聚丙烯腈碳纤维性能表征规范
聚丙烯腈(PAN)基碳纤维复合材料

班级:1013241 姓名:董鸿文
学号:101324108
材料化学课程论文
碳纤维复合材料
碳纤维是一种以聚丙烯腈(PAN)、沥青、粘胶纤维等 人造纤维戒合成纤维为原料,经预氧化、碳化、石墨化等过 程制得含碳量达90%以上的无机纤维材料。
1 2
3
沥青基
粘胶基
聚丙烯腈基(PAN)
PAN链的无规则螺旋结构
PAN纤维→预氧化→碳化→石墨化→PAN基碳纤维
PAN碳纤维原丝微观图
【1】PAN碳纤维原丝截面图
【2】PAN纤维截面SEM照
【3】PAN碳纤维表面结构
PAN碳纤维复合材料的应用
1.航空航天:航天飞机、运载 火箭、导弹卫星、民用商业飞 机
2.体育休闲:球杆球拍、箭弓、 鱼竿、自行车
参考文献
[1]徐樑华:高性能PNA基碳纤维国产化进展及发展趋势[J].中国材料进展, 2012,31(10):7-13 [2]陈利,孙颖,马明:高性能纤维域成形体的研究[J].中国材料进展,2012, 31(10):21-29 [3]韩克清,严斌,余木火:碳纤维及其复合材料高效低成本制备技术进展[J].中 国材料进展,2012,31(10):30-35 [4]郭敏怡:我国高性能碳纤维产业发展现状不展望[M].军民两用技术不产品, 2012,2:53-58 [5]郑宁来:中国航天公司研制成功碳纤维新产品[J].合成纤维,2011,40 (7):14-15 [6]贺福:研制高性能碳纤维已是当务之急[J].高科技纤维不应用,2010,35(1): 14-18 [7]钱伯章:国内外碳纤维应用领域、市场需求以及碳纤维产能的进展[J].高科技 纤维不应用,2010,35(2):29-33 [8]赵稼祥:世界PAN基碳纤维的生产不需求以及对发展我国碳纤维的启示[J].新 材料产业,2010,9:25-31
聚丙烯腈基碳纤维布相关标准

聚丙烯腈基碳纤维布相关标准聚丙烯腈基碳纤维布是一种重要的新型纤维材料,具有轻质、高强度、耐腐蚀等优点,广泛应用于航空航天、船舶、汽车、建筑、电力等领域。
为了确保聚丙烯腈基碳纤维布的质量,相关标准起到了重要的作用。
本文将介绍聚丙烯腈基碳纤维布相关的国际、国家标准。
首先,国际上最常用的聚丙烯腈基碳纤维布标准是ISO 18333-1:2016。
该标准规定了聚丙烯腈基碳纤维布的分类、术语和定义、试验方法等内容。
例如,该标准要求对聚丙烯腈基碳纤维布的线密度、纤维直径、机械性能进行测试和评估。
此外,ISO 18333-1:2016还对产品的标识、包装、运输等方面进行了要求,以确保各个环节的质量控制和产品的可追溯性。
在国内,对聚丙烯腈基碳纤维布的标准主要有两个,分别是GB/T 30581-2014和HG/T 3197-2010。
其中,GB/T 30581-2014是国家标准,规定了聚丙烯腈基碳纤维布的技术要求、试验方法、标志、包装和质量证明等方面。
该标准要求对聚丙烯腈基碳纤维布的化学成分、线密度、纤维直径、机械性能、热稳定性、耐腐蚀性等进行测试和评估,以确保产品的可靠性和稳定性。
另外,HG/T 3197-2010是化工行业标准,适用于聚丙烯腈基碳纤维布的设计、制造、验收等方面。
该标准要求对聚丙烯腈基碳纤维布的纤维密度、线密度、纤维直径、机械性能、热稳定性、耐腐蚀性等进行测试和评估,同时还对质量控制的原则、方法进行了规定,以确保产品的一致性和质量稳定。
除了上述国际标准和国家标准,还有一些行业标准也涉及到了聚丙烯腈基碳纤维布。
例如,航空航天领域常用的军用标准GJB 2868-2012,该标准规定了航空航天用聚丙烯腈基碳纤维布的技术要求、试验方法和使用环境等方面。
该标准要求对聚丙烯腈基碳纤维布的纤维直径、线密度、表面密度、拉伸强度等进行测试和评估,以确保产品在特定环境下的可靠性和性能。
综上所述,聚丙烯腈基碳纤维布相关的标准既包括国际标准,也包括国家标准和行业标准。
碳纤维用聚丙烯腈制备及其结构、性能

65.9
5. 引发剂种类对聚合影响
样品 引发剂 1 引发剂 2 引发剂 2
转化率 (%) 12 h 76.9 84.8 89.6
粘均分子量 (× 104) / 19.8 22.0
旋转粘度 (Pa.S) / 49 145
GPC Mn 32578 29201 33674 Mw 64723 55412 57118 Mw/Mn 1.99 1.90 1.70
PAN-NVP
50
100
150
200
o
250
300
350
Temperature C
不同聚丙烯腈共聚物的放热峰
8.TGA分析
不同共聚单体总含量的聚丙烯腈在N2中的TGA曲线及其微分曲线
不同共聚单体总含量的聚丙烯腈在空气中的TGA曲线及其微分曲线
9.聚丙烯腈在管式反应器共聚的研究
聚丙烯腈在6米管式反应器共聚的原液性能
Mw/ Mn ≤ 2.8
1. 共聚单体种类对聚合速率的影响
PAN共聚物 PAN-DMI PAN-MBI 聚合时间 (小时) 24 48 转化率 (%) 55.0 81.1 粘均分子量 (×104) 21.4 Mn (×104) 3.3 2.4 Mw (×104) 7.3 6.5 Mw/Mn 2.2 2.7
6.共聚单体含量对等规度的影响
等规度 ≥ 26%
聚丙烯腈的13C-NMR谱图
共聚单体总含量对聚丙烯腈等规度的影响 共聚单体 含量(wt%) 2.5 4.3 5.9
13C-NMR谱
图
等规度(%)
26.0
26.1
29.8
7.共聚单体种类对DSC放热峰的影响
PAN-AM PAN-DMI-IA PAN-DMI
聚丙烯腈(PAN)基碳纤维复合材料

针对PAN基碳纤维复合材料生产过程中存在的能耗高、污染重等问题 ,研究者们不断改进生产工艺,提高生产效率和环保性。
未来发展趋势预测与挑战分析
高性能化
未来PAN基碳纤维复合材料将继续向高性能化方向发展, 以满足高端应用领域对材料性能的更高要求。
绿色环保
随着环保意识的提高,PAN基碳纤维复合材料的绿色生产 将成为未来发展的重要趋势,包括采用环保原料、优化生 产工艺等。
耐疲劳性
碳纤维复合材料具有良好 的耐疲劳性能,能够承受 长期的交变载荷作用。
热稳定性及耐候性评估
热稳定性
PAN基碳纤维在高温下能 够保持较好的稳定性,不 易发生热分解或氧化反应 。
耐候性
碳纤维复合材料具有良好 的耐候性能,能够抵抗紫 外线、酸雨等自然环境的 侵蚀。
耐腐蚀性
由于碳纤维的化学稳定性 较高,因此它对于多种化 学物质都具有良好的耐腐 蚀性。
汽车工业领域应用
轻量化
碳纤维复合材料具有密度小、比 强度高、比模量高等优点,是实 现汽车轻量化的理想材料,可用
于车身、底盘等结构件。
安全性
碳纤维复合材料在碰撞时能够吸收 大量能量,提高汽车的安全性。
舒适性
碳纤维复合材料具有良好的阻尼性 能,能够降低汽车行驶过程中的振 动和噪音,提高乘坐舒适性。
体育器材领域应用
聚丙烯腈(PAN)基碳纤维复合 材料的制备工艺主要包括原丝 制备、预氧化、碳化、石墨化 等步骤,通过控制工艺参数可 以得到不同性能的复合材料。
聚丙烯腈(PAN)基碳纤维复合 材料在航空航天、汽车、体育 器材、建筑等领域具有广泛的 应用前景,如飞机结构件、汽 车轻量化部件、高性能运动器 材等。
02
CATALOGUE
聚丙烯腈(PAN)基碳纤维复合材料-作业

b、碳化收率为50%-55%;
c、在脱除碳以外的杂原子时其骨架结构很少破坏;
PAN链的无规则螺旋结构
PAN纤维→预氧化→碳化→石墨化→PAN基碳纤维
PAN纤维截面SEM照
PAN碳纤维表面结构
PAN碳纤维复合材料的应用
全球PAN碳纤维产业发展情况
全球PAN碳纤维产业发展情况
比重不到钢的1/4 ,市面上出售的 PAN基碳纤维密度 在1.75-1.93g/cm3 之间。
耐高温(惰性气 氛下可耐2000℃ 以上),低热膨 胀系数,比热容 小,出色的抗热 冲击性,优秀的 抗腐蚀和抗辐射 性能。
聚丙烯腈基碳纤维的制造
PAN结构式
I→600pm←I
a、PAN纤维分子易于沿纤维轴取向;
聚丙烯腈(PAN)基碳纤维复合 材料-作业
碳纤维复合材料
碳纤维是一种以聚丙烯腈(PAN)、沥青、粘胶纤维 等人造纤维或合成纤维为原料,经预氧化、碳化、石墨化等 过程制得含碳量达90%以上的无机纤维材料。
粘胶基
沥青基
聚丙烯腈基
碳纤维的性能(PAN)
Байду номын сангаас
强度高
密度低
其他性能
理论强度可达到 180GPa。目前东 丽T1000的强度达 到7.02GPa,虽然 远低于理论值但 比钢的强度要高 出很多
精编JTT 525-《公路水泥溷凝土纤维材料 聚丙烯纤维和聚丙烯腈纤维》资料

5.海川工程科技的聚丙烯腈纤维指标
表12
聚丙烯腈纤维指标
纤维牌号 纤度(dtex) 标称直径(μ m) 长度(mm) 纤维材料 比重(103Kg/m3) 抗拉强度(Mpa) 弹性模量(GPa) 断裂伸长率(%) 纤维数量(根/Kg) 推荐掺量(Kg/m3)
路威 2002-I 1.9 13 6
聚丙烯腈 1.18
试件编号
1
2
3 平均 值
不加纤维 骨料粒径 0~20mm
加纤维
7.018 5.781 6.867 6.555 7.222 7.523 7.558 7.434
不加纤维 骨料粒径 0~16mm
加纤维
7.489 6.574 6.219 6.761 7.584 7.127 7.372 7.361
《公路水泥混凝土纤维材料 聚丙烯纤维和聚丙烯腈纤维》JT/T 525-2004 宣贯
表2
试件编号
水泥混凝土冲击试验结果
1
2
3
平均 值
骨料粒径0-20mm
不加纤维 加纤维
827 1465 1619 1740 1867 1780
1303 1795
骨料粒径0-16mm
不加纤维 加纤维
1290 2454 3270 1000 3250 4400
2338 2883
《公路水泥混凝土纤维材料 聚丙烯纤维和聚丙烯腈纤维》JT/T 525-2004 宣贯
项目
表7 外观质量
指
标
聚丙烯网状纤维
色泽 色差
原白色 基本一致
手感 未牵引丝
柔软 不允许有
洁净度
无污染
形状
开网均匀规则,每 10mm 长度至少一个连接点,且为网 状结构
JTT 525-2004 公路水泥混凝土纤维材料 聚丙烯纤维和聚丙烯腈纤维

下列文件中的条款通过本标准的引用而成为本标准的条款。 凡是注明日 期的引用文件, 其随后所 有的修改单 不包括勘误的内 或修订版均不适用于本 ( 容) 标准, 然而, 鼓励根据本标准达成协议的 各方研
J 负 门
指
密度, c3 gm /
熔点 , ℃
抗能 碱力
耐热稳定性
一 - } -- I-- 2 -— . 0 I A 一 一 9
一
要求, 严禁使用粉状和再造粒状颗粒原料。
54 原材料要求 .
聚丙烯纤维的生产原料聚丙烯应满足 G/ BT
J/ 2-2N T 丁5 5 0
6 试验方法
61 外观质量 .
4. 分 类 1
聚 合物纤维按产品的 原材料和结构形式分为三种: a 聚丙烯睛单 ) 丝纤维; b 聚丙烯单丝纤维; )
动 聚丙烯网状纤维。
4. 型 号 2
型号表示方式 : 见图 1 . 原材料代号 聚丙烯睛-P N 聚丙烯-P F; : A , P
8 标志、 包装、 运输和贮存・・・・・・・・・・・・・・・・,・・・・・・,,・ …… 4 ・・・・,・・・・・・・・・・・・,1・・・・・・・ ・ ・・・ ・・,・・ ・ ・・・4 ・・,・ ・ ・ ・ 3
J/ 55 20 T丁 2- 04
前
言
本标准是公路水泥混凝土纤维材料产品技术 标准之一, 该系列标准包括: J/ 5 -2” 0 公路水泥混凝土 TT 2 4 1 纤维材料 钢纤维; J/ 55 0 04 公路水泥混凝土 TT -2 2 纤维材料 聚丙烯纤维和聚丙烯睛纤维。
在 自 光线下进 行 目测及 手感检验。 然 62 长度 . 62, 网状纤维 ..
不同纺丝法制备的聚丙烯腈纤维的结构与性能

不同纺丝法制备的聚丙烯腈纤维的结构与性能田银彩;韩克清;余木火【摘要】对购买的由不同厂家采用溶液纺丝制得的3种商用聚丙烯腈(PAN)原丝和采用增塑熔融纺丝法自制的PAN纤维的结构与性能进行对比研究.试验结果表明:增塑熔融纺丝法制备的PAN纤维发生了环化、脱氢反应,放热峰宽化,放热焓较低,玻璃化转变温度较高,纤维的拉伸断裂强度均高于3种商用PAN原丝,达到7.38 cN/dtex;采用Ruland法和逐次切线法计算发现,增塑熔纺PAN纤维沿纤维[方向微孔的半径和取向偏离度较小,微孔长度较大.%The structure and properties of polyacrlonitrile (PAN) fibers,both plasticized melt-spun ones and three different commercial ones prepared by solution spinning method,were studied.The results indicated that cyclization and dehydrogenation reactions occurred on plasticized melt-spun PAN fibers,and the exothermic peak of which were wider and the exothermic enthalpy became lower.In addition,the glass transition temperature was higher.The tensile strength was higher than that of there commercial PAN fibers,reached 7.38cN/pared with those commercial PAN fibers,microvoid radius and orientation deviation along the direction of fiber axis were smaller and microvoid length was larger for plasticized melt-spun PAN fibers,calculated by Ruland method and gradual tangent method.【期刊名称】《东华大学学报(自然科学版)》【年(卷),期】2017(043)003【总页数】7页(P322-327,334)【关键词】聚丙烯腈;溶液纺丝;增塑熔融纺丝;性能【作者】田银彩;韩克清;余木火【作者单位】河南工程学院材料与化学工程学院,河南郑州450007;东华大学材料科学与工程学院,上海201620;东华大学材料科学与工程学院,上海201620;东华大学材料科学与工程学院,上海201620【正文语种】中文【中图分类】TQ342+.3聚丙烯腈(PAN)纤维是制备高性能碳纤维的一种主要的前驱体, 由于氰基之间存在强极性相互作用, 使得PAN的分解温度低于熔融温度. 因此, 商用的PAN基碳纤维原丝主要采用湿法或干湿法进行制备. 与熔融纺丝法相比, 溶液纺丝法必须进行溶剂的回收, 存在一定环境污染. 因此, PAN熔融纺丝的研究引起了国内外的广泛关注. PAN熔融纺丝的方法主要有非溶剂(主要是水)增塑法、溶剂(二甲基甲酰胺、二甲基乙酰胺、二甲基亚砜、乙腈与V-丁内酯混合溶剂)增塑法和共聚法(丙烯腈与能形成柔性链的单体共聚, 可以有效降低熔点)[1], 而采用水增塑的研究比较多[2-6].水增塑法由于难以对气压室进行连续控制, 所以在工业化生产时失败了. 因此, 有必要寻找一种具有低蒸气压, 不易挥发, 热稳定性良好, 易于回收且绿色环保的增塑剂. 近年来, 随着绿色化学的兴起, 离子液体的研究正在蓬勃发展, 最主要是由于离子液体可以满足上述对增塑剂提出的要求, 且离子液体还具有可设计性.笔者课题组采用离子液体作为增塑剂研究了PAN的熔融可纺性, 通过对增塑熔纺工艺、萃取牵伸工艺的优化, 获得了拉伸强度为7.38 cN/dtex的PAN纤维[7-9]. 该增塑熔融纺丝与干法纺丝类似, 但是通过低温冷却固化成形(传热), 没有溶剂的蒸发扩散, 工作条件好, 且设备比干法纺丝的简单;该法同时还具有干湿法纺丝的优点, 即挤出胀大效应与在凝固浴中发生的双扩散所引起的体积收缩效应分开进行.为了进一步优化增塑熔纺的纺丝和牵伸工艺, 提高PAN纤维的性能, 本文主要采用红外光谱仪(IR)、差示扫描量热仪(DSC)、X射线衍射(XRD)、小角X射线散射(SAXS)等方法对购买的由不同厂家采用溶液纺丝法制得的3种商用PAN原丝和采用增塑熔融纺丝法(简称熔纺)自制的PAN纤维进行结构和性能的比较.1.1 原料增塑熔纺所用的PAN粉末是丙烯腈 (AN)/丙烯酸甲酯 (MA)/衣康酸 (IA)共聚物, 上海金山石化, 黏均相对分子质量为=7.8×104;离子液体(ILs) 为1-甲基-3-丁基咪唑氯盐([BMIM]Cl), 上海成捷化学有限公司;购买的采用溶液纺丝法制备的PAN纤维分别编号为1#、 2#和3#.1.2 测试与表征采用美国Thermo Fisher公司Nicolet Nexus 670型红外光谱仪, 使用金刚石晶体单点衰减全反射附件对薄膜进行室温红外光谱测试, 扫描范围为4 000~500 cm-1.采用美国TA公司Q -20型差示扫描量热仪对不同公司的3个商用和1个自制的PAN纤维进行热分析. 以空的铝质坩埚作为参照物, 取5~10 mg样品放置于铝质坩埚中, 在氮气气氛下, 以10 ℃/min的升温速率从30 ℃升至380 ℃, 得到关于PAN样品的DSC曲线.采用美国TA公司的Q -800型动态热机械分析仪测试PAN纤维的玻璃化转变温度, 夹具类型选取薄膜夹具, 扫描模式为 Multi-Frequency Srain Temp Ramp, 温度范围为30~200 ℃, 升温速率为3 ℃/min, 频率为1 Hz,得到PAN样品的DMA曲线.采用东华大学制造的XD -1型纤维纤度仪测量纤维的线密度, 每个纤维样品取20个样测试, 并取平均值. 采用东华大学制造的XQ-1型纤维强伸度仪测量纤维的力学性能, 在对纤维施加0.1 cN的张力条件下进行测试, 上下夹持器之间的距离为20 mm, 牵伸速度为10 mm/min, 每种纤维样品测试20个样取平均值, 并得到其变异系数.在一束排列整齐的PAN纤维上涂上胶棉液待其风干后即完成制样. 将样品贴到样品台上, 然后采用日本RIGAKU的D/Max-2550 PC型X射线衍射仪来获得PAN 纤维样品的X射线衍射数据, 最后采用式(1)计算PAN纤维的取向度[10].其中: H 为赤道线上的Debye环(常用最强环)的强度分布曲线的半高宽, (°).将PAN纤维剪碎, 采用X射线衍射仪来获得PAN纤维的X射线衍射数据, 通过Peakfit软件进行分峰处理, 采用衍射峰的面积来表示非晶区和晶区的相对含量, 然后采用式(2)通过峰面积法[11]来计算其结晶度.其中: Wc为结晶度;Sc为结晶峰的面积;Sa为非晶峰的面积.在一束排列整齐的PAN纤维上涂上胶棉液待其风干后即完成制样. 将样品贴到样品台上, 在上海光源BL16B1实验站采集PAN纤维的二维X射线小角散射(SAXS)数据, 其中小角探测器采用Mar165型CCD, X射线的波长为0.124 nm, 曝光时间为40 s, 利用牛筋标定的探测器到样品的距离为5 050 mm. 最后采用FIT2D软件对数据进行处理.2.1 PAN纤维的化学结构不同PAN纤维样品的红外图谱如图1所示. 由图1可知, 聚合物中存在以下特征吸收峰: 波数在2 937 cm-1附近归属于CH2伸缩振动吸收峰, 在2 242 cm-1附近归属于腈基C≡N伸缩振动吸收峰, 在1 732 cm-1附近归属于饱和酯的O伸缩振动吸收峰, 在1 628 cm-1附近归属于N伸缩振动吸收峰, 在1 575 cm-1附近归属于C伸缩振动吸收峰, 在1 453 cm-1附近归属于CH2弯曲振动吸收峰, 在1 360 cm-1附近归属于CH弯曲振动吸收峰, 在1 071 cm-1附近归属于C-C单键的骨架振动吸收峰 [12-13].因此, 4种样品均为丙烯腈和甲基丙烯酸酯的共聚物, 而2#在波数1 732 cm-1附近出现归属于饱和酯的O伸缩振动吸收峰的强度较弱,表明该样品中丙烯腈的含量相对较高. 增塑熔纺PAN纤维在1 575 cm-1附近出现了C伸缩振动吸收峰. 文献[14-15]研究表明在100~250 ℃, PAN纤维内部氧化反应速率很低, 主要以环化、脱氢反应为主, 而增塑熔纺的温度为180~220 ℃, 这表明PAN纤维在增塑熔纺过程中发生了环化、脱氢反应.2.2 PAN纤维的热性能不同PAN纤维样品的DSC曲线如图2所示, 表1列出了PAN纤维特征放热峰的起始温度(ti)、放热峰温度(tp)、放热峰的终止温度(te)、放热峰起始温度与终止温度差(Δt).随着温度的升高, PAN纤维在预氧化过程中由于氰基的热聚合作用[16], 在这个过程中会释放出大量的热. 因此, 从图2可以看出, 在230~310 ℃出现一个放热峰. 但是由于组分和纺丝方法的不同, 放热峰的形状和大小也有一定的差别. 从表1可以看出, 增塑熔纺PAN纤维的起始放热峰温度(225 ℃)较低, 峰形比较宽, 起始和终止温度差(95 ℃)较大, 而且放热量较低, 这表明在预氧化过程中放热缓和, 易于控制. 1#和3#的起始温度分别为235和245 ℃, 起始温度与终止温度之间的温差都为75 ℃, 而2#的放热峰形比较尖锐, 起始和终止温度差为55 ℃. 这主要是因为2#中丙烯腈的含量相对较高, 含氧基团的含量较低, 热解反应属于自由基引发, 一旦引发, 反应瞬间完成[17]. 而对于丙烯腈共聚物, 其中含有酸类共聚单体, 所以热解反应属于阴离子引发, 反应一旦进行, 必经异构化形成亚胺结构, 所以这一过程使得整个反应的速度较慢[18].不同PAN纤维样品的DMA曲线如图3所示. 从图3可以看出, 增塑熔纺制得的PAN纤维的玻璃化转变温度要高于溶液纺丝制得的PAN纤维, 2#和熔纺PAN纤维的DMA曲线不同于其他2种PAN纤维, 分别在160和150 ℃左右出现一个肩峰. 出现这种现象的原因众说纷纭, 其中文献[19]认为115和160 ℃分别对应着有序区和无定型区的分子链段运动所需的温度, 无定型区分子链段运动所需的温度要高于有序区, 这主要是因为无定型区的分子链缠结密度较高.2.3 PAN纤维的力学性能不同PAN纤维样品的力学性能参数如表2所示. 从表2可以看出, 增塑熔纺制得的PAN纤维平均拉伸断裂强度高于其他3种商用PAN原丝的平均拉伸断裂强度.2.4 PAN纤维的微孔不同PAN纤维样品的二维SAXS花样图如图4所示. 从图4可以看出, 4幅图都没有明显的周期性散射, 沿赤道方向散射图形的长度大于沿子午线方向的长度, 而1#和增塑熔纺PAN纤维的散射图在赤道方向上呈现出比3#拉长且尖锐的散射条纹, 这表明纤维中微孔在轴向的长度较大且沿纤维轴向的取向程度也比较大.采用Ruland法来计算沿纤维轴方向微孔的长度和取向偏离度.具体操作部骤采用Wang等[20]的方法:(1)对PAN纤维的二维SAXS花样图进行空气背景的扣除;(2)沿垂直于赤道方向即平行子午线方向做切片,得到曲线,根据曲线求出半峰宽,即积分宽度;(3)采用公式(3)对积分宽度和赤道散射矢量进行线性拟合,求出斜率和截距.其中:BS3为积分宽度,nm-1; S12为散射矢量,nm-1;L为微孔长度,nm;Bf为沿纤维轴方向微孔的取向偏离度,(°).不同PAN纤维沿赤道方向积分宽度与散射矢量的关系如图5所示.具体结果列于表3. 从表3中可以看出, 2#中的微孔长度大于其他3种纤维, 而取向偏离度最小, 说明纤维的取向度较高, 与XRD测试的结果吻合. 与其他3个样品相比, 3#中微孔长度最小, 主要是由于其取向度低于其他3种PAN纤维.在处理数据时将微孔近似看为圆形, 采用逐次切线法获得的log I-q2的关系曲线图如图6所示. 从图6可以看出, 在最大散射角处对曲线做切线, 经过5次处理曲线近似变为一条直线, 这表明PAN纤维中微孔呈典型的多级分布, 然后将各条切线的斜率代入式(4)求出各级尺寸对应的回转半径,将微孔看作圆形,再采用式(5)求出微孔半径(r1, r2, r3, r4, r5), 具体结果如表3所示.从表3中可以看出, 增塑熔纺PAN纤维截面的微孔具有多级分布的特征, 微孔半径大约为1.0, 1.5, 2.6, 和4.0 nm, 较其他3种PAN纤维, 增塑熔纺PAN纤维的微孔半径最小. 这说明增塑熔纺PAN纤维横截面上的缺陷较少, 所承受拉伸力的有效横截面积增大, 纤维的断裂强度增大. PAN纤维中微孔的存在被认为是影响PAN 基碳纤维性能的重要因素. 因此, 为了提高材料的性能,对微孔结构的研究就显得尤为重要[20].(1) 4种PAN纤维样品均为丙烯腈和甲基丙烯酸酯的共聚物,而PAN纤维在增塑熔纺过程中发生了部分环化.(2) 增塑熔纺PAN纤维玻璃化温度高于其他3种PAN纤维, 放热峰型宽, 且起始放热温度低.(3) 增塑熔纺PAN纤维的拉伸断裂强度达到并超过3种商用PAN原丝的拉伸断裂强度;(4) 采用Ruland法计算沿纤维轴方向微孔的长度和取向偏离度, 采用逐次切片法计算微孔的半径, 结果表明,增塑熔纺PAN纤维中微孔的长度较大, 取向偏离度和微孔的半径尺寸较小.【相关文献】[1] 何翼云, 施祖培. 聚丙烯腈熔融纺丝技术进展[J]. 合成纤维工业, 1997, 20(6): 32-36.[2] MASSON J C. 腈纶生产工艺及应用[M]. 北京: 中国纺织出版社, 2004: 82-113.[3] FRUSHOUR B G. A new thermal analytical technique for acrylic polymers[J]. Polym Bull, 1981, 4(5): 305-314.[4] FRUSHOUR B G. Water as a melting point depressant for acrylic polymers[J]. Polym Bull, 1982, 7(1): 1-8.[5] FRUSHOUR B G. Melting behavior of polyacrylonitrile copolymers[J]. Polym Bull, 1984,11(4): 375-382.[6] MIN B G, SON T W, KIM B C, et al. Plasticization behavior of polyacrylonitrile and characterization of acrylic fiber prepared from the plasticized melt[J]. Polym J, 1992, 24(9): 841-848.[7] TIAN Y C, HAN K Q, YU M H, et al. Rheological behaviors of polyacrylonitrile melt using ionic liquids as a plasticizer[J]. Adv Mater Res, 2012, 476/477/478: 2151-2157.[8] TIAN Y C, HAN K Q, YU M H, et al. Influence of residence time on the structure of polyacrylonitrile in ionic liquids during melt spinning process[J]. Mater Lett, 2013, 92: 119-121.[9] TIAN Y C, HAN K Q, YU M H, et al. Influence of melt temperature on structure of polyacrylonitrile in ionic liquids during plasticized melt spinning process[J]. Appl Mech Mater, 2013, 268/269/270: 483-486.[10] 莫志深. 晶态聚合物结构和X射线衍射[M]. 北京: 科学出版社, 2010: 235-238 .[11] HINRICHSEN G. Structural changes of drawn polyacrylonitrile during annealing [J]. J Polym Sci, Part C: Polym Symp, 1972, 38 (1): 303-314.[12] VARMA S P, LAL B B. IR study on preoxidized PAN fiber[J]. Carbon, 1976, 14(4): 207-209[13] KAKIDA H, TASHIRO K, KOBAYASHI M. Mechanism and kinetics of stabilization reaction of polyacrylonitrile and related copolymers[J]. Polym J, 1996, 28(1): 30-34.[14] 侯志凌. PAN基碳纤维热氧化过程结构变化研究[J]. 科技创新与生产力, 2014(242): 109-110.[15] 张利珍, 吕春祥, 吕永根, 等. 聚丙烯腈纤维在预氧化过程中的结构和热性能转变[J]. 新型炭材料, 2005, 20(2): 144-150.[16] TURNER W N, JOHNSON F C. Pyrolysis of acrylic fiber in inert atmosphere[J]. J Appl Polym Sci, 1969, 13(10): 2073-2084.[17] AVILES M A, GINES J M. Thermal analysis of acrylonitrile polymerization and cyclization in the presence of N, N-dimethylformamide[J]. J Therm Anal Calorim, 2002,67(1): 177-188.[18] RYU Z, ZHENG J, WANG M, et al. Nitrogen adsorption studies of PAN-based activated carbon fibers prepared by different activation methods[J]. J Colloid and Interface Sci, 2000, 230(2): 312-319.[19] BASHIR Z. The hexagonal mesophase in atactic polyacrylonitrile: A new interpretation of the phase transitions in the polymer[J]. J Macromol Sci-Physics, 2001, B40(1): 41-67. [20] 盛毅, 张彩虹, 徐耀, 等. 二维小角X射线散射法研究PAN基炭纤维内部微孔结构[J]. 新型炭材料, 2009, 24(3): 270-276.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
聚丙烯腈碳纤维性能表征规范聚丙烯腈碳纤维的性能主要有力学性能、热物理性能和电学性能。
对于碳纤维材料来说,拉伸力学性能,包括拉伸强度、拉伸模量以及断裂伸长率是其主要力学性能指标。
由于纤维材料本身的特点,很难对其压缩力学性能进行有效的表征,因此基本不考虑纤维本身的压缩性能。
碳纤维的热物理性能包括热容、导热系数、线膨胀系数等,也是材料应用的重要指标。
电性能主要为体积电阻率以及电磁屏蔽方面的性能。
对于碳纤维的拉伸力学性能测试,各国都已经基本形成了相应的测试标准系列,这些标准系列同时包括了在力学性能测试时需要的线密度、体密度、上浆量等相关的测试。
对于热物理性能,相关的测试标准较少。
5.5.1 碳纤维性能测试标准日本从1986年开始发布了其碳纤维力学性能测试标准,有关标准见表5.30,其中JIS R7601-1986《碳纤维试验方法》涵盖了碳纤维单丝、束丝的拉伸力学性能测试方法外,还包括以及密度、上浆剂含量、线密度等测试方法及规范。
JIS R7601-2006《碳纤维试验方法(修正1)》是在国际对石棉制品应用规定严格的条件下,将JIS R7601-1986中拉伸性能测试中夹持用垫片的石棉材料进行了删除。
相比于JIS R7601-1986,JIS R7608-2007《碳纤维-树脂浸渍丝拉伸性能测试方法》被广泛地用于碳纤维力学性能的测试,其可操作性和规范性也更强。
表5.30 日本碳纤维测试标准序号标准号标准名称1 JIS R7601-1986 碳纤维试验方法2 JIS R7602-1995 碳纤维织物试验方法3 JIS R7603-1999 碳纤维-密度的试验方法4 JIS R7604-1999 碳纤维-上浆剂附着率的试验方法5 JIS R7605-1999 碳纤维-线密度的试验方法6 JIS R7606-2000 碳纤维单纤维拉伸性能试验方法7 JIS R7607-2000 碳纤维单纤维直径及断面面积试验方法8 JIS R7608-2007 碳纤维-树脂浸渍丝拉伸性能测试方法9 JIS R7609-2007 碳纤维体积电阻率测试方法10 JIS R7601-2006 碳纤维试验方法(修正1)日本东丽公司作为世界聚丙烯腈基碳纤维生产能力和水平最高的企业,也有自己的碳纤维力学性能测试内部规范,测试规范号和名称为TY-030B-01《碳纤维拉伸强度、拉伸弹性模量和断裂延伸率测试方法》。
美国与碳纤维性能测试密切相关的标准为ASTM D4018-2011《连续碳纤维和石墨纤维束性能的测试方法》,其他线密度、密度等沿用纺织纤维、碳黑、塑料等标准进行(表5.31)。
欧洲也针对碳纤维特点制定了相关性能测试方法的标准(表5.32)。
表5.31 美国碳纤维性能测试相关标准序号标准号中文标准名称连续碳纤维和石墨纤维束性能的测试方法1 ASTMD4018-20112 ASTM采用密度梯度法测试塑料密度的测试方法D1505-20103 ASTM纺织纤维线密度的测试方法D1577-20074 ASTM炭黑碳含量的测试方法D7633-20135 ASTM D482-2007 石油产品灰分的测试方法纺织品中可萃取物的测试方法6 ASTMD2257-19987 ASTMD4102-1982 碳纤维的耐热氧化性的试验方法表5.32碳纤维性能测试欧洲标准序号标准号中文标准名称1 ISO10618-2004 碳纤维.树脂浸渍纱线拉伸特性测定2 ISO10548-2003 碳纤维.尺寸的测定3 ISO10119-1992 碳纤维.密度测定4 ISO10120-1991 碳纤维.线性密度的测定5 ISO10548-2003 碳纤维.胶料含量的测定6 ISO11567-1996 碳纤维.长丝直经和横截面积的测定7 ISO11566-1996 碳纤维.单丝样品抗拉性能的测定8 ISO13002-2-1999 碳纤维长丝纱.试验方法和通用规范我国的碳纤维力学性能测试标准主要参考日本和美国的标准进行制定,在一些细节和可操作性方面需要进一步提高。
随着我国碳纤维研究和生产水平的提高,我国碳纤维性能测试也逐渐形成了标准体系(表5.33)。
目前我国碳纤维性能测试标准存在两个体系,一个是以GB/T 3362为核心的碳纤维复丝拉伸性能试验方法,基本满足了我国常规碳纤维力学性能的测试,但存在标准在一些方面还需要进一步改进,该标准同时规范了包括线密度、体密度、上浆剂含量的测试方法。
另一个是以GB/T26749为核心的碳纤维性能测试标准,在性能测试方面有了较完整的标准体系。
表5.33我国碳纤维性能相关测试标准序号标准号标准名称1 GB/T3362-1982 碳纤维复丝拉伸性能试验方法2 GB/T3362-2005 碳纤维复丝拉伸性能试验方法3 GB/T3364-2008 碳纤维直径和根数试验方法4 GB/T3366-1996 碳纤维增强塑料纤维体积含量试验方法5 GB/T3855-2005 碳纤维增强塑料树脂含量试验方法6 GB/T26749-2011 碳纤维浸胶纱拉伸性能的测定7 GB/T30019-2013 碳纤维密度的测定8 GB/T29762-2013 碳纤维纤维直径和横截面积的测定9 GB/T29761-2013 碳纤维浸润剂含量的测定10 GB/T23442-2009 聚丙烯腈基碳纤维原丝结构和形态的测定11 GB/T26752-2011 聚丙烯腈基碳纤维12 QJ3074-1998 碳纤维及其复合材料电阻率测试方法13 GB18530-2001 车间空气中碳纤维粉尘职业接触限值5.5.2 碳纤维单丝力学性能测试单丝力学性能测试可以较为简单快速的得到碳纤维拉伸力学性能,需要样品量少,通常十厘米左右的纤维样品就可以完成对碳纤维的力学性能表征,因此在早期应用较为普遍。
由于单丝力学性能测试结果存在人为影响较大、性能离散值较高等缺点,目前逐渐为束丝力学性能测试方法所取代。
对于碳纤维单丝力学性能测试,JIS R7601-1986和ISO11566-1996进行了详细的规定,包括制样、测试、试验次数等。
以JIS R7601-1986为例,对于单纤维的拉伸强度测试,需要将单根纤维从纤维束中抽出,并将其固定在试验用底纸上,用于固定单根纤维的底纸标准规定的形式如图5.51,以确保拉伸试验时纤维标距为25±0.5mm。
测试是拉伸速度为0.5-10mm/min,以断裂时力值与单丝截面积计算拉伸强度,在断裂力值20%-60%拉伸-形变曲线部分以断裂力值的20%-30%计算模量值。
模量计算采用如下公式:其中E:拉伸弹性模量,N/mm2;ΔP为载荷增加量,N;A:试验片的截面积mm2;L:试验片长度,mm;ΔL:伸长量,mm;K:装置柔量校正系数,mm/N。
图5.51 单纤维固定用底纸装置柔量校正系数需通过不同标距测试,以断裂伸长/断裂力值对标距作图,延长到标距为零时的断裂伸长/断裂力值为装置柔量校正系数。
在计算拉伸强度和模量时,纤维截面积可以采用激光法、显微镜法、纤度和线密度计算法等。
对于试验次数,标准给出了详细的规定。
试验次数的确定首先需进行30次试验计算出变异系数,并根据试验要求的概率和精确度的要求,通过图5.52或5.53决定。
利用预先进行的试验结果,算出的平均值和标准偏差对应上述计算图,将其连接为一条直线,延长直线求出变动系数,将此变动系数与所定的精度连接为一条直线,延长直线与所定概率的刻度相交,求出试验次数。
如预先进行的试验结果平均值为35,标准偏差2.5,则变异系数为7.1%,所需试验精度为2.0%,则在95%概率下试验次数为51次,99%概率下试验次数为86次。
图5.52 试验次数确定图Ⅰ图5.52 试验次数确定图Ⅱ5.5.3 碳纤维束丝力学性能测试碳纤维的束丝力学性能测试,是将一束碳纤维作为整体进行拉伸测试,从而获得碳纤维的拉伸强度、拉伸模量以及断裂伸长率。
碳纤维的束丝力学性能测试的关键是在测试时丝束内所有纤维同时受力并发生断裂,因此需要对碳纤维进行上胶制样。
碳纤维复丝力学性能测试必须首先用高分子树脂对纤维束中的进行固定,因此需要采用浸渍树脂对纤维进行浸渍处理。
通常采用的浸渍树脂为环氧树脂的丙酮溶液。
为了确保浸渍均匀,必须保证树脂或者树脂溶液的粘度。
对固化后树脂,各标准都给出了相类似的要求,以日本标准为例,标准要求树脂固化后的最大变形,在碳纤维的拉伸形变的2倍以上,最好是3倍。
通常碳纤维性能测试标准都对测试环境的温湿度有着较严格的规定,但对于浸渍过程环境的温湿度并没有作相应规定,而研究发现,在对碳纤维进行树脂浸渍过程中,环境的温湿度,特别是湿度对最终碳纤维性能测试结果有着重要影响,环境湿度在大于50%时,所制备的样条在进行测试是断裂形式呈现多样化非正常断裂,使得测试结果偏低。
关于制样,可以采用人工或者机器进行上胶、烘干制样,所得到的样品须平滑无明显的胶滴。
样条固化后树脂含量通常为35-60%。
日本标准推荐了自动制样装置示意图如图5.53所示。
东丽公司TY-030B-01《碳纤维拉伸强度、拉伸弹性模量和断裂延伸率测试方法》推荐的自动制样装置如图5.54,制样温度为25-30℃,制样张力100-200g/束,制样速度7m/min。
所制的样条树脂含量需要在30%以上。
图5.53 标准推荐的制样装置图5.54 东丽内部规范自动制样装置为了在测试时能够对试样进行很好的夹持,通常试样两端需要用加强片进行加强。
加强片可以采用各种材料,如衬纸、金属板、树脂浸渍玻璃纤维布、铸型热硬化树脂、热塑性树脂等。
图5.54为一种热塑性树脂加强片的形式,图5.55为金属加强片。
图5.54 热塑性树脂加强片图5.55 金属加强片在进行力学性能测试时,通常的标准规定的标距长度为150±5mm,或者200±5mm;没有附有加强片的试验片的场合,全长250±5mm,或者300±5mm,在采用引伸计测碳纤维模量时,纤维长度至少为引伸计长度的3倍。
测试样品数量方面,一般要求至少4个正常断裂的试样。
测试过程的拉伸速度不同标准规定不尽相同,GB/T3362规定的拉伸速度为1-20 mm/min,ASTM D4018和JIS7608为不超过250 mm/min,而日本东丽公司内部测试规范为30-60 mm/min。
对于拉伸速度的规定,GB/T 3362是所有标准中最小的。
我国测试人员在实践中发现,对于通常碳纤维来说,拉伸速度对测试结果影响不大,为提高测试效率,因此可以适当放宽测试中的拉伸速度范围。
对于模量的测试,推荐使用引伸计,引伸计的量规长,最低50mm,最好是100mm。
引伸计线性允许误差在0.1%以下。
可以使用机械式、光学式或者是激光式的变形测量仪。