()A.115°B.75°C.65°D.60°8.如图已知直线m∥n.三个图形的顶点均在直线m,n上,三个图形面积最大的结论正确的是()A.①最大B.②最大C.③最大D.不确定9.两条直线最多有1个交点,三条直线最多有3个交点,四条直线最多有6个交点,……,那么七条直线最多有()A.9个交点B.15个交点C.21个交点D.26个交点10.如图,将一条两边沿互相平行的纸带折叠,若∠1比∠2大12°,则∠1的度数为()A.66°B.68°C.54°D.56°11.①如图1,AB∥CD,则∠A+∠E+∠C=180°;②如图2,AB∥CD,则∠E=∠A+∠C;③如图3,AB∥CD,则∠A+∠E﹣∠1=180°;④如图4,AB∥CD,则∠A=∠C+∠P.以上结论正确的个数是()A.①②③④B.①②③C.②③④D.②④12.黑板上有一个数学问题如图所示:如图AB⊥BC,BC交CD于点C,AE平分∠BAD交BC于E,AE⊥DE,∠1+∠2=90°,M,N分别是BA,CD延长线上的点,∠EAM和∠EDN的平分线交于点F.几位同学经过研究得到以下结论:嘉嘉说:“AB∥CD”;琪琪说:“∠AEB+∠ADC=180°”;薇薇说:“DE平分∠ADC”;亮亮说:“∠F=135°”,则()A.只有嘉嘉的结论正确B.嘉嘉和琪琪的结论都正确C.只有琪琪的结论不正确D.四个人的结论都正确二.填空题13.命题“在同一平面内,垂直于同一直线的两直线平行”的题设是,结论是.14.为了测量古塔的外墙底角∠AOB的度数,王明设计了如下方案:作AO、BO 的延长线OD、OC,量出∠COD的度数,就得到了∠AOB的度数,王明这样做的依据是.15.如图,点P是直线l外一点,过点P作PO⊥l于点O,点A是直线l上任意一点,连接P A,若PO=3,则P A的长可能是(写出一个即可).16.已知直线a、b、c,满足a∥b,a∥c,那么直线b、c的位置关系是.17.如图所示,一块长为18m,宽为12m的草地上有一条宽为2m的曲折的小路,则这块草地的绿地面积是.18.已知l1∥l2,一个含有30°角的三角尺按照如图所示的位置摆放,若∠1=65°,则∠2=度.三.解答题19.如图,直线AB,CD相交于点O,OA平分∠EOC,若∠EOD=88°,求∠BOD的度数.20.如图,OB⊥OD,OC平分∠AOD,∠BOC=40°,求∠AOB的大小.21.如图,一束平行光线AB与DE射向一个水平镜面后被反射,此时∠1=∠2,∠3=∠4.试说明BC∥EF.22.如图,已知直线AB,CD相交于点O,OE平分∠BOD,OF平分∠COB,∠BOE=36°,求∠AOF的度数.23.如图,一条公路两次转弯后,和原来的方向相同.如果第一次的拐角∠A是135°,第二次的拐角∠B是多少度?为什么?24.如图,已知直线AB∥DF,∠D+∠B=180°.(1)求证:DE∥BC;(2)如果∠AMD=70°,求∠AGC的度数.25.如图,点G在CD上,已知∠BAG+∠AGD=180°,EA平分∠BAG,FG平分∠AGC,请说明AE∥GF的理由.解:因为∠BAG+∠AGD=180°(),∠AGC+∠AGD=180°(),所以∠BAG=∠AGC().因为EA平分∠BAG,所以∠1=1().2因为FG平分∠AGC,,所以∠2=12得∠1=∠2(),所以AE∥GF().26.如图,图①是一种网红弹弓的实物图,在两头上系上皮筋,拉动皮筋可形成平面示意图如图②和图③,弹弓的两边可看成是平行的,即AB∥CD,各活动小组探索∠APD与∠A,∠C之间数量关系时,有如下发现:(1)在图②所示的图形中,若∠A=30°,∠D=35°,则∠APD=;(2)在图③中,若∠A=150°,∠APD=60°,则∠D=;(3)有同学在图②和图③的基础上,画出了图④所示的图形,其中AB∥CD,请判断∠α,∠β,∠γ之间的关系,并说明理由.27.【提出问题】若两个角的两边分别平行,则这两个角有怎样的数量关系?【解决问题】分两种情况进行探究,请结合如图探究这两个角的数量关系.(1)如图1,AB∥EF,BC∥DE,试证:∠1=∠2;(2)如图2,AB∥EF,BC∥DE,试证:∠1+∠2=180°;【得出结论】由(1)(2)我们可以得到结论:若两个角的两边分别平行,则这两个角的数量关系为;【拓展应用】(3)若两个角的两边分别平行,其中一个角比另一个角的2倍少60°,求这两个角的度数.(4)同一平面内,若两个角的两边分别垂直,则这两个角的数量关系为.相交线与平行线章末训练(答案解析)一.选择题1.如图,直线b,c被直线a所截,则∠1与∠2是()A.对顶角B.同位角C.内错角D.同旁内角【解答】解:由题意可得,∠1与∠2是直线b,c被直线a所截而成的同位角.故选:B.2.要说明命题“若|a|>5,则a>5”是假命题,可以举的一个反例是()A.a=5B.a=﹣5C.a=6D.a=﹣6【解答】解:a=﹣6时,满足|a|>5,但﹣6<5,故选:D.3.要在墙上钉牢一根木条,至少要钉两颗钉子.能正确解释这一现象的数学知识是()A.两点之间,线段最短B.垂线段最短C.两点确定一条直线D.经过一点有且只有一条直线与已知直线垂直【解答】解:在墙上要钉牢一根木条,至少要钉两颗钉子,能解释这一实际应用的数学知识是两点确定一条直线,故A,B,D不符合题意,C符合题意.故选:C.4.直线a、b、c中,a∥b,b⊥c,则直线a与直线c的关系是()A.相交B.平行C.垂直D.不能确定【解答】解:如图,∵b⊥c,∴∠1=90°,∵a∥b,∴∠2=∠1=90°,∴a⊥c.故选:C.5.如图,给出了过直线外一点作已知直线的平行线的方法,其依据是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.同旁内角互补,两直线平行D.对顶角相等,两直线平行【解答】解:如图,给出了过直线外一点作已知直线的平行线的方法,其依据是同位角相等,两直线平行.故选:A.6.如图,把△ABC沿AC方向平移得到△FDE,AF=8,EC=2,则平移的距离为()A.3B.4C.5D.6【解答】解:由平移变换的性质可知,AE=CF=12(AF﹣EC)=12×(8﹣2)=3,故选:A.7.如图,将射线AB沿着直线l平移得到射线CD,若∠1=115°,则∠2的度数是()A.115°B.75°C.65°D.60°【解答】解:∵AB∥CD,∴∠ACD=∠1=115°∴∠2=∠180°﹣∠ACD=180°﹣115°=65°.故选:C.8.如图已知直线m∥n.三个图形的顶点均在直线m,n上,三个图形面积最大的结论正确的是()A.①最大B.②最大C.③最大D.不确定【解答】解:设m、n之间的距离为h,∴图①的面积为2+72•h=92h,图②的面积为12×8h=4h,图③的面积为5h,∴图③的面积最大.故选C.9.两条直线最多有1个交点,三条直线最多有3个交点,四条直线最多有6个交点,……,那么七条直线最多有()A.9个交点B.15个交点C.21个交点D.26个交点【解答】解:∵3条直线相交最多有3个交点,4条直线相交最多有6个交点,5条直线相交最多有10个交点,而3=12×2×3,6=12×3×4,10=1+2+3+4= 12×4×5,∴七条直线相交最多有交点的个数是:12n(n﹣1)=12×7×6=21.故选:C.10.如图,将一条两边沿互相平行的纸带折叠,若∠1比∠2大12°,则∠1的度数为()A.66°B.68°C.54°D.56°【解答】解:如图所示,由题意可得:∠3=∠4,∵AB∥CD,∴∠2=∠3,∴∠2=∠4,由图可得,∠1+∠2+∠4=180°,∵∠1比∠2大12°,∴(∠2+12°)+∠2+∠2=180°,解得∠2=56°,∴∠1=∠2+12°=56°+12°=68°,故选:B.11.①如图1,AB∥CD,则∠A+∠E+∠C=180°;②如图2,AB∥CD,则∠E=∠A+∠C;③如图3,AB∥CD,则∠A+∠E﹣∠1=180°;④如图4,AB∥CD,则∠A=∠C+∠P.以上结论正确的个数是()A.①②③④B.①②③C.②③④D.②④【解答】解:①过点E作直线EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠A+∠1=180°,∠2+∠C=180°,∴∠A+∠B+∠E=360°,故本小题错误;②过点E作直线EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠A=∠1,∠2=∠C,∴∠AEC=∠A+∠C,即∠E=∠A+∠C,故本小题正确;③过点E作直线EF∥AB,,∵AB∥CD,∴AB∥CD∥EF,∴∠A+∠3=180°,∠1=∠2,∴∠A+∠AEC﹣∠1=180°,即∠A+∠E﹣∠1=180°,故本选项正确;④∵∠1是△CEP的外角,∴∠1=∠C+∠P,∵AB∥CD,∴∠A=∠1,即∠A=∠C+∠P,故本小题正确.综上所述,正确的小题有②③④共3个.故选:C.12.黑板上有一个数学问题如图所示:如图AB⊥BC,BC交CD于点C,AE平分∠BAD交BC于E,AE⊥DE,∠1+∠2=90°,M,N分别是BA,CD延长线上的点,∠EAM和∠EDN的平分线交于点F.几位同学经过研究得到以下结论:嘉嘉说:“AB∥CD”;琪琪说:“∠AEB+∠ADC=180°”;薇薇说:“DE平分∠ADC”;亮亮说:“∠F=135°”,则()A.只有嘉嘉的结论正确B.嘉嘉和琪琪的结论都正确C.只有琪琪的结论不正确D.四个人的结论都正确【解答】解:过点E作EH∥AB交AD于点H,则∠1=∠AEH,∵∠AEH+∠DEH=90°,∠1+∠2=90°,∴∠2=∠DEH,∴EH∥CD,∴AB∥CD,∵AE平分∠BAD,∴∠1=∠EAD,∵∠AED=90°,∴∠EAD+∠ADE=90°,∴∠ADE=∠2,∴DE平分∠ADC,∵∠EAM和∠EDN的平分线交于点F.根据平行线的拐点问题得:∠F=∠MAF+∠FDN=1(360°﹣45°)=135°,2∵∠AEB=∠2,∠EDN+∠2=180°,而∠EDN≠∠ADC,故选:C.二.填空题13.命题“在同一平面内,垂直于同一直线的两直线平行”的题设是在同一平面内两条直线垂直于同一条直线,结论是这两条直线平行.【解答】解:∵该命题可改写为:如果在同一平面内两条直线垂直于同一条直线,那么这两条直线平行,∴题设是:在同一平面内两条直线垂直于同一条直线,结论是:这两条直线平行.故答案为:在同一平面内两条直线垂直于同一条直线,这两条直线平行.14.为了测量古塔的外墙底角∠AOB的度数,王明设计了如下方案:作AO、BO的延长线OD、OC,量出∠COD的度数,就得到了∠AOB的度数,王明这样做的依据是对顶角相等.【解答】解:作AO、BO的延长线OD、OC,量出∠COD的度数,就得到了∠AOB的度数,王明这样做的依据是对顶角相等,故答案为:对顶角相等.15.如图,点P是直线l外一点,过点P作PO⊥l于点O,点A是直线l上任意一点,连接P A,若PO=3,则P A的长可能是4(答案不唯一)(写出一个即可).【解答】解:∵PO⊥l于点O,点A是直线l上任意一点,PO=3,∴3≤AP,∴AP的长可能是4,故答案为:4(答案不唯一).16.已知直线a、b、c,满足a∥b,a∥c,那么直线b、c的位置关系是b∥c.【解答】解:∵a∥b,a∥c,∴b∥c.故答案为:b∥c.17.如图所示,一块长为18m,宽为12m的草地上有一条宽为2m的曲折的小路,则这块草地的绿地面积是160m2.【解答】解:如图,将小路平移成两个相交的长方形,∴绿地面积为:(18﹣2)(12﹣2)=160(m2)故答案为:160m2.18.已知l1∥l2,一个含有30°角的三角尺按照如图所示的位置摆放,若∠1=65°,则∠2=25度.【解答】解:如图,过直角顶点作l3∥l1,∵l1∥l2,∴l1∥l2∥l3,∴∠1=∠3,∠2=∠4,∴∠1+∠2=∠3+∠4=90°,∵∠1=65°,∴∠2=25°.故答案为:25.三.解答题19.如图,直线AB,CD相交于点O,OA平分∠EOC,若∠EOD=88°,求∠BOD的度数.【解答】解:∵∠EOD=88°,∴∠EOC=180°﹣88°=92°,∵OA平分∠EOC,∠EOC=92°,∴∠AOC=12∠EOC=12×92°=46°,∴∠BOD=∠AOC=46°.20.如图,OB⊥OD,OC平分∠AOD,∠BOC=40°,求∠AOB的大小.【解答】解:∵OB⊥OD,∴∠BOD=90°,又∵∠BOC=40°,∴∠COD=90°﹣40°=50°,∵OC平分∠AOD,∴∠AOD=2∠COD=100°,∴∠AOB=∠AOD﹣∠BOD=100°﹣90°=10°,即∠AOB=10°.21.如图,一束平行光线AB与DE射向一个水平镜面后被反射,此时∠1=∠2,∠3=∠4.试说明BC∥EF.【解答】解:∵AB∥DE,∴∠1=∠3,∵∠1=∠2,∠3=∠4,∴∠2=∠4,∴BC∥EF.22.如图,已知直线AB,CD相交于点O,OE平分∠BOD,OF平分∠COB,∠BOE=36°,求∠AOF的度数.【解答】解:∵直线AB,CD相交于点O,OE平分∠BOD,OF平分∠COB,∴∠BOE=∠DOE=36°,∠BOF=∠COF,∴∠BOD=∠AOC=2∠BOE=72°,∴∠BOC=180°﹣∠BOD=108°,∴∠COF=1∠BOC=54°,2∴∠AOF=∠AOC+∠COF=72°+54°=126°.23.如图,一条公路两次转弯后,和原来的方向相同.如果第一次的拐角∠A是135°,第二次的拐角∠B是多少度?为什么?【解答】解:∠B=135°,理由是:∵道路是平行的,∴∠B=∠A=135°.24.如图,已知直线AB∥DF,∠D+∠B=180°.(1)求证:DE∥BC;(2)如果∠AMD=70°,求∠AGC的度数.【解答】(1)证明:∵AB∥DF,∴∠D+∠BHD=180°,∵∠D+∠B=180°,∴∠B=∠DHB,∴DE∥BC;(2)解:∵DE∥BC,∠AMD=70°,∴∠AGB=∠AMD=70°,∴∠AGC=180°﹣∠AGB=180°﹣70°=110°.25.如图,点G在CD上,已知∠BAG+∠AGD=180°,EA平分∠BAG,FG平分∠AGC,请说明AE∥GF的理由.解:因为∠BAG+∠AGD=180°(已知),∠AGC+∠AGD=180°(邻补角的定义),所以∠BAG=∠AGC(同角的补角相等).因为EA平分∠BAG,∠BAG(角平分线的定义).所以∠1=12因为FG平分∠AGC,∠AGC,所以∠2=12得∠1=∠2(等量代换),所以AE∥GF(内错角相等,两直线平行).【解答】解:因为∠BAG+∠AGD=180°(已知),∠AGC+∠AGD=180°(邻补角的定义),所以∠BAG=∠AGC(同角的补角相等),因为EA平分∠BAG,∠BAG(角平分线的定义),所以∠1=12因为FG平分∠AGC,∠AGC,所以∠2=12得∠1=∠2(等量代换),所以AE∥GF(内错角相等,两直线平行).故答案为:已知;邻补角的定义;同角的补角相等;∠BAG;角平分线的定义;∠AGC;等量代换;内错角相等,两直线平行.26.如图,图①是一种网红弹弓的实物图,在两头上系上皮筋,拉动皮筋可形成平面示意图如图②和图③,弹弓的两边可看成是平行的,即AB∥CD,各活动小组探索∠APD与∠A,∠C之间数量关系时,有如下发现:(1)在图②所示的图形中,若∠A=30°,∠D=35°,则∠APD=65°;(2)在图③中,若∠A=150°,∠APD=60°,则∠D=150°;(3)有同学在图②和图③的基础上,画出了图④所示的图形,其中AB∥CD,请判断∠α,∠β,∠γ之间的关系,并说明理由.【解答】解:(1)过点P作PQ∥AB,∵AB∥CD,∴PQ∥AB∥CD,∴∠A=∠APQ,∠D=∠DPQ,∵∠A=30°,∠D=35°,∴∠APD=∠APQ+∠DPQ=∠A+∠D=30°+35°=65°.故答案为:65°;(2)过点P作PQ∥AB,∵AB∥CD,∴PQ∥AB∥CD,∴∠A+∠APQ=180°,∠D+∠DPQ=180°,∵∠A=150°,∴∠APQ=30°,∵∠APD=60°,∴∠DPQ=30°,∴∠D=180°﹣∠DPQ=180°﹣30°=150°.故答案为:150°;(3)过点P作PQ∥AB,∵AB∥CD,∴PQ∥AB∥CD,∴α+∠BPQ=180°,γ=∠DPQ,∴∠BPQ=180°﹣α,∵β=∠BPQ+∠DPQ,∴β=∠BPQ+γ,∴β=180°﹣α+γ,即α+β﹣γ=180°.27.【提出问题】若两个角的两边分别平行,则这两个角有怎样的数量关系?【解决问题】分两种情况进行探究,请结合如图探究这两个角的数量关系.(1)如图1,AB∥EF,BC∥DE,试证:∠1=∠2;(2)如图2,AB∥EF,BC∥DE,试证:∠1+∠2=180°;【得出结论】由(1)(2)我们可以得到结论:若两个角的两边分别平行,则这两个角的数量关系为相等或互补;【拓展应用】(3)若两个角的两边分别平行,其中一个角比另一个角的2倍少60°,求这两个角的度数.(4)同一平面内,若两个角的两边分别垂直,则这两个角的数量关系为相等或互补.【解答】【提出问题】(1)证明:如图1,∵AB∥EF,∴∠1=∠3,又∵BC∥DE,∴∠2=∠3,∴∠1=∠2;(2)证明:如图2,∵AB∥EF,∴∠1=∠4,又∵BC∥DE,∴∠2+∠4=180°,∴∠1+∠2=180°;【得出结论】解:由(1)(2)我们可以得到的结论是:若两个角的两边分别平行,则这两个角的数量关系是相等或互补,故答案为:相等或互补;【拓展应用】(3)解:设其中一个角为x,则另一角为2x﹣60°,当x=2x﹣60°时,解得x=60°,此时两个角为60°,60°;当x+2x﹣60°=180°,解得x=80°,则2x﹣60=100°,此时两个角为80°,100°;∴这两个角分别是60°,60°或80°,100°.(4)解:如图,这两个角之间的数量关系是:相等或互补.故答案为:相等或互补.。

人教版七年级数学下册 第6章 实数 单元综合测试卷(试卷)

人教版七年级数学下册 第6章 实数 单元综合测试卷(试卷)

第6章实数单元综合测试卷班级:姓名:一、选择题(每小题3分,共30分)1.144的算术平方根是()A.12B.-12C.±12D.122.下列各数是无理数的是()A.0B.-1C.2D.373.83=()A.±2B.-2C.2D.224.一个实数a的相反数是10,则a等于()A.110B.10C.-110D.-105.下列各式正确的是()A.16=±4B.(-3)2=-3C.±81=±9D.-4=-26.估计23的值()A.在2到3之间B.在3到4之间C.在4到5之间D.在5到6之间7.下列说法正确的是()A.-1的倒数是1B.-1的相反数是-1C.1的算术平方根是1D.1的立方根是±18.下列说法错误的是()A.16的平方根是±2B.2是无理数C.-273是有理数9.有下列说法:①有理数和数轴上的点一一对应;②不带根号的数一定不是无理数;③负数没有立方根;④-19是19的平方根,其中正确的说法有()A.0个B.1个C.2个D.3个10.实数a,b在数轴上的位置如图所示,下列各式正确的是()A.a+b>0B.ab>0C.|a|+b<0D.a-b>0二、填空题(每小题3分,共30分)11.49的平方根是,216的立方根是.12.若一个数的算术平方根等于它本身,则这个数的立方根是.13.显示的结果是.14.写出一个大于3小于5的无理数:.15.实数a在数轴上的位置如图,则|a-3|=.16.13是m的一个平方根,则m的另一个平方根是,m=.17.273的平方根是,-64的立方根是.18.关于12的叙述,有下列说法,其中正确的说法有个.(1)12是有理数;(2)面积为12的正方形边长是12;(3)在数轴上可以找到表示12的点.19.一个数值转换器,原理如下:当输入的x=16时,输出的y等于.20.若实数x,y满足(2x+3)2+|9-4y|=0,则xy的立方根为.三、解答题(共60分)21.(6分)计算:(1)求252-242的平方根;(2)求338的立方根.22.(6分)计算:(1)(-2)2-(3-5)-4+2×(-3).(2)-643-9+23.(6分)已知一个正数的平方根是3x-2和5x+6,求这个数.24.(6分)求下列各式中的x 的值:(1)25x 2=36;(2)(x+1)3=8.25.(6分)已知2a-3的平方根是±5,2a+b+4的立方根是3,求a+b 的平方根.26.(8分)一个圆形铁板的面积是424cm 2,求圆形铁板的半径.(精确到0.1)27.(12分)根据下表回答问题:xx 2x x 216.0256.0016.6275.5616.1259.2116.7278.8916.2262.4416.8282.2416.3265.6916.9285.6116.4268.9617.0289.0016.5272.25(1)268.96的平方根是多少?(2)285.6≈;(3)270在哪两个数之间?为什么?(4)表中与260最接近的是哪个数?28.(10分)(1)在实数范围内定义运算“ ”,其法则为:ab=a 2-b 2,求方程(4 3) x=24的解;(2)已知2a 的平方根是±2,3是3a+b 的立方根,求a-2b 的值.第6章实数单元综合测试卷答案与点拨1.A(点拨:144的算术平方根是144=12.)2.C(点拨:0,-1是整数,是有理数;37是分数,是有理数;2是开方开不尽的数,是无限不循环小数,是无理数.)3.C(点拨:83表示求8的立方根,故83=2.)4.D(点拨:因为-10的相反数是10,所以a 等于-10.)5.C(点拨:16表示16的算术平方根,16=4;(-3)2表示(-3)2(即9)的算术平方根,(-3)2=3;负数没有算术平方根.)6.C(点拨:因为16<23<25,所以16<23<25,即4<23<5,所以23的值在4到5之间.)7.C(点拨:-1的倒数是-1,相反数是1;1的算术平方根是1,立方根是1.)8.D(点拨:16=4,4的平方根是±2;2是无理数;-273=-3是有理数,不是分数.)9.B(点拨:④正确.)10.A(点拨:由数轴知a<0,b>0,|b|>|a|,所以a+b>0,ab<0,|a|+b>0,a-b<0.故选A.)11.±23612.0,1(点拨:算术平方根等于本身的数是0和1,所以它们的立方根分别为0和1.)13.-2(点拨:本题就是求36-8的值,即-2.)14.13或π(答案不唯一)15.3-a(点拨:由数轴上点的位置关系,得a<3,所以|a-3|=3-a.)16.-13169(点拨:由平方根的性质,一个正数的两个平方根互为相反数,得另一个平方根是-13,m=132=169.)17.±3-2(点拨:273=3,所以它的平方根是±3;-64是-8,所以它的立方根是-2.)18.2(点拨:12是无理数,不是有理数,故(1)不正确.)19.2(点拨:根据图中的步骤,把16输入,可得其算术平方根为4,把4再输入得其算术平方根是2,再将2输入得算术平方根是2,是无理数则输出.)20.-32(点拨:根据非负数的性质结合(2x+3)2+|9-4y|=0,得2x+3=0且9-4y=0,解得x=-32,y=94,所以xy=-32×94=-278,所以xy 的立方根为-32.)21.(1)因为252-242=49,而(±7)2=49,所以252-242的平方根是±7.(2)因为338=278,而()323=278,所以338的立方根是32.22.(1)原式=4-(-2)-2-6=-2.(2)原式=-4-3+35=-625.23.由正数平方根的性质得3x-2=-(5x+6),解得x=-12,∴这个数是(3x-2)2=éëêùûú3×()-12-22=494.24.(1)方程两边同时除以25得x2=3625.∴x=±65.(2)开立方,得x+1=83,∴x+1=2.解得x=1.25.由题意有{2a-3=25,2a+b+4=27,解得{a=14,b=-5.∴±a+b=±14-5=±3.故a+b的平方根为±3.26.设圆形铁板的半径为r cm,则πr2=424.解得r≈11.6.答:圆形铁板的半径约为11.6cm.27.(1)±16.4;(2)16.9;(3)由表知268.96<270<272.25,所以16.4<270<16.5,即270在16.4和16.5之间;(4)16.1.28.(1)∵a b=a2-b2,∴(4 3) x=(42-32) x=7 x=72-x2.∴72-x2=24.∴x2=25.∴x=±5.(2)由题意得2a=(±2)2,∴a=2.当a=2时,3a+b=6+b,由于33=6+b,∴b=21,∴a-2b=2-2×21=-40.。

人教版七年级数学下册 《第9章 不等式与不等式组》单元测试试卷 含答案解析02

人教版七年级数学下册 《第9章 不等式与不等式组》单元测试试卷 含答案解析02

人教版七年级下册数学《第9章不等式与不等式组》单元测试一、选择题1.已知a<b,则下列选项错误的是()A.a+2<b+2B.a﹣1<b﹣1C.<D.﹣3a<﹣3b2.不等式(a+1)x>a+1的解集是x<1,则a必满足()A.a<0B.a>﹣1C.a<﹣1D.a≤13.下列说法中,错误的是()A.不等式x<5有无数多个整数解B.不等式x>﹣5的负整数解有4个C.不等式﹣2x<8的解集是x<﹣4D.﹣10是不等式2x<﹣8的一个解4.满足不等式,﹣2x+3≤7的整数解有()A.6个B.4个C.5个D.无数个5.已知关于x的一元一次不等式组有2个整数解,若a为整数,则a的值为()A.5B.6C.6或7D.7或86.若不等式组无解,则实数a的取值范围是()A.a≥﹣1B.a<﹣1C.a≤1D.a≤﹣17.某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分,小明得分要超过120分,他至少要答对多少道题?如果设小明答对x道题,则他答错或不答的题数为20﹣x.根据题意得()A.10x﹣5(20﹣x)≥120B.10x﹣5(20﹣x)≤120C.10x﹣5(20﹣x)>120D.10x﹣5(20﹣x)<120二、填空题8.若2a+6是非负数,则a的取值范围是.9.若x>y,则8﹣5x8﹣5y.(填“>”或“=”或“<”)10.不等式2x﹣m≤0的非负整数解只有3个,则m的取值范围是11.已知关于x的不等式组,解不等式①得;解不等式②得;若不等式组的整数解共4个,则m的取值范围是.12.若|﹣a|>﹣a,则a0.(请用“>,<,≥,≤或=”号填空)13.若方程组的解满足条件0<x+y<2,则k的取值范围是.14.已知a,b为实数,若不等式组的解集为﹣1<x<1,那么(a﹣1)(b﹣1)的值等于.15.关于x的不等式1+>+与关于x的不等式x+1>的解集相同,整数m 是,不等式的解集是.16.若关于x,y的方程组的解是一对负数,则|2m+1|﹣|﹣6m+2|=.三、解答题17.解不等式(组)(Ⅰ)解不等式5x﹣2≥3(x+1),并把它的解集在数轴上表示出来.(Ⅱ)解不等式组请结合题意填空,完成本题的解答.解不等式①,得;解不等式②,得;把不等式①和②的解集在数轴上表示出来:原不等式组的解集为.18.若不等式2(x+1)﹣5<3(x﹣1)+4的最小整数解是方程的解,求代数式a2﹣2a﹣11的值.19.已知方程组的解满足x为非正数,y为负数.(1)求m的取值范围;(2)化简:|m﹣5|﹣|m+2|;(3)在m的取值范围内,当m为何整数时,不等式2mx+x<2m+1的解为x>1.20.某小区为了绿化环境,计划分两次购进A、B两种树苗,第一次分别购进A、B两种树苗30棵和15棵,共花费675元;第二次分别购进A、B两种树苗12棵和5棵,共花费265元.两次购进的A、B两种树苗价格均分别相同.(1)A、B两种树苗每棵的价格分别是多少元?解:设A种树苗每棵x元,B种树苗每棵y元根据题意列方程组,得:解这个方程组,得:答:.(2)若购买A、B两种树苗共31棵,且购买树苗的总费用不超过320元,则最多可以购买A种树苗多少棵?21.接种新冠病毒疫苗,建立全民免疫屏障,是战胜病毒的重要手段.北京科兴中维需运输一批疫苗到我市疾控中心,据调查得知,2辆A型冷链运输车与3辆B型冷链运输车一次可以运输600盒;5辆A型冷链运输车与6辆B型冷链运输车一次可以运输1350盒.(1)求每辆A型车和每辆B型车一次可以分别运输多少盒疫苗.(2)计划用两种冷链运输车共12辆运输这批疫苗,A型车一次需费用5000元,B型车一次需费用3000元.若运输物资不少于1500盒,且总费用小于54000元.请你列出所有运输方案,并指出哪种方案所需费用最少,最少费用是多少?参考答案一、选择题1.D2.C3.C4.C5.D6.D7.C 二、填空题8.a≥﹣3.9.<.10.4≤m<6.11.x<m;x≥3;6<m≤7.12.>.13.﹣4<k<614.6.15.m=7x>1.16.8m﹣1.三、解答题17.解:(Ⅰ)去括号,得:5x﹣2≥3x+3,移项,得:5x﹣3x≥3+2,合并同类项,得:2x≥5,系数化为1,得:x≥,将不等式解集表示在数轴上如下:(Ⅱ)解不等式①,得x<3;解不等式②,得x≥﹣;把不等式①和②的解集在数轴上表示出来:原不等式组的解集为﹣≤x<3.故答案为:x<3、x≥﹣、﹣≤x<3.18.解:解不等式2(x+1)﹣5<3(x﹣1)+4,得x>﹣4,∵大于﹣4的最小整数是﹣3,∴x=﹣3是方程的解.把x=﹣3代入中,得:,解得a=2.当a=2时,a2﹣2a﹣11=22﹣2×2﹣11=﹣11.∴代数式a2﹣2a﹣11的值为﹣11.19.解:(1)解方程组得:,∵x为非正数,y为负数,∴,解得﹣2<m≤3;(2)∵﹣2<m≤3,∴m﹣5<0,m+2>0,则原式=5﹣m﹣m﹣2=3﹣2m(3)由不等式2mx+x<2m+1的解为x>1,知2m+1<0;所以,又因为﹣2<m<3,所以,因为m为整数,所以m=﹣1.20.解:(1)设A种树苗每棵x元,B种树苗每棵y元,根据题意列方程组,得:,解这个方程组,得:.答:A种树苗每棵20元,B种树苗每棵5元.故答案为:;;A种树苗每棵20元,B种树苗每棵5元.(2)设购买A种树苗m棵,则购买B种树苗(31﹣m)棵,依题意,得:20m+5(31﹣m)≤320,解得:m≤11.答:最多可以购买A种树苗11棵.21.解:(1)设每辆A型车和每辆B型车一次可以分别运输x盒疫苗、y盒疫苗,由题意可得,,解得,答:每辆A型车和每辆B型车一次可以分别运输150盒疫苗、100盒疫苗;(2)设A型车a辆,则B型车(12﹣a)辆,由题意可得,,解得6≤a<9,∵a为正整数,∴a=6,7,8,∴共有三种运输方案,方案一:A型车6辆,B型车6辆,方案二:A型车7辆,B型车5辆,方案三:A型车8辆,B型车4辆,∵A型车一次需费用5000元,B型车一次需费用3000元,计划用两种冷链运输车共12辆运输这批疫苗,∴A型车辆数越少,费用越低,∴方案一所需费用最少,此时的费用为5000×6+3000×6=48000(元),答:方案一:A型车6辆,B型车6辆,方案二:A型车7辆,B型车5辆,方案三:A 型车8辆,B型车4辆,其中方案一所需费用最少,最少费用是48000元.。

精选初中数学七年级下册第8章《二元一次方程组》单元检测试卷(含答案)

精选初中数学七年级下册第8章《二元一次方程组》单元检测试卷(含答案)

人教版七年级数学下册第八章二元一次方程组单元测试题一、选择题。

1.已知下列方程组:(1)3{ 2x y y ==-,(2)32{ 24x y y +=-=,(3)1+3{ 10x y x y =--=,(4)1+3{ 10x y x y=-=,其中属于二元一次方程组的个数为( )A. 1B. 2C. 3D. 4 2.已知方程组54{58x y x y +=+=,则x ﹣y 的值为( )A. 2B. ﹣1C. 12D. ﹣43.用一根绳子环绕一棵大树,若环绕大树3周,绳子还多4尺,若环绕大树4周,绳子又少了3尺,则环绕大树一周需要绳子( )A. 5尺B. 6尺C. 7尺D. 8尺4.甲、乙、丙、丁四人到文具店购买同一种笔记本和计算器,购买的数量及总价分别如下表所示.若其中一人的总价算错了,则此人是( )A.甲B .乙C .丙D .丁5.如果是方程组 的解,那么下列各式中成立的是( )A. a +4c =2B. 4a +c =2C. 4a +c +2=0D. a +4c +2=06.某班共有学生49人.一天,该班某男生因事请假,当天的男生人数恰为女生人数的一半.若设该班男生人数为x ,女生人数为y ,则下列方程组中,能计算出x ,y 的是( )A.⎩⎪⎨⎪⎧x -y =49,y =2(x +1)B.⎩⎪⎨⎪⎧x +y =49,y =2(x +1)C.⎩⎪⎨⎪⎧x -y =49,y =2(x -1)D.⎩⎪⎨⎪⎧x +y =49,y =2(x -1) 7.二元一次方程组的正整数解有( )组解A. 0B. 3C. 4D. 6 8.《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有人共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱,问人数、物价各是多少?设合伙人数为x 人,物价为y 钱,以下列出的方程组正确的是( )A. B. C. D.9.解方程组2{78ax by cx y +=-=时,一学生把c 看错得2{ 2x y =-=,已知方程组的正确解是3{2x y ==-,则a 、b 、c 的值是( )A. a 、b 不能确定,c=-2B. a 、b 、c 不能确定C. a=4,b=7,c=2D. a=4,b=5,c=-210.一个两位数,十位上数字比个位上数字大2,且十位上数字与个位上数字之和为12,则这个两位数为( )A. 46B. 64C. 57D. 75 二、填空题(每小题3分,共15分)1.若2x a +1-3y b -2=10是一个二元一次方程,则a -b =________.2.若方程组⎩⎪⎨⎪⎧2x +y =*,3x -y =3的解为⎩⎨⎧x =2,y =#,则“*”“#”的值分别为________.象限.3.已知等式y =kx +b ,当x =1时,y =2;当x =2时,y =-3.若x =-1,则y =________.4.若m ,n 为实数,且|2m+n ﹣,则(m+n )2018的值为________ .5.若235,{ 323x y x y +=-=-则2(2x +3y)+3(3x -2y)=________.6.对于X 、Y 定义一种新运算“*”:X*Y=aX+bY ,其中a 、b 为常数,等式右边是通常的加法和乘法的运算.已知:3*5=15,4*7=28,那么2*3=__________ . 三、解答题 1.解方程组:(1)(2);2.解关于x 、y 的方程组时,甲正确地解得方程组的解为,乙因为把c抄错了,在计算无误的情况下解得方程组的解为,求a、b、c的值.3.随着“互联网+”时代的到来,一种新型打车方式受到大众欢迎,该打车方式的总费用由里程费和耗时费组成,其中里程费按p元/公里计算,耗时费按q元/分钟计算(总费用不足9元按9元计价).小明、小刚两人用该打车方式出行,按上述计价规则,其打车总费用、(1)求p,q的值;(2)如果小华也用该打车方式,车速55公里/时,行驶了11公里,那么小华的打车总费用为多少?4.已知:用2辆A型车和1辆B型车载满货物一次可运货11吨;用1辆A型车和2辆B型车载满货物一次可运货13吨.根据以上信息, 解答下列问题:(1)1辆A型车和l辆B型车都载满货物一次可分别运货多少吨?(2)某物流公司现有31吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都载满货物请用含有b的式子表示a,并帮该物流公司设计租车方案;(3)在(2)的条件下,若A型车每辆需租金500元/次,B型车每辆需租金600元/次.请选出最省钱的租车方案,并求出最少租车费用.5.某商场计划从一厂家购进若干部新型手机以满足市场需求.已知该厂家生产三种不同型号的手机,出厂价分别是甲种型号手机1800元/部,乙种型号手机600元/部,丙种型号手机1200元/部.商场在经销中,甲种型号手机可赚200元/部,乙种型号手机可赚100元/部,丙种型号手机可赚120元/部.(1)若商场用6万元同时购进两种不同型号的手机共40部,并恰好将钱用完,请你通过计算分析进货方案;(2)在(1)的条件下,求盈利最多的进货方案.参考答案一、选择题。

最新人教版七年级数学下册全册单元测试(附答案)

最新人教版七年级数学下册全册单元测试(附答案)

人教版数学七年级下册第五章平行线与相交线单元测试(含答案)一、单选题(共有12道小题)1.如图,将直线乙沿四的方向得到直线b若N『50° ,则N2的度数是()A.40°B.50°C.90°D.130°2.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合, 含30。

角的直角三角板的斜边与纸条一边重合,含45。

角的三角板的一个顶点在纸条的另一边上,则N1的度数是(A. 30°B. 20°C.3.如图,Zl+Z2=180°90 a15° D. 14°\一 1,Z3=100° 则N4 等于()A. 70°B. 80°C.90°D. 100°4.如图々〃处等边△板的顶点£在直线r上,Zl= 20° ,则N2的度数为()上BA. 60°B. 45°5.如图,已知直线a〃8, N如131° oo o oC. 40°D.30°,则N2等于()则N2的度数是()7.如图,AB〃CD,EF交AB、CD于点E、F,EG平分NBEF,交CD于点G.若如1=40° , 则NEGF=()8.如图,4?是/见。

的平分线,AD//BC. ZB=30° ,则为()C. 70°D. 110°9.下列命题的逆命题不正确的是(A.平行四边形的对角线互相平分C.等腰三角形的两个底角相等C. 80°D. 120°)B.两直线平行,内错角相等D.对顶角相等10.如图,是我们学过的用直尺和三角尺画平行线的方法示意图,画图的原理是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.两直线平行,同位角相等D.两直线平行,内错角相等,则N2的度数是()NE=3(T ,则NA的度数为(A. 30°B. °C. 35°D. ° 二、填空题(共有8道小题)13.已知三条不同的直线左6、。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学下册各单元试卷不等式与不等式组(时间:45分钟满分:100分)姓名一、选择题(每小题5分,共30分)1.若m>n,则下列不等式中成立的是()A.m + a<n + b B.ma<nbC.ma2>na2D.a m<a n2.不等式4(x2)>2(3x + 5)的非负整数解的个数为( )A.0个B.1个C.2个D.3个3.若不等式组的解集为1≤x≤3,则图中表示正确的是()4321-1-24321-1-2A.B.4321-1-24321-1-2C.D.4.若方程31135m x m x x的解是负数,则m的取值范围是()A.54m B.54mC.54m D.54m5.不等式123x m m的解集为2x,则m的值为()A.4 B.2C.32D.126.不等式组123xx的解集是()A.x≥ 1 B.x<5C.1≤x<5 D.x≤1或x<5二、填空题(每小题5分,共20分)7.已知x的12与5的差不小于3,用不等式表示这一关系式为。

8.某饮料瓶上有这样的字样:Eatable Date 18 months. 如果用x (单位:月)表示Eatable Date(保质期),那么该饮料的保质期可以用不等式表示为。

9.当x 时,式子3x5的值大于5x + 3的值。

10.阳阳从家到学校的路程为2400米,他早晨8点离开家,要在8点30分到8点40分之间到学校,如果用x表示他的速度(单位:米/分),则x的取值范围为。

三、做一做(每小题6分,共12分)11.、解不等式11237x x,并把它的解集表示在数轴上。

12.解不等式组513(1) 131722 x xx x四、想一想(每小题9分,共18分)13.已知方程组32121x y mx y m,m为何值时,x>y?14.有一个两位数,其十位数字比个位数字大2,这个两位数在50和70之间,你能求出这个两位数吗?五、实际应用(每小题10分,共20分015.小颖家每月水费都不少于15元,自来水公司的收费标准如下:若每户每月用水不超过5立方米,则每立方米收费 1. 8元;若每户每月用水超过5立方米,则超出部分每立方米收费2元,小颖家每月用水量至少是多少?16.学校将若干间宿舍分配给七年级一班的女生住宿,已知该班女生少于35人,若每个房间住5人,则剩下5人没处住;若每个房间住8人,则空一间房,并且还有一间房也不满。

有多少间宿舍,多少名女生?附:命题意图及参考答案(一)命题意图一、选择题1.此题意在考查学生对不等式性质的掌握情况。

2.此题意在考查学生能否在不等式的解集中选出符合要求的解。

3.此题意在考查学生能否把不等式组的解集正确地表示在数轴上。

4.此题意在考查学生能否结合已知条件列出不等式寻求问题答案。

5.此题意在考查学生对不等式解集的意义的理解:不等式解集的唯一的。

6.此题意在考查学生是否能正确地确定不等式组的解集。

二、填空题7.此题意在考查学生能否用数学关系式表达不等式。

8.此题意在考查学生能否把不等式关系应用到生活实际中。

9.此题意在考查学生能否正确地解不等式。

10.此题意在考查学生能否运用不等式的知识解决生活中的实际问题。

三、做一做11.此题意在考查学生是否掌握了不等式的解法及不等式组解集的表示。

12.此题意考查学生能否正确地解不等式组。

四、想一想13.此题意在考查学生能否将方程组的解之间的关系用不等式表示,从而解不等式寻求答案。

14.此题意在考查学生能否正确列出不等式组,并在不等式组的解集中取出符合要求的解。

五、实际应用本大题意在考查学生利用不等式及不等组解决实际问题的能力。

(二)参考答案1.D2.A3.D4.A5.B6.C7.152x≥3.8.x≤189.x<410.60<x<8011.x≥4,数轴表示略。

12.2<x≤413.m>414.53,6415.8立方米16.5间房,30名女生。

二元一次方程组(时间:45分钟满分:100分)姓名一、选择题(每小题5分,共20分)1.下列不是二元一次方程组的是()A .141y x x y B .43624x y xyC .44x y xyD .35251025x y x y2.由132x y ,可以得到用x 表示y 的式子是()A .223x y B .2133x y C .223x yD .223x y3.方程组327413x y x y 的解是()A .13x yB .31x y C .31x y D .13x y4.方程组125x y x y 的解是()A .12x yB .21x y C .12x yD .21xy 二、填空题(每小题6分,共24分)5.在349xy中,如果2y = 6,那么x =。

6.已知18x y是方程31mx y 的解,则m =。

7.若方程m x+ n y= 6的两个解是11xy,21xy,则m = ,n = 。

8.如果2150x y x y,那么x= ,y= 。

三、解下列方程组(每小题8分,共16分)9.13 233 34m nm n10.344126x y x yx y x y四、综合运用(每小题10分,共40分)11.用16元买了60分、80分两种邮票共22枚。

60分与80分的邮票各买了多少枚?12.已知梯形的面积是42cm2,高是6cm,它的下底比上底的2倍少1cm,求梯形的上下底。

13.〈〈一千零一夜〉〉中有这样一段文字:有一群鸽子,其中一部分在树上欢歌,另一部分在地上觅食,树上的一只鸽子对地上觅食的鸽子说:“若从你们中飞上来一只,则树下的鸽子就是整个鸽群的13,若从树上飞下去一只,则树上、树下的鸽子就一样多了。

”你知道树上、树下各有多少只鸽子吗?14.如图,8块相同的长方形地砖拼成一个长方形,每块长方形地砖的长和宽分别是多少?↑60cm↓附:命题意图及参考答案(一)命题意图二、选择题1.此题意在考查学生对二元一次方程组的概念的理解。

2.此题意在考查学生对用一个字母的式子表示另一个字母的掌握,为代入消元法打下基础。

3.此题意在考查学生能否运用代入法解二元一次方程组。

培养学生的计算能力。

4.此题意在考查学生能否运用加减法解二元一次方程组。

二、填空题5.6.此题主要考查学生对二元一次方程的解的理解。

7.8.此题意在考查学生能否利用绝对值的取值范围列出二元一次方程组并求得解。

六、下列方程组本大题意在考查学生能否灵活地解二元一次方程组。

七、综合运用11.此题意在考查学生用二元一次方程组解决实际问题。

12.此题意在考查学生用二元一次方程组解决与图形有关的问题。

13.本题呈现的有趣的古算题,意在激发学生的兴趣的同时,考察学生根据题意列方程组,解方程组的能力。

14.此题意在考查学生能否把图形知识与方程组联系从而解决实际问题。

(二)参考答案1.A2.C3.B4.D5.16.37.4,2.8.3,2.9.1812 mn10.17151115 xy11.60分邮票8枚,80分邮票14枚。

12.上底是5cm,下底是9cm。

13.树上有7只,树下有5只。

14.每块长方形地砖的长是45cm,宽是15cm。

平面直角坐标系(时间:45分钟满分:100分)姓名一、选择题(每小题3分,共18分)1.课间操时,小华、小军、小刚的位置如图,小华对小刚说,如果我的位置用(0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成()A .(5,4)B .(4,5)C .(3,4)D .(4,3)小华小军小刚XyDCBA(第1题图)(第2题图)2.如图,下列说法正确的是()A .A 与D 的横坐标相同。

B .C 与D 的横坐标相同。

C .B 与C 的纵坐标相同。

D .B 与D 的纵坐标相同。

3.若x 轴上的点P 到y 轴的距离为3,则点P 的坐标为()A .(3,0)B .(3,0)或(–3,0)C .(0,3)D .(0,3)或(0,–3)4.如果点P (5,y )在第四象限,则y 的取值范围是()A .y <0B .y >0C .y ≤0D .y ≥05.线段CD 是由线段AB 平移得到的。

点A (–1,4)的对应点为C (4,7),则点B (– 4,– 1)的对应点D 的坐标为()A .(2,9)B .(5,3)C .(1,2)D .(– 9,– 4)6.一个长方形在平面直角坐标系中三个顶点的坐标为(– 1,– 1)、(– 1,2)、(3,– 1),则第四个顶点的坐标为()A .(2,2)B .(3,2)C .(3,3)D .(2,3)二、填空题(每小题3分,共12分)7.如图是小刚画的一张脸,他对妹妹说“如果我用(1,3)表示左眼,用(3,3)表示右眼,那么嘴的位置可以表示成。

8.点A 在x 轴上,位于原点的右侧,距离坐标原点5个单位长度,则此点的坐标为;点B 在y 轴上,位于原点的下方,距离坐标原点5个单位长度,则此点的坐标为;点C 在y 轴左侧,在x 轴下方,距离每个坐标轴都是5个单位长度,则此点的坐标为。

12341234CBA(第7题图)(第10题图)9.小华将直角坐标系中的猫的图案向右平移了3个单位长度,平移前猫眼的坐标为(– 4,3)、(– 2,3),则移动后猫眼的坐标为。

10.如图,小强告诉小华图中A 、B 两点的坐标分别为(– 3,5)、(3,5),小华一下就说出了C 在同一坐标系下的坐标。

三、解答题(每小题10分,共30分)11.如图,这是某市部分简图,请以火车站为坐标原点建立平面直角坐标系,并分别写出各地的坐标。

体育场文化宫医院火车站宾馆市场超市体育场文化宫医院火车站宾馆超市市场12.如图,描出A (– 3,– 2)、B (2,– 2)、C (3,1)、D (– 2,1)四个点,线段AB 、CD 有什么关系?顺次连接A 、B 、C 、D 四点组成的图形是什么图形?Xy1-1-1113.建立两个适当的平面直角坐标系,分别表示边长为4的正方形的顶点的坐标。

四、试一试(15分)14.如图,(1)请写出在直角坐标系中的房子的A 、B 、C 、D 、E 、F 、G 的坐标。

(2)源源想把房子向下平移3个单位长度,你能帮他办到吗?请作出相应图案,并写出平移后的7个点的坐标。

Xy054321-4-3-2-1-19876543211011GF EDCBA五、做一做(15分)15.如图,四边形ABCD 各个顶点的坐标分别为(– 2,8),(– 11,6),(– 14,0),(0,0)。

(1)确定这个四边形的面积,你是怎么做的?(2)如果把原来ABCD 各个顶点纵坐标保持不变,横坐标增加2,所得的四边形面积又是多少?Xy0DC B A (-2,8)(-11,6)(-14,0)六、小设计(10分)16.这是一个动物园游览示意图,试设计描述这个动物园图中每个景点位置的一个方法,并画图说明。

相关文档
最新文档