晋文源2020年中考数学模拟试题及答案解析
2020年山西省中考数学模拟试卷及答案

2020年山西省中考数学模拟试卷学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共10小题,共30分)1.-的绝对值等于()A. -3B. 3C. -D.2.下列运算中,正确的是()A.x2•x3=x6 B. 2x2+3x2=5x2C. (x2)3=x8D. (x+y2)2=x2+y43.如图,它是一个正方体的展开图,若此正方体的相对面上的数互为相反数,则下列说法中正确的是()A. a=-2014B. b=-2013C. c=-2015D. 无法确定4.下列根式是最简二次根式的是()A. B. C. D.5.如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,AE∥BD交CB的延长线于点E.若∠E=35°,则∠BAC的度数为()A. 40°B. 45°C. 60°D. 70°6.不等式组的解集是()A. x<8B. x≥2C. 2≤x<8D. 2<x<87.用科学记数法表示560000=m×10n,则m、n分别是()A. m=56,n=4B. m=5.6,n=4C. m=5.6,n=5D. m=56,n=58.若一元二次方程x2+bx+5=0配方后为(x-3)2=k,则b,k的值分别为()A. 0,4B. 0,5C. -6,5D. -6,49.河北省赵县的赵州桥的桥拱是近似的抛物线形,建立如图所示的平面直角坐标系,其函数的关系式为y=-x2,当水面离桥拱顶的高度DO是4m时,这时水面宽度AB为()A. -20mB. 10mC. 20mD. -10m10.已知一个扇形的半径是2,圆心角是60°,则这个扇形的面积是()A. B. π C. D. 2π二、填空题(本大题共5小题,共15分)11.a+2-= ______ .12.小明想了解自己一学期数学成绩的变化趋势,应选用______ 统计图来描述数据.13.如图,某小区在宽20m,长32m的矩形地面上修筑同样宽的人行道(图中阴影部分),余下的部分种上草坪.要使草坪的面积为540m2,求道路的宽.设道路宽是x,则列方程为______ .14.如图1所示,O是坐标原点,菱形OABC的顶点A的坐标为(-3,4),顶点C在x轴的负半轴上,函数y=(x<0)的图象经过顶点B,则k的值为______.15.如图2所示,将等腰直角△ABC绕顶点A顺时针旋转60°后得到△AED,则∠EAC=______.图1 图2三、解答题(本大题共8小题,共75分)16.计算:3tan30°++(3-π)0-(-1)201817.如图,点C,D在线段BF上,AB∥DE,AB=DF,∠A=∠F,求证:BC=DE.18.如图,是一个可以自由转动的转盘,转盘被平均分成四个相同的扇形,分别写有1、2、3、4四个数字,指针位置固定,转动转盘后任其自由停止(指针指向边界时重转),现转动转盘两次,请用画树形图法或列表法求出指针指向相同数字的概率.19.某车间有20名工人,每人每天可加工甲种零件5个或乙种零件4个,每加工一个甲种零件获利16元,每加工一个乙种零件获利24元,若派x人加工甲种零件,其余的人加工乙种零件.(1)此车间每天所获利润为y元,求出y与x的函数关系式.(2)要使车间每天所获利润不低于1800元,至多派多少人加工甲种零件?20.周末,小亮一家人去水库游玩,他在大坝上的点A处看到一棵大树的影子刚好落在坝底的BE处(点A与大树及其影子在同一平面内),此时太阳光与地面夹角为60°,在A处测得树顶D的仰角为30°.如图所示,已知背水坡AB的坡度i=4:3,AB的长为10米,请你帮助小亮算一算这颗大树的高度.(结果精确到0.1米,参考数据:≈1.41,≈1.73.注:坡度是指坡面的铅直高度与水平宽度的比)21.在⊙O中,点C是上的一个动点(不与点A,B重合),∠ACB=120°,点I是△ABC的内心,CI的延长线交⊙O于点D,连结AD,BD.(1)求证:AD=BD;(2)猜想线段AB与DI的数量关系,并说明理由.(3)在⊙O的半径为2,点E,F是的三等分点,当点C从点E运动到点F时,求点I随之运动形成的路径长.22.如图,在Rt△ABC中,AB=AC,点D为AC延长线上一点,连接BD,过A作AM⊥BD,垂足为M,交BC于点N(1)如图1,若∠ADB=30°,BC=3,求AM的长;(2)如图2,点E在CA的延长线上,且AE=CD,连接EN并延长交BD于点F,求证:EF=FD;(3)在(2)的条件下,当AE=AC时,请求出的值.23.如图,二次函数y=ax2+bx+c的图象与x轴交于A、B两点,与y轴交于点C,点A的坐标为(2,0),点C的坐标为(0,4),它的对称轴是直线x=-1.(1)求这个二次函数的解析式;(2)在第二象限内抛物线上是否存在一点P,使△PBC的面积最大?若存在,求出△PBC的面积最大值;若没有,请说明理由.2020年山西省中考数学模拟试卷参考答案1. D2. B3. C4. D5. A6. C7. C8. D9. C10. A11.12. 折线13. (20-x)(32-x)=54014. -3215. 105°16. 解:原式=3×++1-1=2.17. 证明:∵AB∥DE∴∠B=∠EDF;在△ABC和△FDE中,,∴△ABC≌△FDE(ASA),∴BC=DE.所有等可能的情况有16种,其中两指针所指数相同的有4种,所以其概率为:=.19. 解:(1)由题意可得,y=5x×16+(20-x)×4×24=1920-16x,即y与x的函数关系式是:y=1920-16x;(2)由题意可得,1920-16x≥1800,解得,x≤7.5,即至多派7个人加工甲种零件.20. 解:如图,过点A作AG⊥BC于G,AH⊥DE于H,在Rt△AGB中,∵i=4:3,∴AG:BG=4:3,设AG=4x,BG=3x,由勾股定理得:(4x)2+(3x)2=102,解得:x=2,∴AG=8,BG=6,∵∠AGE=∠GEH=∠AHE=90°,∴四边形AGEH是矩形,∴AG=EH,AH=GE,在Rt△BDE中,∠DBE=60°,设BE=y,则DE=BE•tan∠EBD=BE•tan60°=y,在Rt△ADH中,∠DAH=30°,∵AH=BG+BE=6+y,DH=DE+HE=y+8,∴DH=AH•tan∠DAH,即:,解得:y=3+4,∴≈17.2(米),所以这棵树约为17.2米高.21. (1)证明:∵点I是△ABC的内心,∴CD平分∠ACB,∴∠ACD=∠BCD=∠ACB=×120°=60°,∴∠ABD=∠ACD=60°,∠BAD=∠BCD=60°,∴△ADB为等边三角形,∴AD=BD;(2)解:AB=DI.理由如下:连接AI,∵点I是△ABC的内心,∴AI平分∠CAB,∴∠CAI=∠BAI,∵∠DAI=∠DAB+∠BAI=60°+∠BAI,∠DIA=∠ICA+∠CAI=60°+∠CAI,∴∠DAI=∠DIA,∴DA=DI,∵△ADB为等边三角形,∴AB=AD,∴AB=DI;(3)由(2)得AD=DI=DB,∴点I在以D点为圆心,DA为半径,圆心角为60°的弧上,连接DE、DF交此弧于点I′、I″,如图,∴当点C从点E运动到点F时,点I随之运动形成的路径长为弧I′I″的长,∵点E,F是的三等分点∴∠ADE=∠EDF+∠FDB=20°,连接OA,作OH⊥AD于H,则AH=DH,∵△ADB为等边三角形,∴∠OAH=30°,∴OH=OA=1,AH=OH=,∴AD=2,∴弧I′I″的长度==π,即点I随之运动形成的路径长为π.22. 解:(1)在Rt△ABC中,AB=AC,∴△ABC是等腰直角三角形,∵BC=3,∴AB=3.∵∠ADB=30°,∴BD=6,AD=3.根据等面积法可得:AB•AD=AM•BD,∴3×3=6•AM,∴AM=.(2)证明:作AH⊥BC,垂足为H,延长AH交BD于P,连接CP,如图3所示.∵△ABC是等腰直角三角形,∴AH=BH=CH,BP=CP,∠PBC=∠PCB.∵AM⊥BD,AH⊥BC,∴∠BMN=∠AHN=90°,∵∠BNM=∠ANH,∴∠NBM=∠NAH=∠PBH.在△BHP和△AHN中,,∴△BHP≌△AHN(ASA),∴BP=AN,∴CP=AN.∵∠PCB=∠PAM,∴∠MAD=∠PAM+45°=∠PCB+45°=∠PCA,∴∠EAN=∠PCD,在△AEN和△CDP中,,∴△AEN≌△CDP(SAS),∴∠E=∠D,∴EF=DF.(3)过点F作FQ⊥AC于Q,由(2)可得,Q是DE的中点,过N作NR⊥AC于R,如图4所示.设AE=a,∵AE=AC,∴AC=3a,∴EQ=a,AD=4a,∵NR∥FQ∥AB,∴△ANR∽△FDQ∽△BAD,∴===,∴NR=AR.∵△NRC为等腰直角三角形∴AR+AR=3a,∴AR=a,∴RQ=EQ-AE-AR=a-a-a=a.∵NR∥FQ,∴△ENR∽△EFQ,∴===.23. 解:(1)根据题意得,,解得,,∴二次函数的解析式;(2)存在.理由如下:∵A的坐标为(2,0),它的对称轴是直线x=-1.∴点B的坐标为(-4,0)设P点(-4<x<0),∵S△BPC=S四边形BPCO-S△BOC=S△BOP+S△COP-S△BOC=-x2-4x=-(x+2)2+4,∴x=-2时,△PBC的面积最大为4.。
2020年山西省中考数学模拟试卷 (含答案解析)

2020年山西省中考数学模拟试卷一、选择题(本大题共10小题,共30.0分)1. 计算(−47)÷(−314)÷(−23)的结果是( ) A. −169 B. −4 C. 4 D. −449 2. 下列四个图案中,不是轴对称图案的是( )A. B.C. D.3. 下列计算正确的是( )A. (a 4b)3=a 7b 3B. −2b(4a −b 2)=−8ab −2b 3C. aa 3+a 2a 2=2a 4D. (a −5)2=a 2−254. 四个大小相同的正方体搭成的几何体如图所示,其左视图是( )A. B. C. D.5. 在某一时刻,测得一根高为1.8m 的竹竿的影长为3m ,同时测得一栋楼的影长为90m ,则这栋楼的高度为( )A. 54mB. 135mC. 150mD. 162m6. 不等式组{3x −1≥x +1x +4<4x −2的解集是( ) A. x >2 B. x ≥1 C. 1≤x <2 D. x ≥−17. 若点A(x 1,−6),B(x 2,−2),C(x 3,3)在反比例函数的图象上,则x 1,x 2,x 3的大小关系是( )A. x 1<x 2<x 3B. x 3<x 1<x 2C. x 2<x 1<x 3D. x 3<x 2<x 18. 9.如图所示,有一个半径为2的扇形,∠AOB =90°,其中OC 平分∠AOB ,BE ⊥OC ,CD ⊥AO ,则图中阴影面积为( )A. π−1B. π−2C. 3π4−2D. 2π3−19.从地面竖直向上抛出一小球,小球的高度y(米)与小球运动的时间x(秒)之间的关系式为y=ax2+bx+c(a≠0).若小球在第7秒与第14秒时的高度相同,则在下列时间中小球所在高度最高的是()A. 第8秒B. 第10秒C. 第12秒D. 第15秒10.如图,四边形ABCD是菱形,E、F、G、H分别是各边的中点,随机向菱形ABCD内部掷一粒米,则米粒落到阴影区域内的概率是()A. 14B. 12C. 18D. 23二、填空题(本大题共5小题,共15.0分)11.计算:√32−√3(√6−√3)=______.12.观察下列图形:它们是按一定规律排列的,依照此规律,第5个图形中的五角星的个数为______,第n个图形中的五角星(n为正整数)个数为______(用含n的代数式表示).13.为从甲、乙两名射击运动员中选出一人参加市锦标赛,特统计了他们最近10次射击训练的成绩,其中,他们射击的平均成绩都为8.9环,方差分别是S甲2=0.8,S乙2=1.3,从稳定性的角度来看______ 的成绩更稳定.(填“甲”或“乙”)14.将长为5,宽为4的矩形,沿四个边剪去宽为x的4个小正方形,剩余部分的面积为12,则剪去小正方形的边长x为_________.15.如图,在Rt△ABC中,∠BAC=90°,AB=4,AC=3,AD⊥BC于点D,则△ACD与△ABC的面积比为______.三、计算题(本大题共1小题,共10.0分)16.(1)计算:(12−3+56−712)÷(−136)(2)化简:(3a−2−12a2−4)÷1a+2四、解答题(本大题共7小题,共65.0分)17.“双十一”期间,合肥市各大商场起购物狂潮,现有甲、乙、两三个商场开展的促销活动如表所示:商场优惠活动甲全场按标价的6折销售乙实行“满100元送100元的购物券”的优惠,购物券可以在再购买时冲抵现金(如:顾客购衣服220元,券200元,再购买裤子时可冲抵现金,不再送券)丙实行“满100元减50元的优惠”(比如:某顾客购物220元,他只需付款120元)根据以上活动倍息,解决以下问题(1)三个商场同时出售一件标价290元的上衣和一条标价270元的裤子,王回满想买这一套衣服,应该选择家商场⋅(2)黄先生发现在甲、乙商场同时出售一件标价380元的上衣和一条标价300多元的裤子,最后付款额也一样,请问这条裤子的标价是多少元⋅(3)丙商场又推出“打折活动”(打折与满减只能参加一种),张先生买了一件标价为630元的上衣参加“打折活动”,张先生发现竟然比“满减活动”多付了48元钱,问丙商场先打了多少折后再参加活动⋅18.如图,PA、PB分别与⊙O相切于A,B两点,点C在⊙O上,∠P=60°,(1)求∠C的度数;(2)若⊙O半径为1,求PA的长.19.从共享单车,共享汽车等共享出行到共享充电宝,共享雨伞等共享物品,各式各样的共享经济模式在各个领域迅速普及应用,越来越多的企业与个人成为参与者与受益者.根据国家信息中心发布的《中国分享经济发展报告2017》显示,2016年我国共享经济市场交易额约为34520亿元,比上年增长103%;超6亿人参与共享经济活动,比上年增加约1亿人.如图是源于该报告中的中国共享经济重点领域市场规模统计图:(1)请根据统计图解答下列问题:①图中涉及的七个重点领域中,2016年交易额的中位数是______亿元.②请分别计算图中的“知识技能”和“资金”两个重点领域从2015年到2016年交易额的增长率(精确到1%),并就这两个重点领域中的一个分别从交易额和增长率两个方面,谈谈你的认识.(2)小宇和小强分别对共享经济中的“共享出行”和“共享知识”最感兴趣,他们上网查阅了相关资料,顺便收集到四个共享经济领域的图标,并将其制成编号为A,B,C,D的四张卡片(除编号和内容外,其余完全相同)他们将这四张卡片背面朝上,洗匀放好,从中随机抽取一张(不放回),再从中随机抽取一张,请用列表或画树状图的方法求抽到的两张卡片恰好是“共享出行”和“共享知识”的概率(这四张卡片分别用它们的编号A,B,C,D表示)20.如图,在△ABC中,AB=5,AC=12,BC=13,BC的垂直平分线分别交AC、BC于点D、E,求CD的长.21.图1中是小区常见的漫步机,当人踩在踏板上,握住扶手,像走路一样抬腿,就会带动踏板连杆绕轴旋转,从侧面看图2,立柱DE高1.7m,AD长0.3m,踏板静止时从侧面看与AE上点B 重合,BE长0.2m,当踏板旋转到C处时,测得∠CAB=42°,求此时点C距离地面EF的高度.(结果精确到0.1m)(参考数据:sin42°=0.67,cos42°=0.74,tan42°=0.90)22.如图,四边形ABCD是正方形,E,F分别在线段BC和CD上,∠EAF=45°.连接EF.将△ADF绕着点A顺时针旋转90°,得到△ABF′.(1)证明:△AEF≌△AEF′;(2)证明:EF=BE+DF.(3)已知正方形ABCD边长是6,EF=5,求线段BE的长.23.如图,抛物线y=x2+bx+c与y轴交于点A(0,2),对称轴为直线x=−2,平行于x轴的直线与抛物线交于B、C两点,点B在对称轴左侧,BC=6.(1)求此抛物线的解析式.(2)点P在x轴上,直线CP将△ABC面积分成2:3两部分,请直接写出P点坐标.-------- 答案与解析 --------1.答案:B解析:【分析】此题主要考查了有理数的除法,关键是正确判断出结果的符号.根据有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数可得答案.【解答】解:原式=−(47×143×32)=−4,故选:B.2.答案:B解析:【分析】本题考查了轴对称图形的概念.轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,解答此题根据轴对称的定义解答即可.【解答】解:A.是轴对称图形;B.不是轴对称图形;C.是轴对称图形;D.是轴对称图形.故选B.3.答案:C解析:解:A、(a4b)3=a12b3,故此选项不合题意;B、−2b(4a−b2)=−8ab+2b3,故此选项不合题意;C、aa3+a2a2=2a4,故此选项符合题意;D、(a−5)2=a2−10a+25,故此选项不合题意;故选:C.直接利用积的乘方运算法则以及合并同类项法则和完全平方公式分别判断得出答案.此题主要考查了积的乘方运算以及合并同类项和完全平方公式,正确掌握相关运算法则是解题关键.4.答案:D解析:解:从左边看第一层是两个小正方形,第二层左边一个小正方形,故选:D.根据从左边看得到的图形是左视图,可得答案.本题考查了简单组合体的三视图,从左边看得到的图形是左视图.5.答案:A解析:解:设这栋楼的高度为hm,∵在某一时刻,测得一根高为1.8m的竹竿的影长为3m,同时测得一栋楼的影长为90m,∴1.83=ℎ90,解得ℎ=54(m).故选:A.根据同一时刻物高与影长成正比即可得出结论.本题考查平行投影及相似三角形的应用,熟知同一时刻物高与影长成正比是解答此题的关键.6.答案:A解析:解:解不等式3x−1≥x+1,得:x≥1,解不等式x+4<4x−2,得:x>2,则不等式组的解集为x>2,故选:A.分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.7.答案:B解析:【分析】本题考查了反比例函数图象上点的坐标特征及反比例函数的性质,熟练掌握反比例函数的性质是本题的关键.先根据反比例函数y=−1x的系数−1<0判断出函数图象在二、四象限,在每个象限内,y随x的增大而增大,再根据−6<−2<0<3,判断出x1,x2,x3的大小.【解答】解:∵k=−1<0,∴函数图象在第二、四象限,在每个象限内,y随x的增大而增大,又∵−6<−2<0<3,∴点A(x1,−6),B(x2,−2)在第四象限,点C(x3,3)在第二象限,∴x3<x1<x2.故选B.8.答案:B解析:分析:首先证明△COD,△BOE是等腰直角三角形,由OB=OC=2,推出OD=CD=OE=BE=√2,根据S阴=S扇形AOB−S△CDO−S△BOE计算即可.详解:∵∠AOB=90°,OC平分∠AOB,∴∠AOC=∠BOC=45°,∵BE⊥OC,CD⊥AO,∴△COD,△BOE是等腰直角三角形,∵OB=OC=2,∴OD=CD=OE=BE=√2,∴S阴=S扇形AOB−S△CDO−S△BOE=90π⋅22360−12×√2×√2−12×√2×√2=π−2,故选:B.点睛:本题考查扇形的面积,角平分线的性质,等腰直角三角形的判定和性质等知识.解题的关键是学会利用分割法求阴影部分的面积,是中考常考的题型.9.答案:B解析:【分析】本题考查二次函数的应用,解答本题的关键是明确题意,利用二次函数的性质解答.根据题意可以求得该函数的对称轴,然后根据二次函数具有对称性,离对称轴越近,对应的y值越大,即可解答本题.【解答】解:由题意可得,当x=7+142=10.5时,y取得最大值,∵二次函数具有对称性,∴当t=8,10,12,15时,t取10时,y取得最大值,故选:B.10.答案:B解析:【分析】本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.先求出阴影部分的面积与菱形的面积之比,再根据概率公式即可得出答案.【解答】解:∵四边形ABCD是菱形,E、F、G、H分别是各边的中点,∴四边形HGFE的面积是菱形ABCD面积的12,∴米粒落到阴影区域内的概率是12.故选B.11.答案:3+√2解析:解:原式=4√2−3√2+3=3+√2.故答案为3+√2.先进行二次根式的乘法运算,然后化简后合并即可.本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可. 12.答案:22 1+n +2n−1(n 为正整数)解析:【分析】本题考查了图形变化规律的问题,把五角星分成三部分进行考虑,并找出第n 个图形五角星的个数的表达式是解题的关键.解:∵第1个图形中五角星的个数3=1+1+1,根据每个图形观察发现,每个图形上、左、右的五角星个数个图形序号一致,下方只有一个,根据规律即可求出答案.【解答】第2个图形中五角星的个数5=1+2+2,第3个图形中五角星的个数8=1+3+22,第4个图形中五角星的个数13=1+4+23,∴第5个图形中五角星的个数为1+5+24=22,则第n 个图形中的五角星(n 为正整数)个数为1+n +2n−1(n 为正整数).故答案为22;1+n +2n−1(n 为正整数).13.答案:甲解析:解:∵S 甲2=0.8,S 乙2=1.3,∴S 甲2<S 乙2,∴成绩最稳定的运动员是甲,故答案是:甲.根据方差的意义即可得.本题主要考查方差,熟练掌握方差的意义:方差越小,数据的密集度越高,波动幅度越小是解题的关键.14.答案:√2解析:【分析】本题考查了一元二次方程的应用,读懂题意,找到等量关系准确的列出式子是解题的关键,注意:剩余部分面积用原矩形面积减去4个小正方形面积,用长方形的面积减去四个小正方形的面积即为剩余部分面积,根据已知可列出方程求解.【解答】解:如图,矩形ABCD 的长为5,宽为4,沿四个边剪去宽为x 的4个小正方形后,剩余部分如图,依题意得5×4−4x 2=12,解之得x=√2,x=−√2(不合题意,舍去).所以剪去小正方形的宽x为√2故答案为√2.15.答案:9:25解析:解:在Rt△ABC中,∵∠BAC=90°,AB=4,AC=3,∴BC=√32+42=5,∵∠C=∠C,∠ADC=∠CAB=90°,∴△ACD∽△BCA,∴AC2=CD⋅CB,∴CD=95,∴S△ACD:S△ABC=(12⋅CD⋅AD):(12⋅BC⋅AD)=CD:BC=9:25,故答案为9:25.本题考查相似三角形的判定和性质、勾股定理、三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.根据S△ACD:S△ABC=(12⋅CD⋅AD):(12⋅BC⋅AD)=CD:BC,只要求出CD、BC即可解决问题.16.答案:解:(1)原式=(12−3+56−712)×(−36)=−12+108−30+21=87;(2)原式=[3a+6(a+2)(a−2)−12(a+2)(a−2)]⋅(a+2)=3(a−2)(a+2)(a−2)⋅(a+2)=3.解析:(1)将除法转化为乘法,再利用乘法分配律计算可得.(2)先计算括号内分式的减法、将除法转化为乘法,再约分即可得.本题主要考查分式和实数的混合运算,解题的关键是熟练掌握分式和实数的混合运算顺序和运算法则.17.答案:解:(1)选甲商城需付费用为(290+270)×0.6=336(元);选乙商城需付费用为290+(270−200)=360(元);选丙商城需付费用为290+270−5×50=310(元).∵310<336<360,∴选择丙商城最实惠.(2)设这条裤子的标价为x元,根据题意得:(380+x)×0.6=380+x−100×3,解得:x=370,答:这条裤子的标价为370元.(3)设丙商场先打了y折后再参加活动,根据题意得:630×y10−(630−6×50)=48,解得y=6,答:丙商场先打了6折后再参加活动.解析:本题考查了一元一次方程的应用,解题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程进行求解.(1)按照不同的优惠方案算出实际花的钱数,再比较得出答案即可;(2)设这条裤子的标价为x元,按照优惠方案算出实际付款数,根据付款额一样,列方程求解即可;(3)先设丙商场先打了y折后再参加活动,根据题意列方程求解即可.18.答案:解:(1)连接OA、OB,∵PA、PB分别与⊙O相切于A、B两点,∴OA⊥PA,OB⊥PB,∴∠OAP=∠OBP=90°,∴∠AOB=180°−∠P=180°−60°=120°,∴∠C=12∠AOB=12×120°=60°.(2)连OP,∴∠APO=∠BPO=30°,∴OP=2OA=2,∴PA=√OP2−OA2=√3.解析:(1)先利用切线的性质得∠OAP=∠OBP=90°,再利用四边形的内角和计算出∠AOB的度数,然后根据圆周角定理计算∠C的度数.(2)利用含30°的直角三角形的性质解答即可.本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了圆周角定理.19.答案:(1)①2038;②“知识技能”的增长率为:610−200200×100%=205%,“资金”的增长率为:20863−1000010000≈109%,由此可知,“知识技能”领域交易额较小,其增长率最高,达到200%以上,其发展速度惊人.(3)画树状图为:共有12种等可能的结果数,其中抽到“共享出行”和“共享知识”的结果数为2,所以抽到“共享出行”和“共享知识”的概率=212=16.解析:解:(1)①由图可知,2016年七个重点领域的交易额分别为70、245、610、2038、3300、7233、20863,2016年交易额的中位数是2038亿元,故答案为:2038;②见答案.(3)见答案.【分析】(1)根据图表将2016年七个重点领域的交易额从小到大罗列出来,根据中位数的定义即可得;(2)将(2016年的资金−2015年的资金)÷2015年的资金可分别求得两领域的增长率,结合增长率提出合理的认识即可;(3)画树状图列出所有等可能结果,根据概率公式求解可得.本题主要考查条形统计图、折线统计图和列表法与树状图法求概率,根据条形图得出解题所需数据及画树状图列出所有等可能结果是解题的关键.20.答案:解:连接DB,在△ACB中,∵AB2+AC2=52+122=169,又∵BC2 =132 =169,∴AB2+AC2=BC2.∴△ACB是直角三角形,∠A=90°,∵DE垂直平分BC,∴DC=DB,设DC=DB=x,则AD=12−x.在Rt△ABD中,∠A=90°,AB2+AD2=BD2,即52+(12−x)2=x2,解得x=16924,即CD=16924.解析:本题考查了勾股定理的逆定理,线段的垂直平分线的性质,正确的作出辅助线是解题的关键,连接DB,根据勾股定理的逆定理得到∠A=90°,根据线段垂直平分线的性质可知DC=DB,设DC= DB=x,则AD=12−x,根据勾股定理即可得到结论.21.答案:解:由题意,得AE=DE−AD=1.7−0.3=1.4m,AB=AE−BE=1.4−0.2=1.2m,由旋转,得AC=AB=1.2m,过点C作CG⊥AB于G,过点C作CH⊥EF于点H,在Rt△ACG中,∠AGC=90°,∠CAG=42°,cos∠CAG=AG,AC∴AG=AC⋅cos∠CAG=1.2×cos42°=1.2×0.74≈0.9m,∴EG=AE−AG≈1.4−0.9=0.5m,∴CH=EG=0.5m.解析:过点C作CG⊥AB于G,通过解余弦函数求得AG,然后根据EG=AE−AG求得即可.此题主要考查了解直角三角形的应用,熟练应用锐角三角函数关系是解题关键.22.答案:解:(1)由旋转的性质可得AF=AF′,DF=BF′,∠DAF=BAF′,B、C、F′三点共线,∵∠EAF=45°,∠BAD=90°,∴∠DAF+∠BAE=∠BAD−∠EAF=45°,∴∠EAF′=∠BAF′+∠BAE=∠DAF+∠BAE=45°=∠EAF,∵AF=AF′,∠EAF′=∠EAF,AE=AE,∴△AEF≌△AEF′(SAS);(2)∵△AEF≌△AEF′,∴EF=EF′=BE+BF′,又∵DF=BF′,∴EF=BE+DF;(3)设BE=x,∵EF=BE+DF,EF=5∴DF=5−x.又∵正方形ABCD边长是6,即BC=CD=6∴CE=BC−BE=6−x,CF=CD−DF=6−(5−x)=x+1,在Rt△CEF中,有CE2+CF2=EF2即(6−x)2+(x+1)2=52,解得x1=2,x2=3,∴线段BE的长为2或3.解析:本题考查了四边形的综合问题,主要考查旋转的性质,全等三角形的判定与性质,正方形的性质,勾股定理,证明△AEF≌△AEF′是解题的关键.(1)由旋转的性质可得AF=AF′,DF=BF′,∠DAF=BAF′,由“SAS”可证△AEF≌△AEF′;(2)由全等三角形的性质可得EF=EF′=BE+BF′,即可得结论;(3)设BE=x,可得DF=5−x,由勾股定理可求BE的长.23.答案:解:(1)由题意得:x=−b2a =−b2=−2,c=2,解得:b=4,c=2,则此抛物线的解析式为y=x2+4x+2;(2)∵抛物线对称轴为直线x=−2,BC=6,∴B横坐标为−5,C横坐标为1,把x=1代入抛物线解析式得:y=7,∴B(−5,7),C(1,7),设直线AB解析式为y=kx+2,把B坐标代入得:k=−1,即y=−x+2,作出直线CP,与AB交于点Q,过Q作QH⊥y轴,与y轴交于点H,BC与y轴交于点M,可得△AQH∽△ABM,∴QHBM =AQAB,∵点P在x轴上,直线CP将△ABC面积分成2:3两部分,∴AQ:QB=2:3或AQ:QB=3:2,即AQ:AB=2:5或AQ:AB=3:5,∵BM=5,∴QH=2或QH=3,当QH=2时,把x=−2代入直线AB解析式得:y=4,此时Q(−2,4),直线CQ解析式为y=x+6,令y=0,得到x=−6,即P(−6,0);当QH=3时,把x=−3代入直线AB解析式得:y=5,此时Q(−3,5),直线CQ解析式为y=12x+132,令y=0,得到x=−13,此时P(−13,0),综上,P的坐标为(−6,0)或(−13,0).解析:(1)由对称轴直线x=2,以及A点坐标确定出b与c的值,即可求出抛物线解析式;(2)由抛物线的对称轴及BC的长,确定出B与C的横坐标,代入抛物线解析式求出纵坐标,确定出B与C坐标,利用待定系数法求出直线AB解析式,作出直线CP,与AB交于点Q,过Q作QH⊥y轴,与y轴交于点H,BC与y轴交于点M,由已知面积之比求出QH的长,确定出Q横坐标,代入直线AB解析式求出纵坐标,确定出Q坐标,再利用待定系数法求出直线CQ解析式,即可确定出P的坐标.此题考查了待定系数法求二次函数解析式,二次函数性质,以及二次函数图象上点的坐标特征,熟练掌握待定系数法是解本题的关键.。
山西省2020年中考数学模拟试题及答案

山西省2020年中考数学模拟试题及答案注意事项:1.考生务必将自己的姓名、准考证号填涂在试卷和答题卡的规定位置。
2.考生必须把答案写在答题卡上,在试卷上答题一律无效。
考试结束后,本试卷和答题卡一并交回。
3.本试卷满分120分,考试时间120分钟。
一、选择题(本题共12小题。
每小题3分,共36分。
在每小题给出的四个选项中,只有一项是正确的。
)1.5的相反数是( )A .55B .﹣5C .﹣55D .5 2.舌尖上的浪费让人触目惊心,据统计中国每年浪费的食物总量折合粮食约499.5亿千克,这个数用科学记数法应表示为( ) A .4.995×1011B .49.95×1010C .0.4995×1011D .4.995×10103.某区“引进人才”招聘考试分笔试和面试.其中笔试按60%、面试按40%计算加权平均数作为总成绩.吴老师笔试成绩为90分.面试成绩为85分,那么吴老师的总成绩为( )分. A .85B .86C .87D .884. 若以A(-0.5,0),B(2,0),C(0,1)三点为顶点画平行四边形,则第四个顶点不可能在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限5. 图①是由五个完全相同的小正方体组成的立方体图形,将图①中的一个小正方体改变位置后如图②,则三视图发生改变的是( )A. 主视图B. 俯视图C. 左视图D. 主视图、俯视图和左视图都改变 6.如图,已知∠ABC =∠DCB ,添加以下条件,不能判定△ABC ≌△DCB 的是( )A .∠A =∠DB .∠ACB =∠DBC C .AC =DBD .AB =DC7. 若反比例函数y =(k ≠0)的图象经过点P (2,﹣3),则该函数的图象不经过的点是( ) A .(3,﹣2)B .(1,﹣6)C .(﹣1,6)D .(﹣1,﹣6)8.若圆锥的底面半径r 为6cm ,高h 为8cm ,则圆锥的侧面积为( ) A .30πcm2 B .60πcm2 C .48πcm2 D .80πcm29.将1.2.3三个数字随机生成的点的坐标列成下表.如果每个点出现的可能性相等,那么从中任意取一点,这个点在函数y=x 图象上的概率是( )A.0.3B.0.5C.31 D.3210.如图1,点P 从矩形ABCD 的顶点A 出发沿A →B →C 以2cm /s 的速度匀速运动到点C ,图2是点P 运动时,△APD 的面积y (cm 2)随运动时间x (s )变化而变化的函数关系图象,则矩形ABCD 的面积为( )A .36B .48C .32D .2411.如图,AB 是⊙O 的直径,M 、N 是弧AB (异于A 、B )上两点,C 是弧MN 上一动点,∠ACB 的角平分线交⊙O 于点D ,∠BAC 的平分线交CD 于点E .当点C 从点M 运动到点N 时,则C 、E 两点的运动路径长的比是( ) A .2 B .2C .23 D .2512. 函数y=4x-1和y=x-1在第一象限内的图象如图,点P 是y=4x-1的图象上一动点,PC ⊥x 轴于点C ,交y=x-1的图象于点A ,PD ⊥y 轴于D ,交y=x-1的图象于点B ,给出如下4个结论:①△ ODB 与△OCA 的面积相等; ②线段PA 与PB 始终相等;③四边形PAOB 的面积大小不会发生变化; ④3CA=AP .其中正确的结论是( )A.①②③B.①②④C.②③④D.①③④二、填空题(本题共6小题,满分18分。
晋文源2020年中考数学模拟试题及答案解析

晋⽂源2020年中考数学模拟试题及答案解析晋⽂源初三摸底检测试题数学第Ⅰ卷选择题(共30分)⼀、选择题(在每⼩题给出的四个选项中,只有⼀项符合题⽬要求,请选出并在答题卡上将该项涂⿊.本⼤题共10个⼩题,每⼩题3分,共30分)1.数轴上点A ,B 表⽰的数分别是5,-2,它们之间的距离可以表⽰为A .|-2-5|B .-2-5C .-2+5D .|-2+5|2.下⾯四个⼿机应⽤图标中是轴对称图形的是A. B. c. D.3.在⼀个不透明的袋⼦中装有形状、⼤⼩、质地完全相同的5个球,其中3个⿊球、2个⽩球,从袋⼦中⼀次摸出3个球,下列事件是必然事件的是A .摸出的是3个⽩球B .摸出的是3个⿊球C .摸出的球中⾄少有1个是⿊球D .摸出的是2个⽩球、1个⿊球4.下列运算正确的是A .515422=÷-)(B .14322-=-x x C .523)1575(=÷-D .632)(x x =--5.不等式4262+>-x x 的解集是A .x <-5B .x >-5C .x >5D .x <56.由若⼲个相同的⼩正⽅体搭成的⼀个⼏何体的主视图和俯视图如图所⽰,则组成这个⼏何体的⼩正⽅体的个数最多有A .8B .7C .6D .5(第6题图)7.⽣物活动⼩组的同学们观察某植物⽣长,得到该植物⾼度y (单位:cm )与观察时间x (单位:天)的关系,并画出如图所⽰的图象(CD ∥x 轴),该植物最⾼的⾼度是A .50cmB .20cmC .16cmD .12cm(第7题图)8.如图,有⼀个边长为2cm 的正六边形纸⽚,若在该纸⽚上沿虚线剪⼀个最⼤圆形纸⽚,则这个圆形纸⽚的半径是A .3cmB .2cmC .32cmD .4cm(第8题图)9.如图,已知在平⾯直⾓坐标系中,点O 是坐标原点,△AOB 是直⾓三⾓形,∠AOB =90°,OB =2OA ,点B 在反⽐例函数x y 2=上,若点A 在反⽐例函数xky =上,则k 的值为A .21B .21-C .41D .41-(第9题图)10.如图,点A 在x 轴上,∠OAB =90°,∠B =30°,OB =6,将△OAB 绕点O 按顺时针⽅向旋转120°得到△OA ′B ′,则点B ′的坐标是A .(33,-3)B .(3,33)C .(33,3)D .(3,33 )(第10题图)第Ⅱ卷(⾮选择题90分)⼆、填空题(本⼤题共5个⼩题,每⼩题3分,共15分)11-1.据2020年3⽉公布的《⼭西省2019年国民经济和社会发展统计公报》显⽰,经初步核算,2019年我省实现地区⽣产总值17026.68亿元,⽐上年增长6.2%.数据17026.68亿元⽤科学记数法表⽰为元.11-2.我们规定把同⼀副扑克牌中的红桃A,⿊桃A,梅花A三张牌背⾯朝上放在桌⼦上,将扑克牌洗匀后从中随机抽取⼀张,记下扑克牌的花⾊后放回,洗匀后再随机抽取⼀张,则两次抽取的扑克牌为同⼀张的概率为.(第11-2题)11-3.杨辉,字谦光,钱塘(今浙江杭州)⼈,南宋杰出的数学家和数学教育家,杨辉⼀⽣留下了⼤量的著述.下⾯是杨辉在1275年提出的⼀个问题(选⾃杨辉所著《⽥亩⽐类乘除算法》):直⽥积(矩形⾯积)⼋百六⼗四步(平⽅步),只云阔(宽)不及长⼀⼗⼆步(宽⽐长少⼀⼗⼆步),问阔及长各⼏步.解答这个问题可知长为步.11-4.如图,在□ABCD 中,AH ⊥BC 于点H ,点E 在AD 上,∠EBC =45°,BE 交AH 于点F ,连接CF ,CF ⊥CD .若BH =1,AB =10,则EF 的长为.(第11-4题)11-5.如图,在□ABCD 中,AB =BC =2,∠ABC =60°,过点D 作DE ∥AC ,DE =21AC ,连接AE ,则△ADE 的周长为.(第11-5题)三、解答题(本⼤题共8个⼩题,共75分.解答题应写出⽂字说明、证明过程或演算步骤)12.(每⼩题5分,共10分)(1)解⽅程组:=+-=+--.232),1(32)1(4yx y y x (2)已知实数a 满⾜a 2+2a -9=0,求12)2)(1(121122+-++÷-+-+a a a a a a a 的值.13.(本题7分)如图,在Rt △ABC 中,∠C =90°,点D 是CB 的中点,将△ACD 沿AD 折叠后得到△AED ,过点B 作BF ∥AC 交AE 的延长线于点F .求证:BF =EF .14.(本题6分)阅读理解,并解决问题:“整体思想”是中学数学中的⼀种重要思想,贯穿于中学数学的全过程,⽐如整体代⼊,整体换元,整体约减,整体求和,整体构造,…,有些问题若从局部求解,采取各个击破的⽅式,很难解决,⽽从全局着眼,整体思考,会使问题化繁为简,化难为易,复杂问题也能迎刃⽽解.例:当代数式x2+3x+5的值为7时,求代数式3x2+9x-2的值.解:因为x2+3x+5=7,所以x2+3x=2.所以3x2+9x-2=3(x2+3x)-2=3×2-2=4.以上⽅法是典型的整体代⼊法.请根据阅读材料,解决下列问题:(1)已知a2+3a-2=0,求5a3+15a2-10a+2020的值.(2)我们知道⽅程x2+2x-3=0的解是x1=1,x2=-3,现给出另⼀个⽅程(2x+3)2+2(2x+3)-3=0,则它的解是.15.(本题9分)某社区组织了以“奔向幸福,‘毽’步如飞”为主题的踢毽⼦⽐赛活动,初赛结束后有甲、⼄两个代表队进⼊决赛,已知每队有5名队员,按团体总数排列名次,在规定时间内每⼈踢100个以上(含100)为优秀.下表是两队各队员的⽐赛成绩.1号2号3号4号5号总数甲队1031029810097500⼄队979910096108500经统计发现两队5名队员踢毽⼦的总个数相等,按照⽐赛规则,两队获得并列第⼀.学习统计知识后,我们可以通过考查数据中的其它信息作为参考,进⾏综合评定:(1)甲、⼄两队的优秀率分别为,;(2)甲队⽐赛数据的中位数为个;⼄队⽐赛数据的中位数为个;(3)分别计算甲、⼄两队⽐赛数据的⽅差;(4)根据以上信息,你认为综合评定哪⼀个队的成绩好?简述理由.16.(本题8分)如图1,⼀辆汽车从A地出发去往C地,A,C两地相距273km.由于A,C之间某路段正在修路.驾驶员临时改变路线,先由A地开往B地,再由B地开往C地,如图2是从该场景中抽象出来的⽰意图,已知∠A=30°,∠C=45°,则这样的⾏驶路程⽐原来路程273km远了多少?(结果精确到1km,参考数据:2≈1.41,3≈1.73)17.(本题9分)“⼗三五”以来,⼭西省共解决372个村、35.8万农村⼈⼝的饮⽔型氟超标问题,让农村群众真正喝上⼲净⽔、放⼼⽔、安全⽔.某公司抓住商机,根据市场需求代理A,B两种型号的净⽔器,已知每台A型净⽔器⽐每台B型净⽔器进价多200元,⽤5万元购进A型净⽔器与⽤4.5万元购进B型净⽔器的数量相等.(1)求每台A型,B型净⽔器的进价各是多少元?(2)该公司计划购进A,B两种型号的净⽔器共55台进⾏试销,其中A型净⽔器为m 台,购买两种净⽔器的总资⾦不超过10.8万元.则最多可购进A型号净⽔器多少台?(A 型)(B 型)18.(本题12分)综合与实践正⽅形内“奇妙点”及性质探究定义:如图1,在正⽅形ABCD 中,以BC 为直径作半圆O ,以D 为圆⼼,DA 为半径作⌒AC ,与半圆O 交于点P .我们称点P 为正⽅形ABCD 的⼀个“奇妙点”.过奇妙点的多条线段与正⽅形ABCD ⽆论是位置关系还是数量关系,都具有不少优美的性质值得探究.性质探究:如图2,连接DP 并延长交AB 于点E ,则DE 为半圆O 的切线.证明:连接OP ,OD .由作图可知,DP =DC ,OP =OC ,⼜∵OD =OD .∴△OPD ≌△OCD .(SSS )∴∠OPD =∠OCD =90°.∴DE 是半圆O 的切线.问题解决:(1)如图3,在图2的基础上,连接OE .请判断∠BOE 和∠CDO 的数量关系,并说明理由;(图1)(图2)(图3)(图4)(图5)(2)在(1)的条件下,请直接写出线段DE ,BE ,CD 之间的数量关系;(3)如图4,已知点P 为正⽅形ABCD 的⼀个“奇妙点”,点O 为BC 的中点,连接DP 并延长交AB 于点E ,连接CP 并延长交AB 于点F ,请写出BE 和AB 的数量关系,并说明理由;(4)如图5,已知点E ,F ,G ,H 为正⽅形ABCD 的四个“奇妙点”.连接AG ,BH ,CE ,DF ,恰好得到⼀个特殊的“赵爽弦图”.请根据图形,探究并直接写出⼀个不全等的⼏何图形⾯积之间的数量关系.19.(本题14分)综合与探究:在平⾯直⾓坐标系xOy 中,已知抛物线32332632++-=x x y 与x 轴交于A ,B 两点(点B 在点A 的右侧),与y 轴交于点C ,它的对称轴与x 轴交于点D ,直线l 经过C ,D 两点,连接AC .(1)求A ,B 两点的坐标及直线l 的函数表达式;(2)探索直线l 上是否存在点E ,使△ACE 为直⾓三⾓形,若存在,求出点E 的坐标;若不存在,说明理由;(3)若点P 是直线l 上的⼀个动点,试探究在抛物线上是否存在点Q :①使以点A,C,P,Q为顶点的四边形为菱形,若存在,请直接写出点Q的坐标;若不存在,说明理由;②使以点A,C,P,Q为顶点的四边形为矩形,若存在,请直接写出点Q的坐标;若不存在,说明理由.找准⽅向 事半功倍临门⼀脚 决战中考体现最新中考改⾰细微变化,新⽅向新素材、新主题查漏补缺、强化训练全仿真模拟多⾓度命题全⽅位猜押多维度预测晋⽂源教育隆重出品时政热点 中考冲刺时政热点事件化⾼频考点集训化中考疑点问题化考政重点习题化扫码关注轻松提分上市时间:5⽉10⽇上市时间:6⽉1⽇上市时间:6⽉25⽇晋⽂源初三摸底检测试题数学参考答案及评分标准⼀、选择题:题号12345678910答案ADCDABCABD⼆、填空题:11-1. 1.702668×101211-2.3111-3.3611-4.2211-5.73+三、解答题:12.解:(1)原⽅程可化为=+=-②①,.122354y x y x ····································2分①×2+②得11x =22.解得x =2.····················································································4分把x =2代⼊①得y =3.所以,这个⽅程组的解为?==.3,2y x ·························································5分(2)解:原式=)2)(1()1()1)(1(2112++-?-++-+a a a a a a a ···························7分=2)1(111+--+a a a =2)1(2+a .·······································································8分∵a 2+2a -9=0,∴(a +1)2=10.·············································································9分∴原式=51102)1(22==+a .································································10分13.证明:如答图,连接DF ,答图∵D 是CB 的中点,∴CD =BD .·····················································································1分∵将△ACD 沿AD 折叠后得到△AED ,∴CD =ED ,∠AED =∠C =90°.·······························································2分∴BD =ED ,∠DEF =90°.······································································3分∵BF ∥AC ,∠C =90°,∴∠CBF =90°.∴∠DBF =∠DEF =90°.·········································································4分在Rt △DBF 和Rt △DEF 中,==,ED BD DF DF ,∴Rt △DBF ≌Rt △DEF (HL ).···································································6分∴BF =EF .······················································································7分14.(1)(⽅法不唯⼀)例如,解:5a 3+15a 2-10a +2020=5a (a 2+3a -2)+2020.···································································2分∵a 2+3a -2=0.∴原式=0+2020=2020.············································································3分∴5a 3+15a 2-10a +2020的值为2020.·····················································4分。
2020年中考数学模拟试卷(含答案)

2020年中考数学模拟试卷一、选择题(本大题有16个小题,共42分.1〜10小题各3分,11〜16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)下列各数中,小于﹣3的数是()A.0B.1C.﹣2D.﹣42.(3分)下列图形中,既是轴对称图形又是中心对称图形的是()3.(3分)下列计算正确的是()A.(﹣a3)2=﹣a6B.3x+2y=6xy C.3﹣2=D.=±34.若k≠0,b<0,则y=kx+b的图象可能是()5. 图1是数学家皮亚特•海恩(Piet Hein)发明的索玛立方块,它由四个及四个以内大小相同的立方体以面相连接构成的不规则形状组件组成.图2不可能是下面哪个组件的视图()A.B.C.D.6.3分)四个小朋友玩跷跷板,他们的体重分别为P、Q、R、S,如图所示,则他们的体重大小关系是()A.P>R>S>Q B.Q>S>P>R C.S>P>Q>R D.S>P>R>Q 7.(3分)已知方程组的解为,则〇、□分别为()A.1,2B.1,5C.5,I D.2,48.(3分)证明:平行四边形对角线互相平分.已知:四边形ABCD是平行四边形,如图所示.求证:AO=CO,BO=DO.以下是排乱的证明过程,正确的顺序应是①∵∠ABO=∠CDO,∠BAC=∠DCA.②∵四边形ABCD是平行四边形.③∴AB∥CD,AB=DC.④△AOB≌△COD.⑤∴OA=OC,OB=OD()A.②①③④⑤B.②③⑤①④C.②③①④⑤D.③②①④⑤9.((3分)如图,△OAB∽△OCD,OA:OC=3:2,∠A=α,∠C=β,△OAB与△OCD 的面积分别是S1和S2,△OAB与△OCD的周长分别是C1和C2,则下列等式一定成立的是()A.B.C.D.10.(3分)如图,在△ABC中,CA=CB=4,∠ACB=90°,以AB中点D为圆心,作圆心角为90°的扇形DEF,点C恰好在弧EF上,则图中阴影部分的面积是()A.π﹣2B.π﹣1C.2π﹣4D.不确定11.(2分)在东西方向的海岸线上有A,B两个港口,甲货船从A港沿东北方向以5海里/时的速度出发,同时乙货船从B港口沿北偏西60°的方向出发,2h后相遇在点P处,如图所示.问A港与B港相距____海里.()A.10B.5+5C.10+5D.2012.(2分)下表是某校合唱团成员的年龄分布,对于不同的x,下列关于年龄的统计量不会发生改变的是()年龄/岁13141516频数515x10﹣x A.平均数、中位数B.众数、方差C.平均数、方差D.众数、中位数13.(2分)某市对城区内某一段道路的一侧全部栽上梧桐树,要求路的两端各栽一棵,并且每两棵树的间隔相等,如果每隔4米栽1棵,则树苗缺21棵:如果每隔5米栽1棵,则树苗正好用完.设原有树苗x棵,根据题意列方程,正确的是()A.4(x+21﹣1)=5(x﹣1)B.4(x+21)=5(x﹣1)C.4(x+21﹣1)=5x D.4(x+21)=5x14.(2分)已知,在△ABC中,AB=AC,求作△ABC的外心O,以下是甲、乙两同学的作法:对于两人的作法:甲:如图1,(1)作AB的垂直平分线DE;(2)作BC的垂直平分线FG;(3)DE,FG交于点O,则点O即为所求.乙:如图2,(1)作∠ABCC的平分线BD;(2)作BC的垂直平分线EF;(3)BD,EF交于点O,则点O即为所求.对于两人的作法,正确的是()A.两人都对B.两人都不对C.甲对,乙不对D.甲不对,乙对15.(2分)如图,在△ABC中,点I为△ABCC的内心,点D在BC上,且ID⊥BC,若∠ABC=44°,∠C=56°,则∠AID的度数为()A.174°B.176°C.178°D.180°16.(2分)如图,已知点A(0,2),B(2,2),C(﹣1,0),抛物线y=a(x﹣h)2+k过点C,顶点M位于第一象限且在线段AB的垂直平分线上.若抛物线与线段AB无公共点,则k的取值范围是()A .0<k <2B .0<k <2或k >C .k >D .0<k <2或k >二、填空题(本大题有3个小题,共12分,17~18小题各3分;19小题有2个空,每空3分,把答案写在题中横线上) 17.(3分)8×21= 。
2020年山西省中考数学模拟试卷(3月份)(含答案解析)

2020年山西省中考数学模拟试卷(3月份)一、选择题(本大题共10小题,共30.0分)1.计算:−5−(−3)的结果是()A. 2B. −2C. 8D. −82.国产电影《流浪地球》深受观众喜爱,截止到2019年4月15日,该电影票房已达到46.86亿元,46.86亿用科学记数法表示为()A. 0.4686×1010B. 46.86×108C. 4.686×108D. 4.686×1093.下列四个算式中,正确的个数有()①a4⋅a3=a12;②a5+a5=a10;③a5÷a5=a;④(a3)3=a6;⑤(−3)0=1.A. 0个B. 1个C. 2个D. 3个4.如图,BC//DE,∠A=94°,∠B=31°,则∠1的度数为()A. 94°B. 31°C. 63°D. 55°5.不等式组{3x−2<1x+1≥0的解集在数轴上表示正确的是()A. B.C. D.6.化简:x2x−1−xx−1=()A. 0B. 1C. xD. xx−17.如图是小鹏自己制作的正方形飞镖盘,并在盘内画了两个小正方形,则小鹏在投掷飞镖时,飞镖扎在阴影部分的概率为()A. 14B. 15C. 38D. 13(n≠0)相交于A(−1,3)、B8.如图,直线y=mx(m≠0)与双曲线y=nx两点,过点B作BC⊥x轴于点C,连接AC,则△ABC的面积为()A. 3B. 1.5C. 4.5D. 69.如图是“赵爽弦图”,△ABH、△BCG、△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形,如果AB=10,EF=2,那么AH等于()A. 2B. 4C. 6D. 810.如图所示,AB是⊙O的直径,点D、E是半圆的三等分点,AE、BD的延长线交于点C,若CE=2,则图中阴影部分的面积是()π−√3A. 43B. 2π−2√3π−√3C. 23πD. 13二、填空题(本大题共5小题,共15.0分)11.分解因式:4ab3−ab=__________.12.一件商品的进价为a元,将进价提高80%后标价,再按标价打七折销售,则这件商品销售后的利润是________元。
2020年山西省中考数学模拟试卷1

2020年山西省中考数学模拟试卷1一.选择题(共10小题,满分30分,每小题3分) 1.(3分)|a |=1,|b |=4,且ab <0,则a +b 的值为( ) A .3B .﹣3C .±3D .±52.(3分)下列计算正确的是( ) A .a 3a 2=a 6 B .(﹣3a 2)3=﹣27a 6C .(a ﹣b )2=a 2﹣b 2D .2a +3a =5a 23.(3分)某正方体的平面展开图如图所示,则原正方体中与“春”字所在的面相对的面上的字是( )A .青B .来C .斗D .奋4.(3分)下列各式中,最简二次根式是( ) A .√27B .√m 5n 2C .√12D .√65.(3分)如图,在△ABC 中,AB =AC ,BD 平分∠ABC 交AC 于点D ,AE ∥BD 交CB 的延长线于点E .若∠E =35°,则∠EAC 的度数是( )A .40°B .65°C .70°D .75°6.(3分)关于x 的不等式组{x −m <03x −1>2(x −1)有解,那么m 的取值范围为( )A .m ≤﹣1B .m <﹣1C .m ≥﹣1D .m >﹣17.(3分)港珠澳大桥2018年10月24日上午9时正式通车,这座大桥跨越伶仃洋,东接香港,西接广东珠海和澳门,总长约55000m ,集桥、岛、隧于一体,是世界最长的跨海大桥,数据55000用科学记数法表示为( ) A .5.5×105B .55×104C .5.5×104D .5.5×1068.(3分)用配方法解方程x2+2x﹣3=0,下列配方结果正确的是()A.(x﹣1)2=2B.(x﹣1)2=4C.(x+1)2=2D.(x+1)2=4 9.(3分)共享单车为市民出行带来了方便,某单车公司第一个月投放a辆单车,计划第三个月投放单车y辆,设该公司第二、三两个月投放单车数量的月平均增长率为x,那么y 与x的函数关系是()A.y=x2+a B.y=a(1+x)2C.y=(1﹣x)2+a D.y=a(1﹣x)2 10.(3分)如图,在△ABC中,∠ABC=90°,AC=4,AB=2√3,以C为圆心,BC之长为半径的弧交边AC于点D,则图中阴影部分的面积为()A.2√3−23πB.23πC.2√3−43πD.43π二.填空题(共5小题,满分15分,每小题3分)11.(3分)计算:6a2−9−1a−3=.12.(3分)如图是当前对生活垃圾的常见三种处理方式,本图中的有关数据宜用统计图表示.13.(3分)2018﹣2019赛季中国男子篮球职业联赛(CBA),继续采用双循环制(每两队之间都进行两场比赛),总比赛场数为380场.求有多少支队伍参加比赛?设参赛队伍有x 支,则可列方程为.14.(3分)如图,在平面直角坐标系xOy中,菱形ABCD的顶点A(4,4),C(﹣2,﹣2),点B,D在反比例函数y=kx的图象上,对角线BD交AC于点M,交x轴于点N,若BNND=53,则k的值是.15.(3分)如图,将等腰直角三角形ABC 绕点A 逆时针旋转15°后得到△AB ′C ′,若AC =1,则图中阴影部分的面积为 .三.解答题(共8小题,满分75分)16.(10分)(1)计算:√2cos45°−(13)−1+20190 (2)解方程组:{x =y +52x −y =817.(7分)如图,AB =CD ,DE ⊥AC ,BF ⊥AC ,点E ,F 是垂足,AE =CF ,求证: (1)△ABF ≌△CDE ; (2)AB ∥CD .18.(9分)某学校为了解学生的体能情况,组织了体育测试,测试项目有A “立定跳远”、B “掷实心球”、C “耐久跑”、D “快速跑”四个.规定:每名学生测试三项,其中A 、B 为必测项目,第三项C 、D 中随机抽取,每项10分,满分30分.(1)请用列表或树状图,求甲、乙两同学测试的三个项目完全相同的概率; (2)据统计,九(1)班有8名女生抽到了C “耐久跑”项目,她们的成绩如下: 7,6,8,9,10,5,8,7①这组成绩的中位数是 ,平均数是 ;②该班女生丙因病错过了测试,补测抽到了C “耐久跑”项目,加上丙同学的成绩后,发现这组成绩的众数与中位数相等,但平均数比①中的平均数大,则丙同学“耐久跑”的成绩为 ;(3)九(1)班有50名学生,下表是单项目成绩统计,请计算出该班此次体能测试的平均成绩项目A 立定跳远B 掷实心球C 耐久跑D 快速跑 测试人数(人) 50 50 20 30 单项平均成绩(分)987819.(8分)自2017年3月起,成都市中心城区居民用水实行以户为单位的三级阶梯收费办法:第I 级:居民每户每月用水18吨以内含18吨每吨收水费a 元;第Ⅱ级:居民每户每月用水超过18吨但不超过25吨,未超过18吨的部分按照第Ⅰ级标准收费,超过部分每吨收水费b 元;第Ⅲ级:居民每户每月用水超过25吨,未超过25吨的部分按照第I 、Ⅱ级标准收费,超过部分每吨收水费c 元.设一户居民月用水x 吨,应缴水费为y 元,y 与x 之间的函数关系如图所示 (1)根据图象直接作答:a = ,b = ; (2)求当x ≥25时y 与x 之间的函数关系;(3)把上述水费阶梯收费办法称为方案①,假设还存在方案②:居民每户月用水一律按照每吨4元的标准缴费,请你根据居民每户月“用水量的大小设计出对居民缴费最实惠的方案.(写出过程)20.(9分)某校“趣味数学”社团开展了测量本校旗杆高度的实践活动.“综合与实践”小组制订了测量方案,并完成了实地测量.他们在该旗杆底部所在的平地上,选取两个不同测点,分别测量了该旗杆顶端的仰角以及这两个测点之间的距离.为了减小测量误差,该小组在测量仰角的度数以及两个测点之间的距离时,都分别测量了两次并取它们的平均值作为测量结果,测量数据如表(不完整)课题测量旗杆的高度成员组长:xxx组员:xxx,xxx,xxx测量工具角度的仪器,皮尺等测量示意图说明:线段GH表示学校旗杆,测量角度的仪器的高度AC=BD=1.5m,测点A,B与H在同一条水平直线上,A,B之间的距离可以直接测得,且点G,H,A,B,C,D都在同一竖直平面内,点C,D,E在同一条直线上,点E在GH上.测量数据测量项目第一次第二次平均值∠GCE的度数26.4°26.6°26.5°∠GDE的度数32.7°33.3°33°A,B之间的距离 5.9m 6.1m x ……任务一:两次测量A,B之间的距离的平均值x=m任务二:根据以上测量结果,请你帮助该“综合与实践”小组求出学校旗杆GH的高度.(参考数据:sin26.5°≈0.45,cos26.5°≈0.89,tan26.5°≈0.50,sin33°≈0.54,cos33°≈0.84,tan33°≈0.65)任务三:该“综合与实践”小组在制定方案时,讨论过“利用物体在阳光下的影子测量旗杆的高度”的方案,但未被采纳.你认为其原因可能是什么?(写出一条即可)21.(8分)如图,在△ABC中,BA=BC,∠ABC=90°,以AB为直径的半圆O交AC于̂上不与点B,D重合的任意一点,连接AE交BD于点F,连接BE并延点D,点E是BD长交AC于点G.(1)求证:△ADF≌△BDG;(2)填空:①若AB=4,且点E是BD̂的中点,则DF的长为;②取AÊ的中点H,当∠EAB的度数为时,四边形OBEH为菱形.22.(11分)在矩形ABCD中,AB>AD,点M是AD边上的任意一点(不含A,D两端点),MN∥CD,交对角线AC于点N.(1)如图1,将△AMN沿对角线AC翻折得到△AEN,NE交AB于点F.求证:△AFN是等腰三角形;(2)如图2,将△AMN绕点A逆时针方向旋转得到△APQ,连接PD,QC,设旋转角为α(0°<α<180°);①若0°<α<∠CAD,求证:△APD∽△AQC;②若AM:AD=4:5,当△AQC为直角三角形时,请直接写出tan∠ACQ的值.23.(13分)如图,在直角坐标系中,直线y=−12x+3与x轴,y轴分别交于点B,点C,对称轴为x=1的抛物线过B,C两点,且交x轴于另一点A,连接AC.(1)直接写出点A,点B,点C的坐标和抛物线的解析式;(2)已知点P为第一象限内抛物线上一点,当点P到直线BC的距离最大时,求点P的坐标;(3)抛物线上是否存在一点Q(点C除外),使以点Q,A,B为顶点的三角形与△ABC 相似?若存在,求出点Q的坐标;若不存在,请说明理由.2020年山西省中考数学模拟试卷1参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.(3分)|a|=1,|b|=4,且ab<0,则a+b的值为()A.3B.﹣3C.±3D.±5【解答】解:∵|a|=1,|b|=4,∴a=±1,b=±4,∵ab<0,∴a+b=1﹣4=﹣3或a+b=﹣1+4=3,故选:C.2.(3分)下列计算正确的是()A.a3a2=a6B.(﹣3a2)3=﹣27a6C.(a﹣b)2=a2﹣b2D.2a+3a=5a2【解答】解:A、a3a2=a5,错误;B、(﹣3a2)3=﹣27a6,正确;C、(a﹣b)2=a2﹣2ab+b2,错误;D、2a+3a=5a,错误;故选:B.3.(3分)某正方体的平面展开图如图所示,则原正方体中与“春”字所在的面相对的面上的字是()A.青B.来C.斗D.奋【解答】解:由:“Z”字型对面,可知春字对应的面上的字是奋;故选:D.4.(3分)下列各式中,最简二次根式是()A.√27B.√m5n2C.√12D.√6【解答】解:√27=3√3,A不是最简二次根式;√m 5n 2=|n |m 2√m ,B 不是最简二次根式;√12=√22,C 不是最简二次根式; D ,√6是最简二次根式; 故选:D .5.(3分)如图,在△ABC 中,AB =AC ,BD 平分∠ABC 交AC 于点D ,AE ∥BD 交CB 的延长线于点E .若∠E =35°,则∠EAC 的度数是( )A .40°B .65°C .70°D .75°【解答】解:∵BD 平分∠ABC , ∴∠ABD =∠DBC , ∵BD ∥AE ,∴∠BAE =∠ABD ,∠E =∠DBC , ∴∠BAE =∠E =35°,∠ABC =70°, ∵AB =AC ,∴∠ABC =∠C =70°,∴∠BAC =180°﹣70°﹣70°=40°, ∴∠EAC =∠BAE +∠BAC =35°+40°=75°, 故选:D .6.(3分)关于x 的不等式组{x −m <03x −1>2(x −1)有解,那么m 的取值范围为( )A .m ≤﹣1B .m <﹣1C .m ≥﹣1D .m >﹣1【解答】解:{x −m <03x −1>2(x −1),解不等式x ﹣m <0,得:x <m ,解不等式3x ﹣1>2(x ﹣1),得:x >﹣1, ∵不等式组有解,∴m>﹣1.故选:D.7.(3分)港珠澳大桥2018年10月24日上午9时正式通车,这座大桥跨越伶仃洋,东接香港,西接广东珠海和澳门,总长约55000m,集桥、岛、隧于一体,是世界最长的跨海大桥,数据55000用科学记数法表示为()A.5.5×105B.55×104C.5.5×104D.5.5×106【解答】解:55000=5.5×104,故选:C.8.(3分)用配方法解方程x2+2x﹣3=0,下列配方结果正确的是()A.(x﹣1)2=2B.(x﹣1)2=4C.(x+1)2=2D.(x+1)2=4【解答】解:∵x2+2x﹣3=0∴x2+2x=3∴x2+2x+1=1+3∴(x+1)2=4故选:D.9.(3分)共享单车为市民出行带来了方便,某单车公司第一个月投放a辆单车,计划第三个月投放单车y辆,设该公司第二、三两个月投放单车数量的月平均增长率为x,那么y 与x的函数关系是()A.y=x2+a B.y=a(1+x)2C.y=(1﹣x)2+a D.y=a(1﹣x)2【解答】解:设该公司第二、三两个月投放单车数量的月平均增长率为x,依题意得第三个月第三个月投放单车a(1+x)2辆,则y=a(1+x)2.故选:B.10.(3分)如图,在△ABC中,∠ABC=90°,AC=4,AB=2√3,以C为圆心,BC之长为半径的弧交边AC于点D,则图中阴影部分的面积为()A.2√3−23πB.23πC.2√3−43πD.43π【解答】解:∵在△ABC中,∠ABC=90°,AC=4,AB=2√3,∴sin C=ABAC=√32,BC=2,∴∠C=60°,∴S阴影=S△ABC﹣S扇形BCD=12×2×2√3−60⋅π×22360=2√3−23π,故选:A.二.填空题(共5小题,满分15分,每小题3分)11.(3分)计算:6a2−9−1a−3=−1a+3.【解答】解:原式=6(a+3)(a−3)−a+3(a−3)(a+3)=−1a+3,故答案为:−1 a+312.(3分)如图是当前对生活垃圾的常见三种处理方式,本图中的有关数据宜用扇形统计图表示.【解答】解:如图是当前对生活垃圾的常见三种处理方式,本图中的有关数据宜用扇形统计图表示.故答案为:扇形.13.(3分)2018﹣2019赛季中国男子篮球职业联赛(CBA),继续采用双循环制(每两队之间都进行两场比赛),总比赛场数为380场.求有多少支队伍参加比赛?设参赛队伍有x 支,则可列方程为x(x﹣1)=380.【解答】解:设参赛队伍有x支,则x(x﹣1)=380.故答案为:x(x﹣1)=380.14.(3分)如图,在平面直角坐标系xOy中,菱形ABCD的顶点A(4,4),C(﹣2,﹣2),点B,D在反比例函数y=kx的图象上,对角线BD交AC于点M,交x轴于点N,若BNND=53,则k的值是﹣15.【解答】解:∵点A(4,4),C(﹣2,﹣2),∴直线AC为y=x,M(1,1),∵菱形ABCD中AC⊥BD,∴设直线BD为y=﹣x+b,代入M(1,1),求得b=2,∴直线BD为y=﹣x+2,∴N(2,0),∴ON=2,∵BNND =53,设B点的纵横坐标为5n,则D点的纵坐标为﹣3n,∵B、D在直线y=﹣x+2上,∴B(﹣5n+2,5n),D(3n+2,﹣3n),∵点B,D在反比例函数y=kx的图象上,∴k=(﹣5n+2)•5n=(3n+2)•(﹣3n),解得n=1,∴k=﹣15,故答案为﹣15.15.(3分)如图,将等腰直角三角形ABC绕点A逆时针旋转15°后得到△AB′C′,若AC=1,则图中阴影部分的面积为√36.【解答】解:如图,设B ′C ′与AB 交点为D , ∵△ABC 是等腰直角三角形, ∴∠BAC =45°,∵△AB ′C ′是△ABC 绕点A 逆时针旋转15°后得到, ∴∠CAC ′=15°,AC ′=AC =1,∴∠C ′AD =∠BAC ﹣∠CAC ′=45°﹣15°=30°, ∵AD =2C ′D , ∴AD 2=AC ′2+C ′D 2, 即(2C ′D )2=12+C ′D 2, 解得C ′D =√33, 故阴影部分的面积=12×1×√33=√36. 故答案为:√36.三.解答题(共8小题,满分75分)16.(10分)(1)计算:√2cos45°−(13)−1+20190 (2)解方程组:{x =y +52x −y =8【解答】解:(1)√2cos45°−(13)−1+20190 =√2×√22−3+1 =1﹣3+1=﹣1, (2){x =y +5①2x −y =8②,把①代入②得: 2(y +5)﹣y =8, 解得:y =﹣2, 把y =﹣2代入①得: x =﹣2+5=3,即原方程组的解为:{x =3y =−2.17.(7分)如图,AB =CD ,DE ⊥AC ,BF ⊥AC ,点E ,F 是垂足,AE =CF ,求证: (1)△ABF ≌△CDE ; (2)AB ∥CD .【解答】证明:(1)∵AE =CF , ∴AE +EF =CF +EF ,即AF =CE . 又∵BF ⊥AC ,DE ⊥AC , ∴∠AFB =∠CED =90°.在Rt △ABF 与Rt △CDE 中,{AB =CD AF =CE ,∴Rt △ABF ≌Rt △CDE (HL ); (2)∵Rt △ABF ≌Rt △CDE , ∴∠C =∠A , ∴AB ∥CD .18.(9分)某学校为了解学生的体能情况,组织了体育测试,测试项目有A “立定跳远”、B “掷实心球”、C “耐久跑”、D “快速跑”四个.规定:每名学生测试三项,其中A 、B 为必测项目,第三项C 、D 中随机抽取,每项10分,满分30分.(1)请用列表或树状图,求甲、乙两同学测试的三个项目完全相同的概率; (2)据统计,九(1)班有8名女生抽到了C “耐久跑”项目,她们的成绩如下: 7,6,8,9,10,5,8,7①这组成绩的中位数是 7.5 ,平均数是 7.5 ;②该班女生丙因病错过了测试,补测抽到了C “耐久跑”项目,加上丙同学的成绩后,发现这组成绩的众数与中位数相等,但平均数比①中的平均数大,则丙同学“耐久跑”的成绩为 8 ;(3)九(1)班有50名学生,下表是单项目成绩统计,请计算出该班此次体能测试的平均成绩项目A 立定跳远B 掷实心球C 耐久跑D 快速跑 测试人数(人) 50 50 20 30 单项平均成绩(分)9878【解答】解:(1)画树状图如图所示,由图中可知抽取结果共有4种,其中甲、乙两同学测试的项目完全相同的结果有2种, 则P (三个项目完全相同的概率)=24=12; (2)①根据题意得:中位数是7+82=7.5,平均数=7+6+8+9+10+5+8+78=7.5; 故答案为:7.5,7.5;②设丙同学“耐久跑”的成绩为x ,则这组成绩为:5,6,7,7,x ,8,8,9,10, ∵这组成绩的众数与中位数相等, ∴x 为7或8,∵平均数比①中的平均数大,即x >7.5, ∴x =8, 故答案为:8; (3)13×(9+8+20×7+30×850)=8.2,答:此次体能测试的平均成绩为8.2.19.(8分)自2017年3月起,成都市中心城区居民用水实行以户为单位的三级阶梯收费办法:第I 级:居民每户每月用水18吨以内含18吨每吨收水费a 元;第Ⅱ级:居民每户每月用水超过18吨但不超过25吨,未超过18吨的部分按照第Ⅰ级标准收费,超过部分每吨收水费b 元;第Ⅲ级:居民每户每月用水超过25吨,未超过25吨的部分按照第I 、Ⅱ级标准收费,超过部分每吨收水费c 元.设一户居民月用水x 吨,应缴水费为y 元,y 与x 之间的函数关系如图所示 (1)根据图象直接作答:a = 3 ,b = 4 ; (2)求当x ≥25时y 与x 之间的函数关系;(3)把上述水费阶梯收费办法称为方案①,假设还存在方案②:居民每户月用水一律按照每吨4元的标准缴费,请你根据居民每户月“用水量的大小设计出对居民缴费最实惠的方案.(写出过程)【解答】解:(1)a =54÷18=3, b =(82﹣54)÷(25﹣18)=4. 故答案为:3;4.(2)设当x ≥25时,y 与x 之间的函数关系式为y =mx +n (m ≠0), 将(25,82),(35,142)代入y =mx +n ,得:{25m +n =8235m +n =142,解得:{m =6n =−68,∴当x ≥25时,y 与x 之间的函数关系式为y =6x ﹣68.(3)根据题意得:选择缴费方案②需交水费y (元)与用水数量x (吨)之间的函数关系式为y =4x .当6x ﹣68<4x 时,x <34; 当6x ﹣68=4x 时,x =34; 当6x ﹣68>4x 时,x >34.∴当x<34时,选择缴费方案①更实惠;当x=34时,选择两种缴费方案费用相同;当x>34时,选择缴费方案②更实惠.20.(9分)某校“趣味数学”社团开展了测量本校旗杆高度的实践活动.“综合与实践”小组制订了测量方案,并完成了实地测量.他们在该旗杆底部所在的平地上,选取两个不同测点,分别测量了该旗杆顶端的仰角以及这两个测点之间的距离.为了减小测量误差,该小组在测量仰角的度数以及两个测点之间的距离时,都分别测量了两次并取它们的平均值作为测量结果,测量数据如表(不完整)课题测量旗杆的高度成员组长:xxx组员:xxx,xxx,xxx测量工具角度的仪器,皮尺等测量示意图说明:线段GH表示学校旗杆,测量角度的仪器的高度AC=BD=1.5m,测点A,B与H在同一条水平直线上,A,B之间的距离可以直接测得,且点G,H,A,B,C,D都在同一竖直平面内,点C,D,E在同一条直线上,点E在GH上.测量数据测量项目第一次第二次平均值∠GCE的度数26.4°26.6°26.5°∠GDE的度数32.7°33.3°33°A,B之间的距离 5.9m 6.1m x ……任务一:两次测量A,B之间的距离的平均值x=6m任务二:根据以上测量结果,请你帮助该“综合与实践”小组求出学校旗杆GH的高度.(参考数据:sin26.5°≈0.45,cos26.5°≈0.89,tan26.5°≈0.50,sin33°≈0.54,cos33°≈0.84,tan33°≈0.65)任务三:该“综合与实践”小组在制定方案时,讨论过“利用物体在阳光下的影子测量旗杆的高度”的方案,但未被采纳.你认为其原因可能是什么?(写出一条即可)【解答】解:任务一:x=12(5.9+6.1)=6,故答案为:6;任务二:设EG=xm,在Rt△DEG中,∠DEG=90°,∠GDE=33°,∵tan33°=EG DE,∴DE=xtan33°,在Rt△CEG中,∠CEG=90°,∠GCE=25.7°,∵tan26.5°=EGCE,CE=xtan26.5°,∵CD=CE﹣DE,∴xtan26.5°−xtan33°=6,∴x=13,∴GH=EG+EH=13+1.5=14.5,答:旗杆GH的高度为14.5米;任务三:没有太阳光,或旗杆底部不可能达到相等.21.(8分)如图,在△ABC中,BA=BC,∠ABC=90°,以AB为直径的半圆O交AC于点D ,点E 是BD ̂上不与点B ,D 重合的任意一点,连接AE 交BD 于点F ,连接BE 并延长交AC 于点G .(1)求证:△ADF ≌△BDG ; (2)填空:①若AB =4,且点E 是BD̂的中点,则DF 的长为 4﹣2√2 ; ②取AÊ的中点H ,当∠EAB 的度数为 30° 时,四边形OBEH 为菱形.【解答】解:(1)证明:如图1,∵BA =BC ,∠ABC =90°, ∴∠BAC =45° ∵AB 是⊙O 的直径, ∴∠ADB =∠AEB =90°, ∴∠ADF =∠BDG =90°∴∠DAF +∠BGD =∠DBG +∠BGD =90° ∴∠DAF =∠DBG ∵∠ABD +∠BAC =90° ∴∠ABD =∠BAC =45° ∴AD =BD∴△ADF ≌△BDG (ASA );(2)①如图2,过F 作FH ⊥AB 于H ,∵点E 是BD ̂的中点, ∴∠BAE =∠DAE ∵FD ⊥AD ,FH ⊥AB ∴FH =FD ∵FH BF=sin ∠ABD =sin45°=√22,∴FDBF =√22,即BF =√2FD ∵AB =4,∴BD=4cos45°=2√2,即BF+FD=2√2,(√2+1)FD=2√2∴FD=√22+1=4﹣2√2故答案为4−2√2.②连接OH,EH,∵点H是AÊ的中点,∴OH⊥AE,∵∠AEB=90°∴BE⊥AE∴BE∥OH∵四边形OBEH为菱形,∴BE=OH=OB=12AB∴sin∠EAB=BEAB=12∴∠EAB=30°.故答案为:30°22.(11分)在矩形ABCD中,AB>AD,点M是AD边上的任意一点(不含A,D两端点),MN∥CD,交对角线AC于点N.(1)如图1,将△AMN沿对角线AC翻折得到△AEN,NE交AB于点F.求证:△AFN 是等腰三角形;(2)如图2,将△AMN绕点A逆时针方向旋转得到△APQ,连接PD,QC,设旋转角为α(0°<α<180°);①若0°<α<∠CAD,求证:△APD∽△AQC;②若AM:AD=4:5,当△AQC为直角三角形时,请直接写出tan∠ACQ的值.【解答】(1)证明:由翻折可知:∠ANM=∠ANE,∵四边形ABCD是矩形,∴AB∥CD,∵MN∥CD,∴MN∥AB,∴∠ANM=∠NAF,∴∠ANE=∠NAF,∴△AFN是等腰三角形;(2)①证明:若0°<α<∠CAD,即AQ在∠CAD的内部时,∵∠P AQ=∠DAC,∴∠P AQ﹣∠DAQ=∠DAC﹣∠DAQ,∴∠P AD =∠QAC ,∵将△AMN 绕点A 逆时针方向旋转得到△APQ ,∴△APQ ≌△AMN ,∵MN ∥CD ,∴△AMN ∽△ADC ,∴△APQ ∽△ADC ,∴AP AQ =AD AC ,∴△APD ∽△AQC ;②解:∵AM :AD =4:5,MN ∥CD ,∴AN AC =AM AD =45, 当∠QAC =90°时,如图2①所示:∵AQ =AN =45AC ,∴tan ∠ACQ =AQ AC =45;当∠ACQ =90°,则AQ 是斜边,即AQ >AC ,不符合题意舍去;当∠AQC =90°时,如图2②所示:∵AQ =AN =45AC ,CQ =√AC 2−AQ 2=√AC 2−(45AC)2=35AC ,∴tan ∠ACQ =AQ CQ =45AC 35AC =43.23.(13分)如图,在直角坐标系中,直线y=−12x+3与x轴,y轴分别交于点B,点C,对称轴为x=1的抛物线过B,C两点,且交x轴于另一点A,连接AC.(1)直接写出点A,点B,点C的坐标和抛物线的解析式;(2)已知点P为第一象限内抛物线上一点,当点P到直线BC的距离最大时,求点P的坐标;(3)抛物线上是否存在一点Q(点C除外),使以点Q,A,B为顶点的三角形与△ABC 相似?若存在,求出点Q的坐标;若不存在,请说明理由.【解答】解:(1)y=−12x+3,令x=0,则y=3,令y=0,则x=6,故点B 、C 的坐标分别为(6,0)、(0,3),抛物线的对称轴为x =1,则点A (﹣4,0),则抛物线的表达式为:y =a (x ﹣6)(x +4)=a (x 2﹣2x ﹣24),即﹣24a =3,解得:a =−18,故抛物线的表达式为:y =−18x 2+14x +3…①;(2)过点P 作y 轴的平行线交BC 于点G ,作PH ⊥BC 于点H ,则∠HPG =∠CBA =α,tan ∠CBA =OC OB =12=tan α,则cos α=2√5, 设点P (x ,−18x 2+14x +3),则点G (x ,−12x +3),则PH =PG cos α=2√55(−18x 2+14x +3+12x ﹣3)=−√520x 2+3√510x , ∵−√520<0,故PH 有最大值,此时x =3,则点P (3,218);(3)①当点Q 在x 轴上方时,则点Q ,A ,B 为顶点的三角形与△ABC 全等,此时点Q 与点C 关于函数对称轴对称, 则点Q (2,3);②当点Q 在x 轴下方时,(Ⅰ)当∠BAQ =∠CAB 时,AQ AB =ABAC ,△QAB ∽△BAC ,由勾股定理得:AC =5,AQ =1025=20,过点Q 作QH ⊥x 轴于点H ,由△QHA ∽△ACO 得:AQ AC =QH OC =AH OA ,∵OC =3,∴QH =12,则AH =16,OH =16﹣4=12,∴Q (12,﹣12); 根据点的对称性,当点Q 在第三象限时,符合条件的点Q (﹣10,﹣12); 故点Q 的坐标为:(12,﹣12)或(﹣10,﹣12);(Ⅱ)当∠BAQ =∠CBA 时,则直线AQ ∥BC ,直线BC 表达式中的k 为:−12,则直线AQ 的表达式为:y =−12x ﹣2…②,联立①②并解得:x =10或﹣4(舍去﹣4),故点Q (10,﹣7), BC AB =√45√10,而AB AQ =√245≠BC AB ,即Q ,A ,B 为顶点的三角形与△ABC 不相似, 故舍去,Q 的对称点(﹣8,﹣7)同样也舍去,即点Q 的为:(﹣8,﹣7)、(10,﹣7)均不符合题意,都舍去;综上,点Q 的坐标为:(2,3)或(12,﹣12)或(﹣10,﹣12).。
【精品】2020年山西省中考数学模拟试卷(含答案)

【精品】2020 年山西省中考数学模拟试卷含答案第 I 卷 选 择 题 ( 共 30 分)一 、选 择 题( 本 大 题 共 10 个 小 题 ,每 小 题 3 分 ,共 30 分 ,在 每 个 小 题 给 出 的 四 个 选 项 中 ,只 有 一项符合题目要求 , 请选出并在答题卡 上 将该项涂黑) 1.下 面 有 理 数 比 较 大 小 , 正 确 的 是 ( )A. 0< -2B. -5< 3C. -2< -3D. 1< -4 【答案】 B 【考点】 有 理 数 比 较 大 小 2. “算经十书”是指 汉唐一千多年间的 十 部著名数学著作,它 们曾经是隋唐时期 国 子监算学科 的 教 科 书 , 这 些 流 传 下 来 的 古 算 书 中 凝 聚 着 历 代 数 学 家 的 劳 动 成 果 .下 列 四 部 著 作 中 , 不 属 于 我 国古代数学著作的 是 ()A.《九章算术》B. 《几何原本》C. 《 海 岛 算 经 》D. 《 周 髀 算 经 》【答案】 B 【考点】 数学文化 【解析 】《 几 何 原 本 》 的 作 者 是 欧 几 里 得 3. 下 列 运 算 正 确 的 是 ( )A. (- a 3 )2= -a 6 B. 2a 2 + 3a 2 = 6a 2 C. 2a 2 ⋅ a 3 = 2a 6 D. 2633()2b b a a-=-【 答案】 D【考点】 整式运算【解析】 A . (- a 3)2= a 6 B 2a 2 + 3a 2 = 5a 2 C. 2a 2 ⋅ a 3 = 2a 54. 下列一元二次方程 中 ,没有实数根的是 ( )A. x 2 - 2x = 0B. x 2 + 4x -1 = 0C. 2x 2 - 4x + 3 = 0D. 3x 2 = 5x - 2【答案】 C 【考点】 一 元 二 次 方 程 根 的 判 别 式 【解析 】△> 0,有 两 个 不 相 等 的 实 数 根 ,△ =0,有 两 个 相 等 的 实 数 根 ,△ < 0,没 有 实 数 根 .A.△ =4B.△ =20C. △ =-8D. △ =15. 近年来快递业发展 迅 速 ,下表是 2018 年 1-3 月份我省部分地市 邮 政快递业务量的统 计 结 果( 单 位:万件)A.319.79 万件B. 332.68 万件C. 338.87 万件D. 416.01 万件 【答案】 C 【考点】 数 据 的 分 析 【解析】 将 表格中 七 个 数 据 从 小 到 大 排 列 , 第 四 个 数 据 为 中 位 数 , 即 338.87 万件 . 6. 黄河是中华民族的 象 征,被誉为母亲河, 黄河壶口瀑布位于 我 省吉县城西 45 千 米 处 ,是 黄 河 上最具气势的自然 景 观,其落差约 30 米 , 年 平 均 流 量 1010 立方米 /秒 . 若 以 小 时 作 时 间 单 位 , 则其年平均流量可 用 科学计数法表示为 A. 6.06 ⨯104 立方米 /时 B. 3.136 ⨯106 立方米 /时 C. 3.636 ⨯106 立方米 /时 D. 36.36 ⨯105 立方米 /时【答案】 C 【考点】 科 学 计 数 法 【解析】 一秒为 1010 立方米,则一小时 为 1010×60×60=3636000 立方米, 3636000 用 科学 计数法表示为 3.636×106.7. 在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个 球,记下颜色后放 回 袋子中,充分摇匀 后,再随机摸出一个 球 ,两次都摸到黄球 的 概率是() A.49 B. 13 C. 29 D.19【答案】 A【考点】 树 状 图 或 列 表 法 求 概 率 【解析】由表格可知,共有 9 种等可能结果,其 中 两次都摸到黄球的 结 果有 4 种,∴ P ( 两 次 都 摸 到 黄 球 ) =498.如 图 ,在 Rt △ABC 中 ,∠ ACB=90°,∠ A=60°,AC=6,将 △ ABC 绕 点 C 按 逆 时 针 方 向 旋 转 得 到 △ A ’ B ’ C , 此 时 点 A ’ 恰好在 AB 边 上 , 则 点 B ’ 与点 B 之 间 的 距 离 是 ( ) A. 12 B. 6 D.【考点】旋转,等边三角形性质【解析】连接 BB’,由旋转可知 AC=A’C,BC=B’C,∵∠A=60°,∴△ACA’为等边三角形,∴∠ACA’=60°,∴∠BCB’=60°∴△BCB’为等边三角形,∴BB’=BC= 6 3 .9. 用配方法将二次函数y=x2 -8x-9化为y=a(x-h)2 +k的形式为()A. y =(x -4)2 +7B. y =(x -4)2 -25C. y =(x +4)2 +7D. y =(x +4)2 -25【答案】B【考点】二次函数的顶点式【解析】y =x2 -8x -9 =x2 -8x +16 -16 -9 =(x -4)2 -2510. 如图,正方形 ABCD 内接于⊙O,⊙O 的半径为 2,以点 A 为圆心,以 AC 为半径画弧交 AB 的延长线于点 E,交 AD 的延长线于点 F,则图中阴影部分的面积是()A.4π-4B. 4π-8C. 8π-4D. 8π-8【答案】A【考点】扇形面积,正方形性质【解析】∵四边形 ABCD 为正方形,∴∠BAD=90°,可知圆和正方形是中心对称图形,第I卷非选择题(共90分)二、填空题(本大题共 5 个小题,每小题 3 分,共 15 分)11.计算:-1) = .【答案】17【考点】平方差公式【解析】∵(a +b)(a -b) =a2 -b2 ∴+-1) =2-1 =18-1=1712. 图 1 是我国古代建筑中的一种窗格.其中冰裂纹图案象征着坚冰出现裂纹并开始清溶,形状无一定规则,代表一种自然和谐美.图 2 是从图 1 冰裂纹窗格图案中提取的由五条线段组成的图形,则∠1+∠2 +∠3 +∠4 +∠5 = 度.【考点】多边形外角和【解析】∵任意 n 边形的外角和为360°,图中五条线段组成五边形∴∠1+∠2 +∠3 +∠4 +∠5 = 360︒.13.2018 年国内航空公司规定:旅客乘机时,免费携带行李箱的长、宽、高之和不超过 115cm. 某厂家生产符合该规定的行李箱,已知行李箱的宽为 20cm,长与高的比为 8:11,则符合此规定的行李箱的高的最大值为_____cm.【答案】55【考点】一元一次不等式的实际应用【解析】解:设行李箱的长为 8xcm,宽为 11xcm20 +8x +11x ≤115解得x ≤5∴高的最大值为11⨯ 5 = 55 cm14.如图,直线 MN∥P Q,直线 AB 分别与 MN,PQ 相交于点 A,B.小宇同学利用尺规按以下步骤作图:①以点 A 为圆心,以任意长为半径作弧交 AN 于点 C,交 AB 于点 D;②分别以 C,D为圆心,以大于12CD 长为半径作弧,两弧在∠NAB 内交于点E;③作射线AE 交PQ 于点F.若AB=2,∠ABP=600 ,则线段 AF 为______.【答案】【考点】角平分线尺规作图,平行线性质,等腰三角形三线合一【解析】过点 B 作 BG⊥AF 交 AF 于点 G由尺规作图可知,A F 平分∠NAB∴∠NAF=∠BAF∵MN∥PQ∴∠NAF=∠BFA∴∠BAF=∠BFA∴BA=BF=2∵BG⊥AF∴AG=FG∵∠ABP=600∴∠BAF=∠BFA=300Rt△BFG 中,FG =BF ⋅ c o s∠BFA = 2⨯2=∴AF = 2FG =15.如图,在 Rt△ABC 中,∠ACB=900 ,A C=6,B C=8,点 D 是 AB 的中点,以 CD 为直径作⊙O,⊙O 分别与 AC,B C 交于点 E,F,过点 F 作⊙O 的切线 FG,交 AB 于点 G,则 FG 的长为_____.【答案】 125【考点】 直 角 三 角 形 斜 中 线 , 切 线 性 质 , 平 行 线 分 线 段 成 比 例 , 三 角 函 数 【解析】 连接 OF∵ FG 为 ⊙ 0 的 切 线 ∴ OF ⊥ FG ∵ Rt △ ABC 中, D 为 AB 中点 ∴ CD=BD ∴ ∠ DCB=∠ B ∵ OC=OF ∴ ∠ OCF=∠ OFC ∴ ∠ CFO=∠ B ∴ OF ∥ BD ∵ O 为 CD 中点 ∴ F 为 BC 中点∴ CF = BF = 12 BC = 4Rt △ ABC 中, s i n ∠B =35Rt △ BGF 中, FG = BF sin ∠B = 4 ⨯35 =125三 、 解 答 题 ( 本 大 题 共 8 个 小 题 , 共 75 分 .解 答 应 写 出 文 字 说 明 , 证 明 过 程 或 演 算 步 骤 )16.(本题共 2 个 小 题 , 每 小 题 5 分,共 10 分)计 算 :( 1)2104362---+⨯+ 【考点】 实 数 的 计 算【解析】 解:原式 =8-4+2+1=7( 2)222111442x x x x x x --⋅---+- 【考点】 分式化简【解析】 解:原式 =222111442x x x x x x --⋅---+-=+1122x x x ---=2x x -17.(本题 8 分 )如 图 ,一 次 函 数 y 1 = k 1 x + b (k 1 ≠ 0) 的 图 象 分 别 与 x 轴,y 轴 相 交 于 点 A ,B ,与 反 比例函数 y 2= (k ≠ 0) 的 图 象 相 交 于 点 C ( -4, -2), D ( 2, 4) . ( 1) 求 一 次 函 数 和 反 比 例 函 数 的 表 达 式 ; ( 2)当 x 为 何 值 时 ,y 1 > 0 ;( 3)当 x 为 何 值 时 ,y 1 < y 2 ,请直接写出 x的 取 值 范 围 .【考点】反比例函数与一次函数【解析】(1)解:一次函数y1 =k1 x +b 的图象经过点 C(-4,-2),D(2,4),(3)解:x <-4 或0 <x <2.18.(本题 9 分)在“优秀传统文化进校园”活动中,学校计划每周二下午第三节课时间开展此项活动,拟开展活动项目为:剪纸,武术,书法,器乐,要求七年级学生人人参加,并且每人只能参加其中一项活动.教务处在该校七年级学生中随机抽取了 100 名学生进行调查,并对此进行统计,绘制了如图所示的条形统计图和扇形统计图(均不完整).请解答下列问题:(1)请补全条形统计图和扇形统计图;(2)在参加“剪纸”活动项目的学生中,男生所占的百分比是多少?( 3) 若 该 校 七 年 级 学 生 共 有 500 人 , 请 估 计 其 中 参 加 “ 书 法 ” 项 目 活 动 的 有 多 少 人 ? ( 4)学 校 教 务 处 要 从 这 些 被 调 查 的 女 生 中 ,随 机 抽 取 一 人 了 解 具 体 情 况 ,那 么 正 好 抽 到 参 加“ 器 乐”活动项目的女 生 的概率是多少? 【考点】 条 形 统 计 图 , 扇 形 统 计 图 【解析 】( 1)解:( 2)解:1010+15⨯100% = 40%. 答:男生所占的百 分 比为 40%. ( 3)解: 500 ⨯ 21%=105(人) .答:估计其中参加 “ 书法”项目活动的 有 105 人 .(4)解:15155==15+10+8+1548165答:正好抽到参加 “ 器乐”活动项目的 女 生的概率为516.19.(本题 8 分 )祥 云 桥 位 于 省 城 太 原 南 部 , 该 桥 塔 主 体 由 三 根 曲 线 塔 柱组合而成,全桥共设 13 对直线型斜拉索,造 型新颖,是“三晋 大 地” 的 一 种 象征 .某 数 学 “ 综 合 与 实 践 ” 小 组 的 同 学 把 “ 测 量 斜 拉 索 顶 端 到 桥 面 的 距 离 ”作 为 一 项 课 题 活 动 ,他 们 制 订 了 测 量 方 案 ,并 利 用 课 余 时 间借助该桥斜拉索 完 成了实地测量 . 测量结果如下表 .∠ A 的 度 数38°(1) 请帮助tan 38︒≈ 0.8 , s in 28︒≈ 0.5 , c os 28︒≈ 0.9 , t an 28︒≈ 0.5 );(2) 该小组要写出一份完整的课题活动报告,除上表的项目外,你认为还需要补充哪些项目(写出一个即可).【考点】 三 角 函 数 的 应 用 【解析】( 1) 解: 过点 C 作 CD ⊥ AB 于点 D. 设 CD= x 米,在 Rt ∆ ADC 中, ∠ ADC=90°, ∠ A=38°.AD + BD = AB = 234 . ∴ 54x + 2x = 234.解得 x = 72 .答:斜拉索顶端点 C 到 AB 的距离为 72 米 .( 2) 解 : 答 案 不 唯 一 , 还 需 要 补 充 的 项 目 可 为 : 测 量 工 具 , 计 算 过 程 , 人 员 分 工 , 指 导 教 师,活动感受等 .20.(本 题 7 分 )2018 年 1 月 20 日 ,山 西 迎 来 了“ 复 兴 号 ”列 车 ,与“和谐 号 ” 相 比 ,“复兴号” 列车 时 速 更快车多行驶 40 千 米 , 其 行 驶 时 间 是 该 列 “ 和 谐 号 ” 列 车 行 驶 时 间的45(两列车中途停留时间 均 除外) .经 查 询 ,“ 复 兴 号 ” G92 次 列 车 从 太 原 南 到 北 京 西 , 中 途 只 有 石 家 庄 一站,停留 10 分钟 .求乘坐“复兴号” G92 次列车从太原南到 北 京西需要多长时间 . 【考点】 分 式 方 程 应 用 【解析】解: 设 乘 坐 “ 复 兴 号 ” G92 次 列 车 从 太 原 南 到 北 京 西 需 要 x 小时, 由题意,得500500=+40151()646x x -- 解得 x =83 经检验, x =83是原方程的根 . 答 : 乘 坐 “ 复 兴 号 ” G92 次 列 车 从 太 原 南 到 北 京 西 需 要83小时 .21. (本题 8 分 ) 请 阅 读 下 列 材 料 , 并 完 成 相 应 的 任 务 :在 数 学 中 ,利 用 图 形 在 变 化 过 程 中 的 不 变 性 质 ,常 常 可 以 找 到 解 决 问 题 的 办 法 .著 名 美 籍 匈 牙 利数学家波利亚在 他 所著的《数学的发现 》一书中有这样一个 例子:试问如何在一 个三角形 ABC 的 AC 和 BC 两 边 上 分 别 取 一 点 X 和 Y ,使得 AX=BY=XY.( 如 图 ) 解 决 这 个 问 题 的 操 作 步 骤 如 下 : 第 一 步 ,在 CA 上 作出 一 点 D ,使 得 CD=CB ,连 接 BD.第 二 步 ,在 CB 上 取 一 点 Y ’ ,作 Y ’ Z ’ //CA,交 BD 于点 Z ’ ,并在 AB 上取一点 A ’ ,使 Z ’ A ’ =Y’ Z ’ .第 三 步 , 过 点 A 作 AZ//A ’ Z ’ ,交 BD 于点 Z.第 四 步 , 过 点 Z 作 ZY//AC ,交 BC 于点 Y ,再过 Y 作 YX//ZA ,交 AC 于点 X.则有 AX=BY=XY.下面是该结论的部 分 证明: 证明: A Z / / A ' Z ∴∠BA ' Z ' = ∠BAZ又 ∠A'BZ'=∠ABZ. ∴△BA ' Z△BAZ∴Z ' A ' = BZ ' .ZA BZ同 理 可 得 Y ' Z ' = BZ ' . ∴ Z ' A ' = Y ' Z ' .YZ BZ ZA YZZ ' A ' = Y ' Z ' , ∴ZA = YZ . ...任务: ( 1) 请 根 据 上 面 的 操 作 步 骤 及 部 分 证 明 过 程 , 判 断 四 边 形 AXYZ 的形状,并加以证 明 ; ( 2)请 再 仔 细 阅读上面., 在 ( 1)的基础上完成 AX=BY=XY 的证明过程; ( 3)上 述 解 决 问 题 的 过 程 中 ,通 过 作 平 行 线 把 四 边 形 BA ’ Z ’ Y ’ 放大得到四边形 BAZY ,从 而 确 定了点 Z , Y 的 位 置 , 这 里 运 用 了 下 面 一 种 图 形 的 变 化 是 . A.平移 B.旋转 C.轴对称 D.位似 【考点】菱形的性 质 与 判 定 ,图形的位似 【解析】(1) 答 :四边形 AXYZ 是菱形 . 证明:Z Y / / A C , Y X / / Z ∴A , 四边形 AXYZ 是 平 行 四 边 形 . ZA = YZ , ∴ AXYZ 是菱形 ( 2) 答 :证明: C D = C B , ∴∠1 = ∠2 ZY / / AC , ∴∠1 = ∠3 . ∴∠2=∠3 . ∴YB = YZ . 四边形 AXYZ 是 菱 形 , ∴AX=XY=YZ. ∴AX=BY=XY.(3)上 述 解 决 问 题 的 过 程 中 ,通 过 作 平 行 线 把 四 边 形 BA ’ Z ’ Y ’ 放大得到四边形 BAZY ,从 而 确定了点 Z , Y 的 位 置 , 这 里 运 用 了 下 面 一 种 图 形 的 变 化 是 D ( 或 位 似 ) .A.平移B.旋转C.轴对称D.位似22. (本题 12 分 )综 合 与 实 践 问 题 情 境 : 在 数 学 活 动 课 上 , 老 师 出 示 了 这 样 一 个 问 题 : 如 图 1, 在 矩 形 ABCD 中, A D=2AB , E 是 AB 延 长 线 上 一 点 ,且 BE=AB ,连 接 DE ,交 BC 于点 M ,以 DE 为 一 边 在 DE 的 左 下 方 作 正 方 形 DEFG , 连接 AM . 试 判 断 线 段 AM 与 DE 的 位 置 关 系 . 探 究 展 示 : 勤 奋 小 组 发 现 , A M 垂直平分 DE ,并展示了如下的 证 明方法: 证明: B E = A B , ∴ AE = 2 A B AD = 2 A B , ∴ AD = AE四边形 ABCD 是 矩 形 , ∴ AD / / B C .∴EM EBDM AB=( 依 据 1 ) BE = AB , ∴ 1EMDM=∴ E M = DM .即 AM 是△ ADE 的 DE 边上的中线,又 AD = AE , ∴ AM ⊥ DE . (依据 2)∴AM 垂直平分 DE .反 思 交 流 : (1)① 上 述 证 明 过 程 中 的 “ 依 据 1”“ 依 据 2”分别是指什么?② 试 判 断 图 1 中 的 点 A 是否在线段 GF 的 垂 直 平 分 上 , 请 直 接 回 答 , 不 必 证 明 ;(2)创 新 小 组 受 到 勤 奋 小 组 的 启 发 , 继 续 进 行 探 究 , 如 图 2, 连 接 CE ,以 CE 为 一 边 在 CE 的左下 方作正方形 CEFG , 发 现 点 G 在线段 BC 的 垂 直 平 分 线 上 , 请 你 给 出 证 明 ; 探 索 发 现 :(3)如图 3,连接 CE ,以 CE 为一边在 CE 的右上方作正方形 CEFG ,可以发现点 C ,点 B 都在线段 AE 的垂直平分线上, 除此之外,请观察 矩 形 ABCD 和正方形 CEFG 的顶点与边,你还能 发现哪个 顶点在哪条边的垂 直 平分线上,请写出 一 个你发现的结论, 并 加以证明 .【考点】 平 行 线 分 线 段 成 比 例 , 三 线 合 一 , 正 方 形 、 矩 形 性 质 , 全 等 【解析】 (1) 答 :① 依据 1:两 条 直 线 被 一 组 平 行 线 所 截 ,所 得 的 对 应 线 段 成 比 例( 或 平 行 线 分 线 段 成比例) .依据 2: 等 腰 三 角 形 顶 角 的 平 分 线 , 底 边 上 的 中 线 及 底 边 上 的 高 互 相 重 合 ( 或 等 腰 三 角 形的“三线合一 ”) . ② 答:点 A 在 线 段 GF 的垂直平分线上 . (2) 证明 :过点 G 作 GH ⊥ BC 于点 H ,四 边形 ABCD 是 矩 形 , 点 E 在 AB 的 延 长 线 上 ,∴∠CBE = ∠ABC = ∠GHC = 90︒. ∴∠1+∠2=90︒.四边形 CEFG 为 正 方 形 ,∴CG = CE , ∠GCE = 90︒.∠1+ ∠3 = 90︒. ∴∠2=∠3. ∴△GHC ≌ △CBE . ∴ H C = BE . 四边形 ABCD 是 矩 形 , ∴ AD = BC .AD = 2 A B , BE = AB , ∴ B C = 2BE = 2HC . ∴ H C = BH .∴GH 垂直平分 BC.∴点 G 在 BC 的 垂 直 平 分 线 上(3)答:点 F 在 BC 边的垂直平分线上(或点 F 在 AD 边的垂直平分线上).证法一:过点 F 作 FM ⊥BC 于点 M,过点 E 作 EN ⊥FM 于点 N.∴∠BMN =∠ENM =∠ENF =90︒.四边形 ABCD 是矩形,点 E 在 AB 的延长线上,∴∠CBE =∠ABC = 90︒.∴四边形BENM 为矩形.∴B M =EN,∠BEN = 90︒. ∴∠1+∠2 =90︒.四边形 CEFG 为正方形,∴EF =EC, ∠CEF = 90︒. ∴∠2 +∠3 =90︒.∴∠1=∠3. ∠CBE =∠ENF =90︒,∴△ENF≌△EBC.∴N E =BE. ∴B M =BE.四边形 ABCD 是矩形,∴AD =BC.AD =2A B, AB =BE. ∴B C = 2BM . ∴B M =MC.∴FM 垂直平分 BC,∴点 F 在 BC 边的垂直平分线上.证法二:过 F 作 FN ⊥BE 交 BE 的延长线于点 N,连接 FB,F C.四边形 ABCD 是矩形,点 E 在 AB 的延长线上,∴∠CBE=∠ABC=∠N=90°. ∴∠1+∠3=90°.四边形 CEFG 为正方形,∴EC=EF,∠CEF=90°.∴∠1+∠2=90°. ∴∠2=∠3.∴△ENF ≅△CBE.∴NF=BE,NE=BC.四边形 ABCD 是矩形,∴AD=BC.AD=2AB,B E=AB. ∴设 BE=a,则 BC=EN=2a,NF=a.∴BF=CF. ∴点 F 在 BC 边的垂直平分线上.1 2 23. (本题 13 分 )综 合 与 探 究如图,抛物线211433y x x =--与 x 轴交于 A , B 两点(点 A 在点 B 的 左 侧 ), 与 y 轴交于点 C ,连接 AC , BC .点 P 是 第 四 象 限 内 抛 物 线 上 的 一 个 动 点 ,点 P 的横坐标为 m ,过 点 P 作 PM ⊥ x 轴 ,垂 足 为点 M , PM 交 BC 于点 Q ,过点 P 作 PE ∥ AC 交 x 轴于点 E ,交 BC 于点 F .( 1) 求 A , B , C 三点的坐标;( 2) 试探究在点 P 的 运 动 的 过 程 中 ,是 否 存 在 这 样 的 点 Q ,使 得 以 A , C , Q 为 顶 点 的 三 角 形 是 等腰三角形.若存 在 ,.写出此时点 Q 的 坐 标 ; 若 不 存 在 , 请 说明理由; (3) 请用含 m 的 代 数 式 表 示 线 段 QF 的长,并求出 m 为 何 值 时 QF 有最大值 . 【考点】 几 何 与 二 次 函 数 综 合 【解析】 ( 1) 解: 由 y = 0 ,得2114=033x x -- 解得 x 1 = -3 , x 2 = 4 . ∴ 点 A , B 的坐标分别为 A(-3,0), B ( 4, 0)由 x = 0 ,得 y = -4 .∴ 点 C 的 坐 标 为 C ( 0, -4) .( 2) 答: Q ( 5 2 , 5 2 2 - 4) , Q (1,-3) . 2 ( 3) 过点 F 作 FG ⊥ PQ 于点 G . 则 FG ∥x 轴 . 由 B ( 4, 0), C ( 0, -4),得 △O B C 为 等 腰 直 角 三 角 形 .∴ ∠OBC = ∠QFG = 45︒ . ∴ GQ = FG=2FQ . PE ∥ AC , ∴ ∠1 = ∠2 . FG ∥x 轴,∴ ∠2 = ∠3 . ∴ ∠1 = ∠3 .∠FGP = ∠AOC = 90︒ , ∴ △FGP ∽△AOC .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
晋文源初三摸底检测试题数学第Ⅰ卷选择题(共30分)一、选择题(在每小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑.本大题共10个小题,每小题3分,共30分)1.数轴上点A ,B 表示的数分别是5,-2,它们之间的距离可以表示为A .|-2-5|B .-2-5C .-2+5D .|-2+5|2.下面四个手机应用图标中是轴对称图形的是A. B. c. D.3.在一个不透明的袋子中装有形状、大小、质地完全相同的5个球,其中3个黑球、2个白球,从袋子中一次摸出3个球,下列事件是必然事件的是A .摸出的是3个白球B .摸出的是3个黑球C .摸出的球中至少有1个是黑球D .摸出的是2个白球、1个黑球4.下列运算正确的是A .515422=÷-)(B .14322-=-x x C .523)1575(=÷-D .632)(x x =--5.不等式4262+>-x x 的解集是A .x <-5B .x >-5C .x >5D .x <56.由若干个相同的小正方体搭成的一个几何体的主视图和俯视图如图所示,则组成这个几何体的小正方体的个数最多有A .8B .7C .6D .5(第6题图)7.生物活动小组的同学们观察某植物生长,得到该植物高度y (单位:cm )与观察时间x (单位:天)的关系,并画出如图所示的图象(CD ∥x 轴),该植物最高的高度是A .50cmB .20cmC .16cmD .12cm(第7题图)8.如图,有一个边长为2cm 的正六边形纸片,若在该纸片上沿虚线剪一个最大圆形纸片,则这个圆形纸片的半径是A .3cmB .2cmC .32cmD .4cm(第8题图)9.如图,已知在平面直角坐标系中,点O 是坐标原点,△AOB 是直角三角形,∠AOB =90°,OB =2OA ,点B 在反比例函数x y 2=上,若点A 在反比例函数x k y =上,则k 的值为A .21B .21-C .41D .41-(第9题图)10.如图,点A 在x 轴上,∠OAB =90°,∠B =30°,OB =6,将△OAB 绕点O 按顺时针方向旋转120°得到△OA ′B ′,则点B ′的坐标是A .(33,-3)B .(3,33)C .(33,3)D .(3,33 )(第10题图)第Ⅱ卷(非选择题90分)二、填空题(本大题共5个小题,每小题3分,共15分)11-1.据2020年3月公布的《山西省2019年国民经济和社会发展统计公报》显示,经初步核算,2019年我省实现地区生产总值17026.68亿元,比上年增长6.2%.数据17026.68亿元用科学记数法表示为元.11-2.我们规定把同一副扑克牌中的红桃A,黑桃A,梅花A三张牌背面朝上放在桌子上,将扑克牌洗匀后从中随机抽取一张,记下扑克牌的花色后放回,洗匀后再随机抽取一张,则两次抽取的扑克牌为同一张的概率为.(第11-2题)11-3.杨辉,字谦光,钱塘(今浙江杭州)人,南宋杰出的数学家和数学教育家,杨辉一生留下了大量的著述.下面是杨辉在1275年提出的一个问题(选自杨辉所著《田亩比类乘除算法》):直田积(矩形面积)八百六十四步(平方步),只云阔(宽)不及长一十二步(宽比长少一十二步),问阔及长各几步.解答这个问题可知长为步.11-4.如图,在□ABCD 中,AH ⊥BC 于点H ,点E 在AD 上,∠EBC =45°,BE 交AH 于点F ,连接CF ,CF ⊥CD .若BH =1,AB =10,则EF 的长为.(第11-4题)11-5.如图,在□ABCD 中,AB =BC =2,∠ABC =60°,过点D 作DE ∥AC ,DE =21AC ,连接AE ,则△ADE 的周长为.(第11-5题)三、解答题(本大题共8个小题,共75分.解答题应写出文字说明、证明过程或演算步骤)12.(每小题5分,共10分)(1)解方程组:⎪⎩⎪⎨⎧=+-=+--.232),1(32)1(4y x y y x (2)已知实数a 满足a 2+2a -9=0,求12)2)(1(121122+-++÷-+-+a a a a a a a 的值.13.(本题7分)如图,在Rt △ABC 中,∠C =90°,点D 是CB 的中点,将△ACD 沿AD 折叠后得到△AED ,过点B 作BF ∥AC 交AE 的延长线于点F .求证:BF =EF .14.(本题6分)阅读理解,并解决问题:“整体思想”是中学数学中的一种重要思想,贯穿于中学数学的全过程,比如整体代入,整体换元,整体约减,整体求和,整体构造,…,有些问题若从局部求解,采取各个击破的方式,很难解决,而从全局着眼,整体思考,会使问题化繁为简,化难为易,复杂问题也能迎刃而解.例:当代数式x2+3x+5的值为7时,求代数式3x2+9x-2的值.解:因为x2+3x+5=7,所以x2+3x=2.所以3x2+9x-2=3(x2+3x)-2=3×2-2=4.以上方法是典型的整体代入法.请根据阅读材料,解决下列问题:(1)已知a2+3a-2=0,求5a3+15a2-10a+2020的值.(2)我们知道方程x2+2x-3=0的解是x1=1,x2=-3,现给出另一个方程(2x+3)2+2(2x+3)-3=0,则它的解是.15.(本题9分)某社区组织了以“奔向幸福,‘毽’步如飞”为主题的踢毽子比赛活动,初赛结束后有甲、乙两个代表队进入决赛,已知每队有5名队员,按团体总数排列名次,在规定时间内每人踢100个以上(含100)为优秀.下表是两队各队员的比赛成绩.1号2号3号4号5号总数甲队1031029810097500乙队979910096108500经统计发现两队5名队员踢毽子的总个数相等,按照比赛规则,两队获得并列第一.学习统计知识后,我们可以通过考查数据中的其它信息作为参考,进行综合评定:(1)甲、乙两队的优秀率分别为,;(2)甲队比赛数据的中位数为个;乙队比赛数据的中位数为个;(3)分别计算甲、乙两队比赛数据的方差;(4)根据以上信息,你认为综合评定哪一个队的成绩好?简述理由.16.(本题8分)如图1,一辆汽车从A地出发去往C地,A,C两地相距273km.由于A,C之间某路段正在修路.驾驶员临时改变路线,先由A地开往B地,再由B地开往C地,如图2是从该场景中抽象出来的示意图,已知∠A=30°,∠C=45°,则这样的行驶路程比原来路程273km远了多少?(结果精确到1km,参考数据:2≈1.41,3≈1.73)17.(本题9分)“十三五”以来,山西省共解决372个村、35.8万农村人口的饮水型氟超标问题,让农村群众真正喝上干净水、放心水、安全水.某公司抓住商机,根据市场需求代理A,B两种型号的净水器,已知每台A型净水器比每台B型净水器进价多200元,用5万元购进A型净水器与用4.5万元购进B型净水器的数量相等.(1)求每台A型,B型净水器的进价各是多少元?(2)该公司计划购进A,B两种型号的净水器共55台进行试销,其中A型净水器为m 台,购买两种净水器的总资金不超过10.8万元.则最多可购进A型号净水器多少台?(A 型)(B 型)18.(本题12分)综合与实践正方形内“奇妙点”及性质探究定义:如图1,在正方形ABCD 中,以BC 为直径作半圆O ,以D 为圆心,DA 为半径作⌒AC ,与半圆O 交于点P .我们称点P 为正方形ABCD 的一个“奇妙点”.过奇妙点的多条线段与正方形ABCD 无论是位置关系还是数量关系,都具有不少优美的性质值得探究.性质探究:如图2,连接DP 并延长交AB 于点E ,则DE 为半圆O 的切线.证明:连接OP ,OD .由作图可知,DP =DC ,OP =OC ,又∵OD =OD .∴△OPD ≌△OCD .(SSS )∴∠OPD =∠OCD =90°.∴DE 是半圆O 的切线.问题解决:(1)如图3,在图2的基础上,连接OE .请判断∠BOE 和∠CDO 的数量关系,并说明理由;(图1)(图2)(图3)(图4)(图5)(2)在(1)的条件下,请直接写出线段DE ,BE ,CD 之间的数量关系;(3)如图4,已知点P 为正方形ABCD 的一个“奇妙点”,点O 为BC 的中点,连接DP 并延长交AB 于点E ,连接CP 并延长交AB 于点F ,请写出BE 和AB 的数量关系,并说明理由;(4)如图5,已知点E ,F ,G ,H 为正方形ABCD 的四个“奇妙点”.连接AG ,BH ,CE ,DF ,恰好得到一个特殊的“赵爽弦图”.请根据图形,探究并直接写出一个不全等的几何图形面积之间的数量关系.19.(本题14分)综合与探究:在平面直角坐标系xOy 中,已知抛物线32332632++-=x x y 与x 轴交于A ,B 两点(点B 在点A 的右侧),与y 轴交于点C ,它的对称轴与x 轴交于点D ,直线l 经过C ,D 两点,连接AC .(1)求A ,B 两点的坐标及直线l 的函数表达式;(2)探索直线l 上是否存在点E ,使△ACE 为直角三角形,若存在,求出点E 的坐标;若不存在,说明理由;(3)若点P 是直线l 上的一个动点,试探究在抛物线上是否存在点Q :①使以点A,C,P,Q为顶点的四边形为菱形,若存在,请直接写出点Q的坐标;若不存在,说明理由;②使以点A,C,P,Q为顶点的四边形为矩形,若存在,请直接写出点Q的坐标;若不存在,说明理由.找准方向 事半功倍临门一脚 决战中考体现最新中考改革细微变化,新方向新素材、新主题查漏补缺、强化训练全仿真模拟多角度命题全方位猜押多维度预测晋文源教育隆重出品时政热点 中考冲刺时政热点事件化高频考点集训化中考疑点问题化考政重点习题化扫码关注轻松提分上市时间:5月10日上市时间:6月1日上市时间:6月25日晋文源初三摸底检测试题数学参考答案及评分标准一、选择题:题号12345678910答案A D C D A B C A B D二、填空题:11-1. 1.702668×101211-2.3111-3.3611-4.2211-5.73+三、解答题:12.解:(1)原方程可化为⎩⎨⎧=+=-②①,.122354y x y x ····································2分①×2+②得11x =22.解得x =2.····················································································4分把x =2代入①得y =3.所以,这个方程组的解为⎩⎨⎧==.3,2y x ·························································5分(2)解:原式=)2)(1()1()1)(1(2112++-⋅-++-+a a a a a a a ···························7分=2)1(111+--+a a a =2)1(2+a .·······································································8分∵a 2+2a -9=0,∴(a +1)2=10.·············································································9分∴原式=51102)1(22==+a .································································10分13.证明:如答图,连接DF ,答图∵D 是CB 的中点,∴CD =BD .·····················································································1分∵将△ACD 沿AD 折叠后得到△AED ,∴CD =ED ,∠AED =∠C =90°.·······························································2分∴BD =ED ,∠DEF =90°.······································································3分∵BF ∥AC ,∠C =90°,∴∠CBF =90°.∴∠DBF =∠DEF =90°.·········································································4分在Rt △DBF 和Rt △DEF 中,⎩⎨⎧==,ED BD DF DF ,∴Rt △DBF ≌Rt △DEF (HL ).···································································6分∴BF =EF .······················································································7分14.(1)(方法不唯一)例如,解:5a 3+15a 2-10a +2020=5a (a 2+3a -2)+2020.···································································2分∵a 2+3a -2=0.∴原式=0+2020=2020.············································································3分∴5a 3+15a 2-10a +2020的值为2020.·····················································4分(2)x 1=-1,x 2=-3.········································································6分15.解:(1)60%,40%;····································································2分(2)100,99;··················································································4分(3)甲、乙两队比赛数据的平均数均为500÷5=100(个).·························5分5265)10097()100100()10098()100102()100103(222222=-+-+-+-+-=甲s .·······································································································6分185)100108()10096()100100()10099()10097(222222=-+-+-+-+-=乙s .·······································································································7分(4)综合评定甲队的成绩好.································································8分理由如下:因为甲队的优秀率比乙队高;甲队的中位数比乙队大;甲班的方差比乙班低,比较稳定,综合评定甲队比较好.·········································································9分16.解:如答图,过点B 作BD 垂直于AC 于点D ,答图在Rt △ABD 中,设BD=x ,AD=BD 330tan =︒,x BD AB 230sin =︒=,·······································································1分在Rt △BDC 中,CD=BD=x ,︒=45sin BD BC =2.································2分∵AD+CD=AC ,∴2733=+x x ,·············································································3分∴10013273≈+=x .············································································4分∴1412,2002≈=≈=x BC x AB ,····················································5分∴341141200≈+≈+BC AB (km ),··············································6分∴68273341≈-≈-+AC BC AB (km ).···································7分答:这样的行驶路程比原来路程273km 远了68km.(67也给分)·················8分17.解:(1)设每台B 型净水器的进价是x 元.······································1分根据题意,得x x 4500020050000=+.·························································2分解得x =1800.·······················································································3分经检验,x =1800是原分式方程的解,且符合题意.·······································4分∴x +200=2000.答:每台A 型净水器的进价是2000元,每台B 型净水器的进价是1800元;···5分(2)购进A 型净水器m 台,则购进B 型净水器(55-m )台.···················6分依题意,得2000m +1800(55-m )≤108000.············································7分解得m ≤45.·····················································································8分答:最多可购进A 型净水器45台.························································9分18.解:(1)∠BOE=∠CDO .···································································1分理由如下:∵△OPD ≌△OCD .∴∠OPD =∠OCD =90°,∠POD=∠COD ,∠CDO =∠PDO=21∠PDC .∴∠POC +∠PDC =360°-∠OPD -∠OCD =180°.············································2分∵∠POC +∠BOP =180°,∴∠BOP =∠PDC .··················································································3分在Rt △POE 和Rt △BOE 中∵OE =OE ,OP =OB (由作图得出).∴△POE ≌△BOE .∴∠POE=∠BOE =21∠BOP .·····································································4分∵∠CDO =∠PDO=21∠PDC .∴∠BOE=∠CDO .··················································································5分(2)线段DE ,BE ,CD 之间的数量关系是DE =BE+CD .··································7分(3)如答图,连接OE ,OD ,答图由(1)可知,∠BOE=∠CDO .又∵∠B=∠OCD =90°,点O 为BC 的中点,∴tan ∠BOE=tan ∠CDO .∴21==DC OC BO BE .············································8分∴BE =21BO =2121⨯BC =41BC .·······························9分∵四边形ABCD 是正方形,∴AB =BC .∴BE =41AB .·························································································10分(4)答案不唯一,例如,△ABH 的面积等于正方形EFGH 的面积;正方形EFGH 的面积等于正方形ABCD 面积的51等等.·····························································12分19.解:(1)当y =0时,032332632=++-x x .解得1x =-2,2x =6.∴点A 的坐标为(-2,0),点B 的坐标为(6,0).······························2分(∵32332632++-=x x y =338)2(632+--x .(可以不写))∴抛物线的对称轴为直线x =2.∴点D 的坐标为(2,0).·································································3分当x =0时,y =32.∴点C 的坐标为(0,32).································································4分设直线l 的表达式为y =kx +b ,则⎩⎨⎧=+=.0232b k b 解得⎪⎩⎪⎨⎧=-=.323b k ∴直线l 的表达式为323+-=x y .···················································5分(2)直线l 上存在点E ,使△ACE 为直角三角形.·······································6分∵点A 的坐标为(-2,0),点D 的坐标为(2,0),∴AD =4.又∵点C 的坐标为(0,32),CO ⊥AD ,∴AC =CD =4)32(222=+.∴AC =CD =AD .∴△ACE 为等边三角形.∴∠ADC =∠CAD =60°.···········································································7分分两种情况:①当∠AE 1C =90°时,。