圆的标准方程 说课稿 教案 教学设计

合集下载

数学(人教版)说课稿圆的标准方程

数学(人教版)说课稿圆的标准方程

8.4.1 圆的标准方程说课稿(第一课时)各位评委师:大家好。

今天我带来的教学设计的内容是圆的标准方程。

下边我将从教学理念、教材分析、学生分析、“教”与“学”和教学反思五个方面进行阐述。

一、【教学理念】以学生为中心,激发兴趣,寓教于乐,化抽象为直观。

通过信息技术的合理运用,来创设生动的教学情境和学生自主学习环境,扩大课堂的知识量,提高课堂的教学效率和学生自主学习的能力二、【教材分析】1、教材背景和地位本节课是中职课程改革国家规划新教材,数学基础模块下册第八章第四节的内容。

继续应用解析法研究几何、掌握圆在生活中的应用、提升服务专业课的能力、同时为进一步学习圆锥曲线打下坚实的基础,因此本节课无论是在生活、专业课学习还是教材本身都有着非常重要的地位。

2、教学目标:根据实用、够用的原则结合本节课的结构特点、内容和学生的认知结构及其心理特征,制定以下教学目标:(1)知识与技能目标:了解圆的特征、定义及标准方程的推导过程;理解圆的标准方程及三个参数r、a、b的含义;掌握根据圆的标准方程,写出圆心坐标和半径,同时能根据条件写出圆的标准方程。

(2)过程与方法目标:通过几何画板演示圆的画法培养学生的观察、分析、概括的思维能力。

渗透数形结合思想。

(3)情感与价值观目标:利用圆的对称美陶冶学生的情操,培养数学素养,激发学习兴趣,让学生体验学习的乐趣。

3、教学重、难点:在此目标的指引下本节课的重、难点是:(1)圆的标准方程及圆的三个参数之间的关系(2)运用圆的标准方程解决一些简单的实际问题的方法三、【学生分析】中职学生的基础普遍薄弱,对数学基础知识掌握不够。

但中职学生对生活中的事物比较感兴趣,动手操作能力强,同时渴望得到家长、老师和同学的认可,及其希望获得成功,所以我们应让学生在数学课堂上找回自信和成功。

四、【“教”与“学”】为了迎合学生的心理特征和突破重难点,使学生能够达到本节题设定的教学目标,下边我具体的谈谈我“教”与“学”的过程:“教”首先通过情境创设,给学生一个圆,让学生进行讨论,发现生活中的圆,并列举出生活中的圆作用,让学生体会圆的魅力和对生活的重要意义。

《圆的标准方程》教学设计

《圆的标准方程》教学设计

《圆的标准方程》教学设计一、教学目标1、知识与技能目标学生能够理解圆的标准方程的推导过程,掌握圆的标准方程的形式,并能根据圆的标准方程求出圆心坐标和半径。

2、过程与方法目标通过圆的标准方程的推导,培养学生的逻辑推理能力和数学运算能力。

3、情感态度与价值观目标让学生在数学学习中体验成功的喜悦,增强学习数学的兴趣和信心。

二、教学重难点1、教学重点圆的标准方程的形式及其应用。

2、教学难点圆的标准方程的推导过程。

三、教学方法讲授法、讨论法、练习法四、教学过程1、导入新课通过展示生活中常见的圆形物体,如车轮、圆盘等,引导学生思考圆的特征,从而引出本节课的主题——圆的标准方程。

2、知识讲解(1)回顾圆的定义:平面内到定点的距离等于定长的点的集合(轨迹)叫做圆。

定点称为圆心,定长称为半径。

(2)设圆的圆心坐标为$(a,b)$,半径为$r$,点$M(x,y)$为圆上任意一点。

根据两点间的距离公式可得:$\sqrt{(x a)^2 +(y b)^2} = r$,两边平方可得圆的标准方程:$(x a)^2 +(y b)^2 =r^2$。

3、例题讲解例 1:已知圆的圆心坐标为$(2,-3)$,半径为 5,求圆的标准方程。

解:根据圆的标准方程$(x a)^2 +(y b)^2 = r^2$,其中$a =2$,$b =-3$,$r = 5$,则圆的标准方程为$(x 2)^2 +(y + 3)^2 = 25$。

例 2:求圆心在原点,半径为 3 的圆的标准方程。

解:因为圆心在原点,即$(0,0)$,半径$r = 3$,所以圆的标准方程为$x^2 + y^2 = 9$。

4、课堂练习(1)已知圆的圆心坐标为$(-1,4)$,半径为 2,求圆的标准方程。

(2)求圆心在点$(3,-1)$,且过点$(1,1)$的圆的标准方程。

5、小组讨论让学生分组讨论以下问题:(1)如何根据圆的标准方程确定圆心和半径?(2)圆的标准方程与圆的一般方程有什么区别和联系?6、课堂总结(1)回顾圆的标准方程的推导过程和形式。

圆的标准方程教案

圆的标准方程教案

圆的标准方程教案一、教学目标1、理解圆的标准方程的推导过程。

2、掌握圆的标准方程的形式和特点。

3、能够根据圆的标准方程求出圆心坐标和半径。

4、会用待定系数法求圆的标准方程。

二、教学重难点1、教学重点圆的标准方程的推导。

圆的标准方程的应用。

2、教学难点圆的标准方程的推导过程中坐标变换的理解。

三、教学方法讲授法、讨论法、练习法四、教学过程1、导入通过展示生活中常见的圆形物体,如车轮、圆盘等,引导学生思考圆的特征。

提问学生如何描述一个圆,从而引出本节课的主题——圆的标准方程。

2、知识讲解(1)圆的定义在平面直角坐标系中,以点\((a,b)\)为圆心,以\(r\)为半径的圆的定义是:平面内到定点\((a,b)\)的距离等于定长\(r\)的点的集合。

(2)圆的标准方程的推导设点\(M(x,y)\)是圆上任意一点,根据圆的定义,点\(M\)到圆心\((a,b)\)的距离等于半径\(r\)。

根据两点间的距离公式可得:\(\sqrt{(x a)^2 +(y b)^2} = r\)两边平方可得:\((x a)^2 +(y b)^2 = r^2\)这就是圆的标准方程。

(3)圆的标准方程的特点方程\((x a)^2 +(y b)^2 = r^2\)中,有三个参数\(a\)、\(b\)、\(r\),即圆心坐标\((a,b)\)和半径\(r\)。

当圆心在原点\((0,0)\)时,圆的标准方程为\(x^2 + y^2 =r^2\)。

3、例题讲解例 1:已知圆的圆心为\((2,-3)\),半径为\(4\),求圆的标准方程。

解:因为圆心为\((2,-3)\),半径为\(4\),所以圆的标准方程为\((x 2)^2 +(y + 3)^2 = 16\)例 2:求以点\((-1,2)\)为圆心,且过点\((3,4)\)的圆的标准方程。

首先计算半径\(r\):\(r =\sqrt{(3 + 1)^2 +(4 2)^2} =\sqrt{16 + 4} =2\sqrt{5}\)所以圆的标准方程为\((x + 1)^2 +(y 2)^2 = 20\)4、课堂练习(1)已知圆的圆心为\((-3,4)\),半径为\(\sqrt{5}\),写出圆的标准方程。

圆的标准方程(说课稿)

圆的标准方程(说课稿)

通过推导圆的标准方程,加深学生对用坐标法 求曲线方程的理解。通过求圆的标准方程,理解 必须确定了圆心坐标和半径才能确定一个圆的方 程。
教材 分析
教学 评价
教学 方法
圆的标 准方程
板书 设计
教具 准备
教学 过程
彩色 粉笔
小黑板
教学 用具
三角板
圆规
教材 分析
教学 评价
教学 方法
圆的标 准方程
板书 设计
一、教材的地位和作用
教材 分析 二、教学目标
三、教学重难点
二、教学目标
● 1.知识目标 ①正确掌握圆的定义、圆的标准方程及其推导
过程; ②根据圆心坐标、半径熟练地写出圆的标准方
程和从圆的标准方程熟练地求出圆心和半径. ●2.能力目标
培养用代数的方法解决几何问题的能力、逻辑思 维能力. ●3.情感目标
圆的标 准方程
板书 设计
教具 准备
教学 过程
板书 设计
一、圆的方程
圆的标准方程 注意:
三、练习
1.圆心在原点 2.圆心不在 二、例题 四、作业 原点
教材 分析
教学 评价
教学 方法
圆的标 准方程
板书 设计
教具 准备
教学 过程
教学 过程
创设情景 合作探究 反馈练习 知识回顾 布置作业 引入新课 获得新知 引用拓展 反思提高 分层落实
三、反馈练习,引用拓展
1.写出下列各圆的方程 (1)圆心在原点,半径为3; (2)圆心在C(3,,4)半径为 ;5 (3)经过点 P(5,,1)圆心在点 C(;8, 3) 2.根据圆的方程口答出它的圆心和半径
D
A
O
C
B
教学 过程

圆的标准方程 说课稿 教案 教学设计

圆的标准方程  说课稿  教案 教学设计

圆的标准方程整体设计教学分析在初中曾经学习过圆的有关知识,本节内容是在初中所学知识及前几节内容的基础上,进一步运用解析法研究圆的方程,它与其他图形的位置关系及其应用.同时,由于圆也是特殊的圆锥曲线,因此,学习了圆的方程,就为后面学习其他圆锥曲线的方程奠定了基础.也就是说,本节内容在教材体系中起到承上启下的作用,具有重要的地位,在许多实际问题中也有着广泛的应用.由于“圆的方程”一节内容的基础性和应用的广泛性,对圆的标准方程要求层次是“掌握”,为了激发学生的主体意识,教学生学会学习和学会创造,同时培养学生的应用意识,本节内容可采用“引导探究”型教学模式进行教学设计,所谓“引导探究”是教师把教学内容设计为若干问题,从而引导学生进行探究的课堂教学模式,教师在教学过程中,主要着眼于“引”,启发学生“探”,把“引”和“探”有机的结合起来.教师的每项教学措施,都是给学生创造一种思维情境,一种动脑、动手、动口并主动参与的学习机会,激发学生的求知欲,促使学生解决问题.三维目标1.使学生掌握圆的标准方程,能根据圆心、半径写出圆的标准方程,能根据圆的标准方程写出圆的圆心、半径,进一步培养学生能用解析法研究几何问题的能力,渗透数形结合思想,注意培养学生观察问题、发现问题和解决问题的能力.2.会用待定系数法求圆的标准方程,通过圆的标准方程解决实际问题的学习,形成代数方法处理几何问题的能力,从而激发学生学习数学的热情和兴趣,培养学生分析、概括的思维能力.3.理解掌握圆的切线的求法.包括已知切点求切线,从圆外一点引切线,已知切线斜率求切线等.把握运动变化原则,培养学生树立相互联系、相互转化的辩证唯物主义观点,欣赏和体验圆的对称性,感受数学美.重点难点教学重点:圆的标准方程的推导过程和圆的标准方程特点的明确.教学难点:会根据不同的已知条件,利用待定系数法求圆的标准方程.课时安排1课时教学过程导入新课思路1.课前准备:(用淀粉在一张白纸上画上海和山)说明:在白纸上要表演的是一个小魔术,名称是《日出》,所以还缺少一个太阳,请学生帮助在白纸上画出太阳.要求其他学生在自己的脑海里也构画出自己的太阳.课堂估计:一种是非尺规作图(指出数学作图的严谨性);一种作出后有同学觉得不够美(点评:其实每个人心中都有一个自己的太阳,每个人都有自己的审美观点).然后上升到数学层次:不同的圆心和半径对应着不同的圆,进而对应着不同的圆的方程.从用圆规作图复习初中所学圆的定义:到定点的距离等于定长的点的轨迹.那么在给定圆心和半径的基础上,结合我们前面所学的直线方程的求解,应该如何建立圆的方程?教师板书本节课题:圆的标准方程.思路2.同学们,我们知道直线可以用一个方程表示,那么,圆可以用一个方程表示吗?圆的方程怎样来求呢?这就是本堂课的主要内容,教师板书本节课题:圆的标准方程.推进新课新知探究提出问题①已知两点A(2,-5),B(6,9),如何求它们之间的距离?若已知C(3,-8),D(x,y),又如何求它们之间的距离?②具有什么性质的点的轨迹称为圆?③图1中哪个点是定点?哪个点是动点?动点具有什么性质?圆心和半径都反映了圆的什么特点?图1④我们知道,在平面直角坐标系中,确定一条直线的条件是两点或一点和倾斜角,那么,决定圆的条件是什么?⑤如果已知圆心坐标为C(a,b),圆的半径为r,我们如何写出圆的方程?⑥圆的方程形式有什么特点?当圆心在原点时,圆的方程是什么?讨论结果:①根据两点之间的距离公式221221)()(y y x x -+-,得|AB|=212)59()62(22=++-, |CD|=22)8()3(++-y x .②平面内与一定点距离等于定长的点的轨迹称为圆,定点是圆心,定长是半径(教师在黑板上画一个圆). ③圆心C 是定点,圆周上的点M 是动点,它们到圆心距离等于定长|MC|=r,圆心和半径分别确定了圆的位置和大小.④确定圆的条件是圆心和半径,只要圆心和半径确定了,那么圆的位置和大小就确定了. ⑤确定圆的基本条件是圆心和半径,设圆的圆心坐标为C(a,b),半径为r(其中a 、b 、r 都是常数,r >0).设M(x,y)为这个圆上任意一点,那么点M 满足的条件是(引导学生自己列出)P={M||MA|=r},由两点间的距离公式让学生写出点M 适合的条件22)()(b y a x -+-=r.①将上式两边平方得(x-a)2+(y-b)2=r 2.化简可得(x-a)2+(y-b)2=r 2.②若点M(x,y)在圆上,由上述讨论可知,点M 的坐标满足方程②,反之若点M 的坐标满足方程②,这就说明点M 与圆心C 的距离为r,即点M 在圆心为C 的圆上.方程②就是圆心为C(a,b),半径长为r 的圆的方程,我们把它叫做圆的标准方程.⑥这是二元二次方程,展开后没有xy 项,括号内变数x,y 的系数都是1.点(a,b)、r 分别表示圆心的坐标和圆的半径.当圆心在原点即C(0,0)时,方程为x 2+y 2=r 2.提出问题①根据圆的标准方程说明确定圆的方程的条件是什么?②确定圆的方程的方法和步骤是什么?③坐标平面内的点与圆有什么位置关系?如何判断?讨论结果:①圆的标准方程(x -a)2+(y -b)2=r 2中,有三个参数a 、b 、r,只要求出a 、b 、r且r >0,这时圆的方程就被确定,因此确定圆的标准方程,需三个独立条件,其中圆心是圆的定位条件,半径是圆的定形条件.②确定圆的方程主要方法是待定系数法,即列出关于a 、b 、r 的方程组,求a 、b 、r 或直接求出圆心(a,b)和半径r,一般步骤为:1°根据题意,设所求的圆的标准方程(x -a)2+(y -b)2=r 2;2°根据已知条件,建立关于a 、b 、r 的方程组;3°解方程组,求出a 、b 、r 的值,并把它们代入所设的方程中去,就得到所求圆的方程.③点M(x 0,y 0)与圆(x-a)2+(y-b)2=r 2的关系的判断方法:当点M(x 0,y 0)在圆(x-a)2+(y-b)2=r 2上时,点M 的坐标满足方程(x-a)2+(y-b)2=r 2.当点M(x 0,y 0)不在圆(x-a)2+(y-b)2=r 2上时,点M 的坐标不满足方程(x-a)2+(y-b)2=r 2.用点到圆心的距离和半径的大小来说明应为:1°点到圆心的距离大于半径,点在圆外⇔(x 0-a)2+(y 0-b)2>r 2,点在圆外;2°点到圆心的距离等于半径,点在圆上⇔(x 0-a)2+(y 0-b)2=r 2,点在圆上;3°点到圆心的距离小于半径,点在圆内⇔(x 0-a)2+(y 0-b)2<r 2,点在圆内.应用示例思路1例1 写出下列各圆的标准方程:(1)圆心在原点,半径是3;⑵圆心在点C(3,4),半径是5;(3)经过点P(5,1),圆心在点C(8,-3);(4)圆心在点C(1,3),并且和直线3x-4y-7=0相切.解:(1)由于圆心在原点,半径是3,所以圆的标准方程为(x-0)2+(y-0)2=32,即x 2+y 2=9.(2)由于圆心在点C(3,4),半径是5,所以圆的标准方程是(x-3)2+(y-4)2=(5)2,即(x-3)2+(y-4)2=5.(3)方法一:圆的半径r=|CP|=25)31()85(22=++-=5,因此所求圆的标准方程为(x-8)2+(y+3)2=25.方法二:设圆的标准方程为(x-8)2+(y+3)2=r 2,因为圆经过点P(5,1),所以(5-8)2+(1+3)2=r 2,r 2=25,因此所求圆的标准方程为(x-8)2+(y+3)2=25.这里方法一是直接法,方法二是间接法,它需要确定有关参数来确定圆的标准方程,两种方法都可,要视问题的方便而定.(4)设圆的标准方程为(x-1)2+(y-3)2=r 2,由圆心到直线的距离等于圆的半径,所以r=25|16|25|7123|=--.因此所求圆的标准方程为(x-1)2+(y-3)2=25256. 点评:要求能够用圆心坐标、半径长熟练地写出圆的标准方程.例2 写出圆心为A(2,-3),半径长等于5的圆的方程,并判断点M 1(5,-7),M 2(-5,-1)是否在这个圆上.解:圆心为A(2,-3),半径长等于5的圆的标准方程是(x-2)2+(y+3)2=25,把点M 1(5,-7),M 2(-5,,-1)分别代入方程(x-2)2+(y+3)2=25, 则M 1的坐标满足方程,M 1在圆上.M 2的坐标不满足方程,M 2不在圆上.点评:本题要求首先根据坐标与半径大小写出圆的标准方程,然后给一个点,判断该点与圆的关系,这里体现了坐标法的思想,根据圆的坐标及半径写方程——从几何到代数;根据坐标满足方程来看在不在圆上——从代数到几何.例3 △ABC 的三个顶点的坐标是A(5,1),B(7,-3),C(2,-8),求它的外接圆的方程.活动:教师引导学生从圆的标准方程(x-a)2+(y-b)2=r 2入手,要确定圆的标准方程,可用待定系数法确定a 、b 、r 三个参数.另外可利用直线AB 与AC 的交点确定圆心,从而得半径,圆的方程可求,师生总结、归纳、提炼方法.解法一:设所求的圆的标准方程为(x-a)2+(y-b)2=r 2,因为A(5,1),B(7,-3),C(2,-8)都在圆上,它们的坐标都满足方程(x-a)2+(y-b)2=r 2,于是⎪⎩⎪⎨⎧=--+-=--+-=-+-)3(.)8()2()2()3()7()1(,)1()5(222222222r b a rb a r b a 解此方程组得⎪⎩⎪⎨⎧=-==.5,3,2r b a 所以△ABC 的外接圆的方程为(x-2)2+(y+3)2=25.解法二:线段AB 的中点坐标为(6,-1),斜率为-2,所以线段AB 的垂直平分线的方程为y+1=21(x-6).①同理线段AC 的中点坐标为(3.5,-3.5),斜率为3,所以线段AC 的垂直平分线的方程为y+3.5=3(x-3.5). ②解由①②组成的方程组得x=2,y=-3,所以圆心坐标为(2,-3),半径r=22)31()25(++-=5,所以△ABC 的外接圆的方程为(x-2)2+(y+3)2=25.点评:△ABC 外接圆的圆心是△ABC 的外心,它是△ABC 三边的垂直平分线的交点,它到三顶点的距离相等,就是圆的半径,利用这些几何知识,可丰富解题思路.思路2例1 图2是某圆拱桥的一孔圆拱的示意图,该圆拱跨度AB=20 m,拱高OP=4 m,在建造时每隔4 m 需用一个支柱支撑,求支柱A 2P 2的长度(精确到0.01 m).图2解:建立坐标系如图,圆心在y 轴上,由题意得P(0,4),B(10,0).设圆的方程为x 2+(y-b)2=r 2,因为点P(0,4)和B(10,0)在圆上,所以⎪⎩⎪⎨⎧=-+=-+.)0(10,)4(0222222r b r b 解得⎩⎨⎧=-=,5.14,5.1022r b 所以这个圆的方程是x 2+(y+10.5)2=14.52.设点P 2(-2,y 0),由题意y 0>0,代入圆方程得(-2)2+(y 0+10.5)2=14.52,解得y 0=2225.14--10.5≈14.36-10.5=3.86(m).答:支柱A 2P 2的长度约为3.86 m.例2 求与圆x 2+y 2-2x=0外切,且与直线x+3y=0相切于点(3,-3)的圆的方程. 活动:学生审题,注意题目的特点,教师引导学生利用本节知识和初中学过的几何知识解题.首先利用配方法,把已知圆的方程写成标准方程,再利用两圆外切及直线与圆相切建立方程组,求出参数,得到所求的圆的方程.解:设所求圆的方程为(x-a)2+(y-b)2=r 2.圆x 2+y 2-2x=0的圆心为(1,0),半径为1.因为两圆外切,所以圆心距等于两圆半径之和,即22)0()1(-+-b a =r+1, ①由圆与直线x+3y=0相切于点(3,-3),得⎪⎪⎩⎪⎪⎨⎧=++-=-•-+)3(.)3(1|3|)2(,1)31(332r b a a b 解得a=4,b=0,r=2或a=0,b=-43,r=6. 故所求圆的方程为(x-4)2+y 2=4或x 2+(y+43)2=36.点评:一般情况下,如果已知圆心(或易于求出)或圆心到某一直线的距离(或易于求出),可用圆的标准方程来求解,用待定系数法,求出圆心坐标和半径.变式训练一圆过原点O 和点P(1,3),圆心在直线y=x+2上,求此圆的方程.解法一:因为圆心在直线y=x+2上,所以设圆心坐标为(a,a+2).则圆的方程为(x-a)2+(y-a-2)2=r 2.因为点O(0,0)和P(1,3)在圆上,所以⎪⎩⎪⎨⎧=--+-=--+-,)23()1(,)20()0(222222r a a r a a 解得⎪⎪⎩⎪⎪⎨⎧=-=.825,412r a所以所求的圆的方程为(x+41)2+(y-47)2=825. 解法二:由题意:圆的弦OP 的斜率为3,中点坐标为(21,23), 所以弦OP 的垂直平分线方程为y-23=-31(x-21),即x+3y-5=0. 因为圆心在直线y=x+2上,且圆心在弦OP 的垂直平分线上,所以由⎩⎨⎧=-++=,053,2y x x y 解得⎪⎪⎩⎪⎪⎨⎧=-=,47,41y x ,即圆心坐标为C(-41,47). 又因为圆的半径r=|OC|=825)47()41(22=+-, 所以所求的圆的方程为(x+41)2+(y-47)2=825. 点评:(1)圆的标准方程中有a 、b 、r 三个量,要求圆的标准方程即要求a 、b 、r 三个量,有时可用待定系数法.(2)要重视平面几何中的有关知识在解题中的运用.例3 求下列圆的方程:(1)圆心在直线y=-2x 上且与直线y=1-x 相切于点(2,-1).(2)圆心在点(2,-1),且截直线y=x-1所得弦长为22.解:(1)设圆心坐标为(a,-2a),由题意知圆与直线y=1-x 相切于点(2,-1),所以2222)12()2(11|12|+-+-=+--a a a a ,解得a=1.所以所求圆心坐标为(1,-2),半径r=22)12()21(+-+-=2.所以所求圆的标准方程为(x-1)2+(y+2)2=2. (2)设圆的方程为(x-2)2+(y+1)2=r 2(r >0),由题意知圆心到直线y=x-1的距离为d=2211|112|+-+=2.又直线y=x-1被圆截得弦长为22,所以由弦长公式得r 2-d 2=2,即r=2.所以所求圆的标准方程为(x-2)2+(y+1)2=4.点评:本题的两个题目所给条件均与圆心和半径有关,故都利用了圆的标准方程求解,此外平面几何的性质的应用,使得解法简便了许多,所以类似问题一定要注意圆的相关几何性质的应用,从确定圆的圆心和半径入手来解决.知能训练课本本节练习1、2.拓展提升1.求圆心在直线y=2x 上且与两直线3x+4y-7=0和3x+4y+3=0都相切的圆的方程.活动:学生思考交流,教师提示引导,求圆的方程,无非就是确定圆的圆心和半径,师生共同探讨解题方法.解:首先两平行线的距离d=2221B A C C +-=2,所以半径为r=2d =1. 方法一:设与两直线3x+4y-7=0和3x+4y+3=0的距离相等的直线方程为3x+4y+k=0,由平行线间的距离公式d=2221||B A C C +-,得222234|3|43|7|+-=++k k ,即k=-2,所以直线方程为3x+4y-2=0.解3x+4y-2=0与y=2x 组成的方程组⎩⎨⎧==-+,2,0243x y y x 得⎪⎪⎩⎪⎪⎨⎧==,114,112y x ,因此圆心坐标为(112,114).又半径为r=1,所以所求圆的方程为(x-112)2+(y-114)2=1. 方法二:解方程组⎪⎪⎩⎪⎪⎨⎧-=-=⎪⎪⎩⎪⎪⎨⎧==⎩⎨⎧==++⎩⎨⎧==-+.113,116117,1114,2,0343,2,0743x y x y x y y x x y y x 和得与因此圆心坐标为(112,114).又半径r=1,所以所求圆的方程为(x-112)2+(y-114)2=1. 点评:要充分考虑各几何元素间的位置关系,把它转化为代数问题来处理.课堂小结①圆的标准方程.②点与圆的位置关系的判断方法.③根据已知条件求圆的标准方程的方法.④利用圆的平面几何的知识构建方程.⑤直径端点是A(x 1,y 1)、B(x 2,y 2)的圆的方程是(x-x 1)(x-x 2)+(y-y 1)(y-y 2)=0.。

圆的标准方程(说课稿)课件PPT汇编

圆的标准方程(说课稿)课件PPT汇编
教材 分析
教学 评价 教学 方法
圆的标 准方程
板书 设计 教学 过程 教具 准备
教材 分析
教学 评价 教学 方法
圆的标 准方程
板书 设计 教学 过程 教具 准备
一、教材的地位和作用
教材 分析
二、教学目标
三、教学重难点
一、教材的地位和作用
“圆的标准方程”是在圆的概念 和基本性质的基础上,运用“曲线和 方程”理论解决具体二次曲线的一个 实例.这节为后面直线与圆的位置关系、 椭圆、双曲线、抛物线等内容的学习 提供了基本模式和理论基础.
教学 过程
创设情景 合作探究 反馈练习 知识回顾 布置作业 引入新课 获得新知 引用拓展 反思提高 分层落实
四、知识回顾,反思提高
1.知识方面:
圆的标准方程;
确定一个圆的标准方程要具备的两个条件.
2.思想方法方面:
数形结合的思想
教学 过程
创设情景 合作探究 反馈练习 知识回顾 布置作业 引入新课 获得新知 引用拓展 反思提高 分层落实

一、教材的地位和作用
教材 分析
二、教学目标
三、教学重难点
三、教学重难点
1.重点:圆的标准方程的求法及其应用
2.难点:根据不同的已知条件求圆的标 准方程
教材 分析
教学 评价 教学 方法
圆的标 准方程
板书 设计 教学 过程 教具 准备
教学 方法
二、学法
一、教法
本节课采用探究研讨法,用环 环相扣的问题引导学生将探究活动 逐层深入,从学生的最近发展区出 发引导学生的学习。
D
A
O
C
B
教学 过程
创设情景 合作探究 反馈练习 知识回顾 布置作业 引入新课 获得新知 引用拓展 反思提高 分层落实

人教版高中数学《圆的标准方程》说课稿

人教版高中数学《圆的标准方程》说课稿

问题3:求曲线的方程的一般步骤是什么? 其中哪几个步骤必不可少?
(1)建立适当的坐标系,用有序实数对例如(x,y)表示曲线上 任意一点M的坐标; (2)写出适合条件 p 的点M的集合P={M|p(M)}; (3)用坐标表示条件p(M),列出方程f(x,y)=0; (4)化方程f(x,y)=0为最简形式; (5)证明以化简后的方程的解为坐标的点都是曲线上的点. 其中步骤(1)(3)(4)必不可少.
下面我们用求曲线方程的一般步骤来建立圆的标准方程.
求圆心是C(a, b),半径是r的圆的方程。
解:设M(x,y)是圆上任意一点, 根据圆的定义|MC|=r 由两点间距离公式,得
y M

r C
x a
2
y b r
2

x 说明: 1.特点:明确给出了圆心和 半径。 2.确定圆的方程必须具备三个 独立的条件。 O
问题1:具有什么性质的点的轨迹称为圆? 平面内与一定点距离等于定长的点的轨迹称为圆. 问题2:图中哪个点是定点?哪个点是动点?动点具有什么 性质?圆心和半径都反映了圆的什么特点? 圆心C是定点,圆周上的点M是动点,它 们到圆心距离等于定长|MC|=r,圆心和半径分 别确定了圆的位置(定位)和大小(定型).
x 3
x 8
2
2
y 4 5
2
2
(3)经过点P(5,1),圆心在点C(8,-3)
y 3 25
练习2.写出下列各圆的圆心坐标和半径 (1)
2 x 1 y 6 2
2 2
1, 0
a,0
6
3
(2) x 1 y 2 9 (3) x a
“兴趣是最好的老师!”可利用生活中的实例:小学课 本中所学习的《赵州桥》、学生在游乐场见过的摩天轮 等,以两个圆的模型为背景,激发学生学习圆的兴趣.

《圆的标准方程》教学设计教案

《圆的标准方程》教学设计教案

《圆的标准方程》教学设计教案一、教学目标:1、理解圆的标准方程,并能根据方程求出圆的坐标和圆的半径。

2、掌握求圆的标准方程的各种方法。

3、通过探求圆的标准方程,培养学生的动手能力,解决问题的能力。

二、教学重点与难点:重点:圆的标准方程的运用。

难点:探求圆的标准方程。

三、教学过程:1、创设情境,引入新课:生活中的圆形(图片展示)。

2、知识链接:平面几何中“圆”是如何定义的?圆的定义:平面内到定点的距离等于定长的点的轨迹。

定点就是圆心,定长就是半径在平面直角坐标系中,当圆心位置与半径大小确定后,圆就唯一确定了。

3、知识探究:构建圆的标准方程平面直角坐标系中,求圆心是C(a,b),半径是r的圆的方程.解:设M(x,y)是圆上任意一点,则|MC|=r 根据22122121()()PP x x y y =-+- ()()22x a y b r -+-=把上式两边平方得 ()()222x a y b r -+-=我们把这个方程称为圆的标准方程,其中圆心坐标(a,b),半径为r 。

4、特征分析:圆的标准方程()()222x a y b r -+-=(1)圆的标准方程是关于变量x ,y 的二元二次方程,且为平方和的形式,方程形式明确给出了圆心坐标(定位)和半径(定大小)。

(2)确定圆的标准方程必须具备三个条件:a,b,r 。

(3)参数的几何意义: (a ,b )表示圆心坐标, r 表示圆的半径。

特别地:若圆心在坐标原点,则圆方程为222x y r +=5、典例分析例1 求以点C (-3,2)为圆心,半径r 5 解 因为 a =-3,b =2,r 5 ,所以 所求圆的标准方程为(x +3)2+(y -2)2=5.练习1、根据已知条件,求圆的标准方程:(1)圆心在原点,半径是3;1(2-),半径是5;2(3)圆心点(0,2例2 写出圆(x -5)2+y 2=2的圆心坐标和半径长.练习2、已知圆的标准方程,请说出圆心和半径.()()22(1)129x y ++-=()22(2)16x y -+=22(3)16x y += ()222(4)1(0)x y a a ++=≠ 例3 已知圆心在坐标原点O (0,0),且点A (3,4)是圆上一点,求圆的标准方程.练习3.根据下列条件,求出圆的标准方程:(1)已知点A (2,3),点B (2,7),以线段AB 为直径;(2)圆心在点(1,2),且圆过点(2,4);(3)圆心是直线x +y +3=0与直线2x -y =0的交点,半径r =.四、 课堂小结1、圆的定义:平面内到定点的距离等于定长的点的轨迹。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆与方程本章教材分析上一章,学生已经学习了直线与方程,知道在直角坐标系中,直线可以用方程表示,通过方程,可以研究直线间的位置关系、直线与直线的交点坐标、点到直线的距离等问题,对数形结合的思想方法有了初步体验.本章将在上章学习了直线与方程的基础上,学习在平面直角坐标系中建立圆的代数方程,运用代数方法研究点与圆、直线与圆、圆与圆的位置关系,了解空间直角坐标系,以便为今后的坐标法研究空间的几何对象奠定基础,这些知识是进一步学习圆锥曲线方程、导数和微积分的基础,在这个过程中进一步体会数形结合的思想,形成用代数方法解决几何问题的能力.通过方程,研究直线与圆、圆与圆的位置关系是本章的重点内容之一,坐标法不仅是研究几何问题的重要方法,而且是一种广泛应用于其他领域的重要数学方法,通过坐标系把点和坐标、曲线和方程联系起来,实现了形和数的统一,因此在教学过程中,要始终贯穿坐标法这一重要思想,不怕反复.用坐标法解决几何问题时,先用坐标和方程表示相应的几何元素:点、直线、圆;然后对坐标和方程进行代数运算;最后把运算结果“翻译”成相应的几何结论.这就是坐标法解决几何问题的三步曲.坐标法还可以与平面几何中的综合方法、向量方法建立联系,同时可以推广到空间,解决立体几何问题.1 圆的标准方程整体设计教学分析在初中曾经学习过圆的有关知识,本节内容是在初中所学知识及前几节内容的基础上,进一步运用解析法研究圆的方程,它与其他图形的位置关系及其应用.同时,由于圆也是特殊的圆锥曲线,因此,学习了圆的方程,就为后面学习其他圆锥曲线的方程奠定了基础.也就是说,本节内容在教材体系中起到承上启下的作用,具有重要的地位,在许多实际问题中也有着广泛的应用.由于“圆的方程”一节内容的基础性和应用的广泛性,对圆的标准方程要求层次是“掌握”,为了激发学生的主体意识,教学生学会学习和学会创造,同时培养学生的应用意识,本节内容可采用“引导探究”型教学模式进行教学设计,所谓“引导探究”是教师把教学内容设计为若干问题,从而引导学生进行探究的课堂教学模式,教师在教学过程中,主要着眼于“引”,启发学生“探”,把“引”和“探”有机的结合起来.教师的每项教学措施,都是给学生创造一种思维情境,一种动脑、动手、动口并主动参与的学习机会,激发学生的求知欲,促使学生解决问题.三维目标1.使学生掌握圆的标准方程,能根据圆心、半径写出圆的标准方程,能根据圆的标准方程写出圆的圆心、半径,进一步培养学生能用解析法研究几何问题的能力,渗透数形结合思想,注意培养学生观察问题、发现问题和解决问题的能力.2.会用待定系数法求圆的标准方程,通过圆的标准方程解决实际问题的学习,形成代数方法处理几何问题的能力,从而激发学生学习数学的热情和兴趣,培养学生分析、概括的思维能力.3.理解掌握圆的切线的求法.包括已知切点求切线,从圆外一点引切线,已知切线斜率求切线等.把握运动变化原则,培养学生树立相互联系、相互转化的辩证唯物主义观点,欣赏和体验圆的对称性,感受数学美.重点难点教学重点:圆的标准方程的推导过程和圆的标准方程特点的明确.教学难点:会根据不同的已知条件,利用待定系数法求圆的标准方程.课时安排1课时教学过程导入新课思路1.课前准备:(用淀粉在一张白纸上画上海和山)说明:在白纸上要表演的是一个小魔术,名称是《日出》,所以还缺少一个太阳,请学生帮助在白纸上画出太阳.要求其他学生在自己的脑海里也构画出自己的太阳.课堂估计:一种是非尺规作图(指出数学作图的严谨性);一种作出后有同学觉得不够美(点评:其实每个人心中都有一个自己的太阳,每个人都有自己的审美观点).然后上升到数学层次:不同的圆心和半径对应着不同的圆,进而对应着不同的圆的方程.从用圆规作图复习初中所学圆的定义:到定点的距离等于定长的点的轨迹.那么在给定圆心和半径的基础上,结合我们前面所学的直线方程的求解,应该如何建立圆的方程?教师板书本节课题:圆的标准方程.思路2.同学们,我们知道直线可以用一个方程表示,那么,圆可以用一个方程表示吗?圆的方程怎样来求呢?这就是本堂课的主要内容,教师板书本节课题:圆的标准方程.推进新课新知探究提出问题①已知两点A(2,-5),B(6,9),如何求它们之间的距离?若已知C(3,-8),D(x,y),又如何求它们之间的距离?②具有什么性质的点的轨迹称为圆?③图1中哪个点是定点?哪个点是动点?动点具有什么性质?圆心和半径都反映了圆的什么特点?图1④我们知道,在平面直角坐标系中,确定一条直线的条件是两点或一点和倾斜角,那么,决定圆的条件是什么?⑤如果已知圆心坐标为C(a,b),圆的半径为r,我们如何写出圆的方程?⑥圆的方程形式有什么特点?当圆心在原点时,圆的方程是什么?讨论结果:①根据两点之间的距离公式221221)()(y y x x -+-,得 |AB|=212)59()62(22=++-, |CD|=22)8()3(++-y x .②平面内与一定点距离等于定长的点的轨迹称为圆,定点是圆心,定长是半径(教师在黑板上画一个圆).③圆心C 是定点,圆周上的点M 是动点,它们到圆心距离等于定长|MC|=r,圆心和半径分别确定了圆的位置和大小.④确定圆的条件是圆心和半径,只要圆心和半径确定了,那么圆的位置和大小就确定了. ⑤确定圆的基本条件是圆心和半径,设圆的圆心坐标为C(a,b),半径为r(其中a 、b 、r 都是常数,r >0).设M(x,y)为这个圆上任意一点,那么点M 满足的条件是(引导学生自己列出)P={M||MA|=r},由两点间的距离公式让学生写出点M 适合的条件22)()(b y a x -+-=r.①将上式两边平方得(x-a)2+(y-b)2=r 2.化简可得(x-a)2+(y-b)2=r 2.②若点M(x,y)在圆上,由上述讨论可知,点M 的坐标满足方程②,反之若点M 的坐标满足方程②,这就说明点M 与圆心C 的距离为r,即点M 在圆心为C 的圆上.方程②就是圆心为C(a,b),半径长为r 的圆的方程,我们把它叫做圆的标准方程.⑥这是二元二次方程,展开后没有xy 项,括号内变数x,y 的系数都是1.点(a,b)、r 分别表示圆心的坐标和圆的半径.当圆心在原点即C(0,0)时,方程为x 2+y 2=r 2.提出问题①根据圆的标准方程说明确定圆的方程的条件是什么?②确定圆的方程的方法和步骤是什么?③坐标平面内的点与圆有什么位置关系?如何判断?讨论结果:①圆的标准方程(x -a)2+(y -b)2=r 2中,有三个参数a 、b 、r,只要求出a 、b 、r且r >0,这时圆的方程就被确定,因此确定圆的标准方程,需三个独立条件,其中圆心是圆的定位条件,半径是圆的定形条件.②确定圆的方程主要方法是待定系数法,即列出关于a 、b 、r 的方程组,求a 、b 、r 或直接求出圆心(a,b)和半径r,一般步骤为:1°根据题意,设所求的圆的标准方程(x -a)2+(y -b)2=r 2;2°根据已知条件,建立关于a 、b 、r 的方程组;3°解方程组,求出a 、b 、r 的值,并把它们代入所设的方程中去,就得到所求圆的方程.③点M(x 0,y 0)与圆(x-a)2+(y-b)2=r 2的关系的判断方法:当点M(x 0,y 0)在圆(x-a)2+(y-b)2=r 2上时,点M 的坐标满足方程(x-a)2+(y-b)2=r 2.当点M(x 0,y 0)不在圆(x-a)2+(y-b)2=r 2上时,点M 的坐标不满足方程(x-a)2+(y-b)2=r 2.用点到圆心的距离和半径的大小来说明应为:1°点到圆心的距离大于半径,点在圆外⇔(x 0-a)2+(y 0-b)2>r 2,点在圆外;2°点到圆心的距离等于半径,点在圆上⇔(x 0-a)2+(y 0-b)2=r 2,点在圆上;3°点到圆心的距离小于半径,点在圆内⇔(x 0-a)2+(y 0-b)2<r 2,点在圆内.应用示例思路1例1 写出下列各圆的标准方程:(1)圆心在原点,半径是3;⑵圆心在点C(3,4),半径是5;(3)经过点P(5,1),圆心在点C(8,-3);(4)圆心在点C(1,3),并且和直线3x-4y-7=0相切.解:(1)由于圆心在原点,半径是3,所以圆的标准方程为(x-0)2+(y-0)2=32,即x 2+y 2=9.(2)由于圆心在点C(3,4),半径是5,所以圆的标准方程是(x-3)2+(y-4)2=(5)2,即(x-3)2+(y-4)2=5.(3)方法一:圆的半径r=|CP|=25)31()85(22=++-=5,因此所求圆的标准方程为(x-8)2+(y+3)2=25.方法二:设圆的标准方程为(x-8)2+(y+3)2=r 2,因为圆经过点P(5,1),所以(5-8)2+(1+3)2=r 2,r 2=25,因此所求圆的标准方程为(x-8)2+(y+3)2=25.这里方法一是直接法,方法二是间接法,它需要确定有关参数来确定圆的标准方程,两种方法都可,要视问题的方便而定.(4)设圆的标准方程为(x-1)2+(y-3)2=r 2,由圆心到直线的距离等于圆的半径,所以r=25|16|25|7123|=--.因此所求圆的标准方程为(x-1)2+(y-3)2=25256. 点评:要求能够用圆心坐标、半径长熟练地写出圆的标准方程.例2 写出圆心为A(2,-3),半径长等于5的圆的方程,并判断点M 1(5,-7),M 2(-5,-1)是否在这个圆上.解:圆心为A(2,-3),半径长等于5的圆的标准方程是(x-2)2+(y+3)2=25,把点M 1(5,-7),M 2(-5,,-1)分别代入方程(x-2)2+(y+3)2=25,则M 1的坐标满足方程,M 1在圆上.M 2的坐标不满足方程,M 2不在圆上.点评:本题要求首先根据坐标与半径大小写出圆的标准方程,然后给一个点,判断该点与圆的关系,这里体现了坐标法的思想,根据圆的坐标及半径写方程——从几何到代数;根据坐标满足方程来看在不在圆上——从代数到几何.例3 △ABC 的三个顶点的坐标是A(5,1),B(7,-3),C(2,-8),求它的外接圆的方程.活动:教师引导学生从圆的标准方程(x-a)2+(y-b)2=r 2入手,要确定圆的标准方程,可用待定系数法确定a 、b 、r 三个参数.另外可利用直线AB 与AC 的交点确定圆心,从而得半径,圆的方程可求,师生总结、归纳、提炼方法.解法一:设所求的圆的标准方程为(x-a)2+(y-b)2=r 2,因为A(5,1),B(7,-3),C(2,-8)都在圆上,它们的坐标都满足方程(x-a)2+(y-b)2=r 2,于是⎪⎩⎪⎨⎧=--+-=--+-=-+-)3(.)8()2()2()3()7()1(,)1()5(222222222r b a rb a r b a解此方程组得⎪⎩⎪⎨⎧=-==.5,3,2rba所以△ABC的外接圆的方程为(x-2)2+(y+3)2=25.解法二:线段AB的中点坐标为(6,-1),斜率为-2,所以线段AB的垂直平分线的方程为y+1=21(x-6). ①同理线段AC的中点坐标为(3.5,-3.5),斜率为3,所以线段AC的垂直平分线的方程为y+3.5=3(x-3.5).②解由①②组成的方程组得x=2,y=-3,所以圆心坐标为(2,-3),半径r=22)31()25(++-=5,所以△ABC的外接圆的方程为(x-2)2+(y+3)2=25.点评:△ABC外接圆的圆心是△ABC的外心,它是△ABC三边的垂直平分线的交点,它到三顶点的距离相等,就是圆的半径,利用这些几何知识,可丰富解题思路.思路2例1 图2是某圆拱桥的一孔圆拱的示意图,该圆拱跨度AB=20 m,拱高OP=4 m,在建造时每隔4 m需用一个支柱支撑,求支柱A2P2的长度(精确到0.01 m).图2解:建立坐标系如图,圆心在y轴上,由题意得P(0,4),B(10,0).设圆的方程为x2+(y-b)2=r2,因为点P(0,4)和B(10,0)在圆上,所以⎪⎩⎪⎨⎧=-+=-+.)0(10,)4(222222rbrb解得⎩⎨⎧=-=,5.14,5.1022rb所以这个圆的方程是x2+(y+10.5)2=14.52.设点P2(-2,y0),由题意y0>0,代入圆方程得(-2)2+(y0+10.5)2=14.52,解得y0=2225.14--10.5≈14.36-10.5=3.86(m).答:支柱A2P2的长度约为3.86 m.例2 求与圆x2+y2-2x=0外切,且与直线x+3y=0相切于点(3,-3)的圆的方程.活动:学生审题,注意题目的特点,教师引导学生利用本节知识和初中学过的几何知识解题.首先利用配方法,把已知圆的方程写成标准方程,再利用两圆外切及直线与圆相切建立方程组,求出参数,得到所求的圆的方程.解:设所求圆的方程为(x-a)2+(y-b)2=r2.圆x2+y2-2x=0的圆心为(1,0),半径为1.因为两圆外切,所以圆心距等于两圆半径之和,即22)0()1(-+-ba=r+1, ①由圆与直线x+3y=0相切于点(3,-3),得⎪⎪⎩⎪⎪⎨⎧=++-=-•-+)3(.)3(1|3|)2(,1)31(332r b a a b 解得a=4,b=0,r=2或a=0,b=-43,r=6. 故所求圆的方程为(x-4)2+y 2=4或x 2+(y+43)2=36. 点评:一般情况下,如果已知圆心(或易于求出)或圆心到某一直线的距离(或易于求出),可用圆的标准方程来求解,用待定系数法,求出圆心坐标和半径.变式训练一圆过原点O 和点P(1,3),圆心在直线y=x+2上,求此圆的方程.解法一:因为圆心在直线y=x+2上,所以设圆心坐标为(a,a+2).则圆的方程为(x-a)2+(y-a-2)2=r 2.因为点O(0,0)和P(1,3)在圆上,所以⎪⎩⎪⎨⎧=--+-=--+-,)23()1(,)20()0(222222r a a r a a 解得⎪⎪⎩⎪⎪⎨⎧=-=.825,412r a 所以所求的圆的方程为(x+41)2+(y-47)2=825. 解法二:由题意:圆的弦OP 的斜率为3,中点坐标为(21,23), 所以弦OP 的垂直平分线方程为y-23=-31(x-21),即x+3y-5=0. 因为圆心在直线y=x+2上,且圆心在弦OP 的垂直平分线上,所以由⎩⎨⎧=-++=,053,2y x x y 解得⎪⎪⎩⎪⎪⎨⎧=-=,47,41y x ,即圆心坐标为C(-41,47). 又因为圆的半径r=|OC|=825)47()41(22=+-, 所以所求的圆的方程为(x+41)2+(y-47)2=825. 点评:(1)圆的标准方程中有a 、b 、r 三个量,要求圆的标准方程即要求a 、b 、r 三个量,有时可用待定系数法.(2)要重视平面几何中的有关知识在解题中的运用.例3 求下列圆的方程:(1)圆心在直线y=-2x 上且与直线y=1-x 相切于点(2,-1).(2)圆心在点(2,-1),且截直线y=x-1所得弦长为22.解:(1)设圆心坐标为(a,-2a),由题意知圆与直线y=1-x 相切于点(2,-1),所以2222)12()2(11|12|+-+-=+--a a a a ,解得a=1.所以所求圆心坐标为(1,-2),半径r=22)12()21(+-+-=2.所以所求圆的标准方程为(x-1)2+(y+2)2=2. (2)设圆的方程为(x-2)2+(y+1)2=r 2(r >0),由题意知圆心到直线y=x-1的距离为d=2211|112|+-+=2.又直线y=x-1被圆截得弦长为22,所以由弦长公式得r 2-d 2=2,即r=2.所以所求圆的标准方程为(x-2)2+(y+1)2=4.点评:本题的两个题目所给条件均与圆心和半径有关,故都利用了圆的标准方程求解,此外平面几何的性质的应用,使得解法简便了许多,所以类似问题一定要注意圆的相关几何性质的应用,从确定圆的圆心和半径入手来解决.知能训练课本本节练习1、2.拓展提升1.求圆心在直线y=2x 上且与两直线3x+4y-7=0和3x+4y+3=0都相切的圆的方程.活动:学生思考交流,教师提示引导,求圆的方程,无非就是确定圆的圆心和半径,师生共同探讨解题方法.解:首先两平行线的距离d=2221B A C C +-=2,所以半径为r=2d =1. 方法一:设与两直线3x+4y-7=0和3x+4y+3=0的距离相等的直线方程为3x+4y+k=0,由平行线间的距离公式d=2221||B A C C +-,得222234|3|43|7|+-=++k k ,即k=-2,所以直线方程为3x+4y-2=0.解3x+4y-2=0与y=2x 组成的方程组⎩⎨⎧==-+,2,0243x y y x 得⎪⎪⎩⎪⎪⎨⎧==,114,112y x ,因此圆心坐标为(112,114).又半径为r=1,所以所求圆的方程为(x-112)2+(y-114)2=1. 方法二:解方程组⎪⎪⎩⎪⎪⎨⎧-=-=⎪⎪⎩⎪⎪⎨⎧==⎩⎨⎧==++⎩⎨⎧==-+.113,116117,1114,2,0343,2,0743x y x y x y y x x y y x 和得与因此圆心坐标为(112,114).又半径r=1,所以所求圆的方程为(x-112)2+(y-114)2=1.点评:要充分考虑各几何元素间的位置关系,把它转化为代数问题来处理.课堂小结①圆的标准方程.②点与圆的位置关系的判断方法.③根据已知条件求圆的标准方程的方法.④利用圆的平面几何的知识构建方程.⑤直径端点是A(x1,y1)、B(x2,y2)的圆的方程是(x-x1)(x-x2)+(y-y1)(y-y2)=0.。

相关文档
最新文档