分式方程的重要题型
分式方程篇(解析版)--中考数学必考考点总结+题型专训

知识回顾微专题分式方程--中考数学必考考点总结+题型专训考点一:分式方程之分式方程的解与解分式方程1.分式方程的定义:分母中含有未知数的方程叫做分式方程。
2.分式方程的解:使分式方程成立的未知数的值叫做分式方程的解。
3.解分式方程。
具体步骤:①去分母——分式方程的两边同时乘上分母的最简公分母。
把分式方程化成整式方程。
②解整式方程。
③检验——把解出来的未知数的值带入公分母中检验公分母是否为0。
若公分母不为0,则未知数的值即是原分式方程的解。
若公分母为0,则未知数的值是原分式方程的曾根,原分式方程无解。
1.(2022•营口)分式方程3=x 的解是()A .x =2B .x =﹣6C .x =6D .x =﹣2【分析】方程两边都乘x (x ﹣2)得出3(x ﹣2)=2x ,求出方程的解,再进行检验即可.【解答】解:=,方程两边都乘x (x ﹣2),得3(x ﹣2)=2x ,解得:x =6,检验:当x =6时,x (x ﹣2)≠0,所以x =6是原方程的解,即原方程的解是x =6,故选:C .2.(2022•海南)分式方程12-x ﹣1=0的解是()A .x =1B .x =﹣2C .x =3D .x =﹣3【分析】方程两边同时乘以(x ﹣1),把分式方程化成整式方程,解整式方程检验后,即可得出分式方程的解.【解答】解:去分母得:2﹣(x ﹣1)=0,解得:x =3,当x =3时,x ﹣1≠0,∴x =3是分式方程的根,故选:C .3.(2022•毕节市)小明解分式方程33211+=+x xx ﹣1的过程如下.解:去分母,得3=2x ﹣(3x +3).①去括号,得3=2x ﹣3x +3.②移项、合并同类项,得﹣x =6.③化系数为1,得x =﹣6.④以上步骤中,开始出错的一步是()A .①B .②C .③D .④【分析】按照解分式方程的一般步骤进行检查,即可得出答案.【解答】解:去分母得:3=2x ﹣(3x +3)①,去括号得:3=2x ﹣3x ﹣3②,∴开始出错的一步是②,故选:B .4.(2022•无锡)分式方程xx 132=-的解是()A .x =1B .x =﹣1C .x =3D .x =﹣3【分析】将分式方程转化为整式方程,求出x 的值,检验即可得出答案.【解答】解:=,方程两边都乘x (x ﹣3)得:2x =x ﹣3,解得:x =﹣3,检验:当x =﹣3时,x (x ﹣3)≠0,∴x =﹣3是原方程的解.故选:D .5.(2022•济南)代数式23+x 与代数式12-x 的值相等,则x =.【分析】根据题意列方程,再根据解分式方程的步骤和方法进行计算即可.【解答】解:由题意得,=,去分母得,3(x ﹣1)=2(x +2),去括号得,3x ﹣3=2x +4,移项得,3x ﹣2x =4+3,解得x =7,经检验x =7是原方程的解,所以原方程的解为x =7,故答案为:7.6.(2022•绵阳)方程113-+=-x x x x 的解是.【分析】先在方程两边乘最简公分母(x ﹣3)(x ﹣1)去分母,然后解整式方程即可.【解答】解:=,方程两边同乘(x ﹣3)(x ﹣1),得x (x ﹣1)=(x +1)(x ﹣3),解得x =﹣3,检验:当x =﹣3时,(x ﹣3)(x ﹣1)≠0,∴方程的解为x =﹣3.故答案为:x =﹣3.7.(2022•盐城)分式方程121-+x x =1的解为.【分析】先把分式方程转化为整式方程,再求解即可.【解答】解:方程的两边都乘以(2x ﹣1),得x +1=2x ﹣1,解得x =2.经检验,x =2是原方程的解.故答案为:x =2.8.(2022•内江)对于非零实数a ,b ,规定a ⊕b =a 1﹣b1.若(2x ﹣1)⊕2=1,则x 的值为.【分析】利用新规定对计算的式子变形,解分式方程即可求得结论.【解答】解:由题意得:=1,解得:x =.经检验,x =是原方程的根,∴x =.故答案为:.9.(2022•永州)解分式方程112+-x x =0去分母时,方程两边同乘的最简公分母是.【分析】根据最简公分母的定义即可得出答案.【解答】解:去分母时,方程两边同乘的最简公分母是x (x +1).故答案为:x (x +1).10.(2022•常德)方程()xx x x 25212=-+的解为.【分析】方程两边同乘2x (x ﹣2),得到整式方程,解整式方程求出x 的值,检验后得到答案.【解答】解:方程两边同乘2x (x ﹣2),得4x ﹣8+2=5x ﹣10,解得:x =4,检验:当x =4时,2x (x ﹣2)=16≠0,∴x =4是原方程的解,∴原方程的解为x =4.11.(2022•宁波)定义一种新运算:对于任意的非零实数a ,b ,a ⊗b =a 1+b 1.若(x +1)⊗x =xx 12+,则x 的值为.【分析】根据新定义列出分式方程,解方程即可得出答案.【解答】解:根据题意得:+=,化为整式方程得:x +x +1=(2x +1)(x +1),解得:x =﹣,检验:当x =﹣时,x (x +1)≠0,∴原方程的解为:x =﹣.故答案为:﹣.12.(2022•成都)分式方程xx x -+--4143=1的解为.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【解答】解:去分母得:3﹣x ﹣1=x ﹣4,解得:x =3,经检验x =3是分式方程的解,故答案为:x =3.13.(2022•牡丹江)若关于x 的方程11--x mx =3无解,则m 的值为()A .1B .1或3C .1或2D .2或3【分析】先去分母,再根据条件求m .【解答】解:两边同乘以(x ﹣1)得:mx ﹣1=3x ﹣3,∴(m ﹣3)x =﹣2.当m ﹣3=0时,即m =3时,原方程无解,符合题意.当m ﹣3≠0时,x =,∵方程无解,∴x ﹣1=0,∴x =1,∴m ﹣3=﹣2,∴m =1,综上:当m =1或3时,原方程无解.故选:B .14.(2022•通辽)若关于x 的分式方程:2﹣221--x k =x-21的解为正数,则k 的取值范围为()A .k <2B .k <2且k ≠0C .k >﹣1D .k >﹣1且k ≠0【分析】先解分式方程可得x =2﹣k ,再由题意可得2﹣k >0且2﹣k ≠2,从而求出k 的取值范围.【解答】解:2﹣=,2(x ﹣2)﹣(1﹣2k )=﹣1,2x ﹣4﹣1+2k =﹣1,2x =4﹣2k ,x =2﹣k ,∵方程的解为正数,∴2﹣k >0,∴k <2,∵x ≠2,∴2﹣k ≠2,∴k ≠0,∴k <2且k ≠0,故选:B .15.(2022•黑龙江)已知关于x 的分式方程xx m x ----1312=1的解是正数,则m 的取值范围是()A .m >4B .m <4C .m >4且m ≠5D .m <4且m ≠1【分析】先利用m 表示出x 的值,再由x 为正数求出m 的取值范围即可.【解答】解:方程两边同时乘以x ﹣1得,2x ﹣m +3=x ﹣1,解得x =m ﹣4.∵x 为正数,∴m ﹣4>0,解得m >4,∵x ≠1,∴m ﹣4≠1,即m ≠5,∴m 的取值范围是m >4且m ≠5.故选:C .16.(2022•德阳)如果关于x 的方程12-+x mx =1的解是正数,那么m 的取值范围是()A .m >﹣1B .m >﹣1且m ≠0C .m <﹣1D .m <﹣1且m ≠﹣2【分析】先去分母将分式方程化成整式方程,再求出方程的解x =﹣1﹣m ,利用x >0和x ≠1得出不等式组,解不等式组即可求出m 的范围.【解答】解:两边同时乘(x ﹣1)得,2x +m =x ﹣1,解得:x =﹣1﹣m ,又∵方程的解是正数,且x ≠1,∴,即,解得:,∴m 的取值范围为:m <﹣1且m ≠﹣2.故答案为:D .17.(2022•重庆)关于x 的分式方程x x x a x -++--3133=1的解为正数,且关于y 的不等式组()⎪⎩⎪⎨⎧-+≤+132229a y y y 的解集为y ≥5,则所有满足条件的整数a 的值之和是()A .13B .15C .18D .20【分析】解分式方程得得出x =a ﹣2,结合题意及分式方程的意义求出a >2且a ≠5,解不等式组得出,结合题意得出a <7,进而得出2<a <7且a ≠5,继而得出所有满足条件的整数a 的值之和,即可得出答案.【解答】解:解分式方程得:x =a ﹣2,∵x >0且x ≠3,∴a ﹣2>0且a ﹣2≠3,∴a >2且a ≠5,解不等式组得:,∵不等式组的解集为y ≥5,∴<5,∴a <7,∴2<a <7且a ≠5,∴所有满足条件的整数a 的值之和为3+4+6=13,故选:A .18.(2022•重庆)若关于x 的一元一次不等式组⎪⎩⎪⎨⎧--≥-a x x x <153141的解集为x ≤﹣2,且关于y 的分式方程111+=+-y ay y ﹣2的解是负整数,则所有满足条件的整数a 的值之和是()A .﹣26B .﹣24C .﹣15D .﹣13【分析】解不等式组得出,结合题意得出a >﹣11,解分式方程得出y =,结合题意得出a =﹣8或﹣5,进而得出所有满足条件的整数a 的值之和是﹣8﹣5=﹣13,即可得出答案.【解答】解:解不等式组得:,∵不等式组的解集为x ≤﹣2,∴>﹣2,∴a >﹣11,解分式方程=﹣2得:y=,∵y 是负整数且y ≠﹣1,∴是负整数且≠﹣1,∴a =﹣8或﹣5,∴所有满足条件的整数a 的值之和是﹣8﹣5=﹣13,故选:D .19.(2022•遂宁)若关于x 的方程122+=x mx 无解,则m 的值为()A .0B .4或6C .6D .0或4【分析】解分式方程可得(4﹣m )x =﹣2,根据题意可知,4﹣m =0或2x +1=0,求出m 的值即可.【解答】解:=,2(2x +1)=mx ,4x +2=mx ,(4﹣m )x =﹣2,∵方程无解,∴4﹣m =0或2x +1=0,即4﹣m =0或x =﹣=﹣,∴m =4或m =0,故选:D .20.(2022•黄石)已知关于x 的方程()1111++=++x x ax x x 的解为负数,则a 的取值范围是.【分析】先求整式方程的解,然后再解不等式组即可,需要注意分式方程的分母不为0.【解答】解:去分母得:x +1+x =x +a ,解得:x =a ﹣1,∵分式方程的解为负数,∴a ﹣1<0且a ﹣1≠0且a ﹣1≠﹣1,∴a <1且a ≠0,∴a 的取值范围是a <1且a ≠0,故答案为:a <1且a ≠0.21.(2022•齐齐哈尔)若关于x 的分式方程4222212-+=++-x mx x x 的解大于1,则m 的取值范围是.【解答】解:,给分式方程两边同时乘以最简公分母(x +2)(x ﹣2),得(x +2)+2(x ﹣2)=x +2m ,去括号,得x +2+2x ﹣4=x +2m ,解方程,得x =m +1,检验:当m +1≠2,m +1≠﹣2,即m ≠1且m ≠﹣3时,x =m +1是原分式方程的解,根据题意可得,m +1>1,∴m >0且m ≠1.知识回顾故答案为:m >0且m ≠1.22.(2022•泸州)若方程xx x -=+--23123的解使关于x 的不等式(2﹣a )x ﹣3>0成立,则实数a 的取值范围是.【分析】先解分式方程,再将x 代入不等式中即可求解.【解答】解:+1=,+=,=0,解得:x =1,∵x ﹣2≠0,2﹣x ≠0,∴x =1是分式方程的解,将x =1代入不等式(2﹣a )x ﹣3>0,得:2﹣a ﹣3>0,解得:a <﹣1,∴实数a 的取值范围是a <﹣1,故答案为:a <﹣1.考点二:分式方程之分式方程的应用1.列分式方程解实际应用题的步骤:①审题——仔细审题,找出题目中的等量关系。
第十六章_分式方程应用题分类解析

分式方程应用题分类解析一.行程问题 【重点考点例析】(2010山东淄博)小明7:20离开家步行去上学,走到距离家500米的商店时,买学习用品用了5分钟.从商店出来,小明发现要按原来的速度还要用30分钟才能到校.为了在8:00之前赶到学校,小明加快了速度,每分钟平均比原来多走25米,最后他到校的时间是7:55.求小明从商店到学校的平均速度.(1)一般行程问题1、从甲地到乙地有两条公路:一条是全长600Km 的普通公路,另一条是全长480Km 的告诉公路。
某客车在高速公路上行驶的平均速度比在普通公路上快45Km ,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半,求该客车由高速公路从甲地到乙地所需要的时间。
2、我军某部由驻地到距离30千米的地方去执行任务,由于情况发生了变化,急行军速度必需是原计划的1.5倍,才能按要求提前2小时到达,求急行军的速度。
(2)水航问题 3、轮船顺水航行80千米所需要的时间和逆水航行60千米所用的时间相同。
已知水流的速度是3千米/时,求轮船在静水中的速度。
二.工程问题1、一台甲型拖拉机4天耕完一块地的一半,加一天乙型拖拉机,两台合耕,1天耕完这块地的另一半。
乙型拖拉机单独耕这块地需要几天?2、某 市为治理污水,需要铺设一段全长3000米的污水输送管道,为了尽量减少施工对城市交通造成的影响,实际施工时每天的工效比原计划增加25%,结果提前30天完成了任务,实际每天铺设多长管道? 3.某一工程,在工程招标时,接到甲、乙两个工程队的投标书.施工一天,需付甲工程队工程款1.2万元,乙工程队工程款0.5万元.工程领导小组根据甲、乙两队的投标书测算,有如下方案:(1)甲队单独完成这项工程刚好如期完成;(2)乙队单独完成这项工程要比规定日期多用6天;(3)若甲、乙两队合做3天,余下的工程由乙队单独做也正好如期完成.试问:在不耽误工期的前提下,你觉得哪一种施工方案最节省工程款?请说明理由.三.利润(成本、产量、价格、合格)问题1、某煤矿现在平均每天比原计划多采330吨,已知现在采煤33000吨煤所需的时间和原计划采23100吨煤的时间相同,问现在平均每天采煤多少吨。
方程应用--分式方程(解析版)-中考数学重难点题型专题汇总

方程应用-中考数学重难点题型专题汇总分式方程(专题训练)1.(2022·云南)某地开展建设绿色家园活动,活动期间,计划每天种植相同数量的树木,该活动开始后、实际每天比原计划每天多植树50棵,实际植树400棵所需时间与原计划植树300棵所需时间相同.设实际每天植树x棵.则下列方程正确的是()A.40030050x x=-B.30040050x x=-C.40030050x x=+D.30040050x x=+【答案】B【分析】设实际平均每天植树x棵,则原计划每天植树(x-50)棵,根据:实际植树400棵所需时间=原计划植树300棵所需时间,这一等量关系列出分式方程即可.【详解】解:设现在平均每天植树x棵,则原计划每天植树(x-50)棵,根据题意,可列方程:30040050x x=-,故选:B.【点睛】此题考查了由实际问题列分式方程,关键在寻找相等关系,列出方程.2.(2022·山东泰安)某工程需要在规定时间内完成,如果甲工程队单独做,恰好如期完成;如果乙工程队单独做,则多用3天,现在甲、乙两队合做2天,剩下的由乙队单独做,恰好如期完成,求规定时间.如果设规定日期为x天,下面所列方程中错误的是()A.2x1x x3+=+B.23x x3=+C.11x221x x3x3-⎛⎫+⨯+=⎪++⎝⎭D.1x1x x3+=+【答案】D【分析】设总工程量为1,因为甲工程队单独去做,恰好能如期完成,所以甲的工作效率为1x;因为乙工程队单独去做,要超过规定日期3天,所以乙的工作效率为1x3+,根据甲、乙两队合做2天,剩下的由乙队独做,恰好在规定日期完成,列方程即可.【详解】解:设规定日期为x天,由题意可得,11x221 x x3x3-⎛⎫+⨯+=++⎝⎭,整理得2x1x x3+=+,或2x1x x3=-+或23x x3=+.则ABC选项均正确,故选:D.【点睛】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.3.(2022·浙江丽水)某校购买了一批篮球和足球.已知购买足球的数量是篮球的2倍,购买足球用了5000元,购买篮球用了4000元,篮球单价比足球贵30元.根据题意可列方程50004000302x x=-,则方程中x 表示()A .足球的单价B .篮球的单价C .足球的数量D .篮球的数量【答案】D 【分析】由50004000302x x=-的含义表示的是篮球单价比足球贵30元,从而可以确定x 的含义.【详解】解:由50004000302x x=-可得:由50002x 表示的是足球的单价,而4000x表示的是篮球的单价,x \表示的是购买篮球的数量,故选D【点睛】本题考查的是分式方程的应用,理解题意,理解方程中代数式的含义是解本题的关键.4.(2021·内蒙古鄂尔多斯市·中考真题)2020年疫情防控期间,鄂尔多斯市某电信公司为了满足全体员工的需要,花1万元购买了一批口罩,随着2021年疫情的缓解,以及各种抗疫物资充足的供应,每包口罩下降10元,电信公司又花6000元购买了一批口罩,购买的数量比2020年购买的数量还多100包,设2020年每包口罩为x 元,可列方程为()A .1600010010x x +=-B .10000600010010x x -=+C .10000600010010x x =--D .10000600010010x x -=-【答案】C 【分析】根据题中等量关系“2021年购买的口罩数量比2020年购买的口罩数量多100包”即可列出方程.【详解】解:设2020年每包口罩x 元,则2021年每包口罩(x -10)元.根据题意,得,60001000010010x x-=-.即:100006000=10010x x --.故选:C【点睛】本题考查了列分式方程的知识点,寻找已知量和未知量之间的等量关系是列出方程的关键.5.(山东省淄博市2021年中考数学试题)甲、乙两人沿着总长度为10km的“健身步道”健步走,甲的速度是乙的1.2倍,甲比乙提前12分钟走完全程.设乙的速度为km/hx,则下列方程中正确的是()A.1010121.2x x-=B.10100.21.2x x-=C.1010121.2x x-=D.10100.21.2x x-=【答案】D【分析】根据题意可直接进行求解.【详解】解:由题意得:10100.21.2x x-=;故选D.【点睛】本题主要考查分式方程的应用,熟练掌握分式方程的应用是解题的关键.6.(2020•长沙)随着5G网络技术的发展,市场对5G产品的需求越来越大,为满足市场需求,某大型5G产品生产厂家更新技术后,加快了生产速度,现在平均每天比更新技术前多生产30万件产品,现在生产500400万件产品所需时间相同.设更新技术前每天生产x万件产品,依题意得()A.400K30=500B.400=500r30C.400=500K30D.400r30=500【分析】设更新技术前每天生产x万件产品,则更新技术后每天生产(x+30)万件产品,根据工作时间=工作总量÷工作效率结合现在生产500万件产品所需时间与更新技术前生产400万件产品所需时间相同,即可得出关于x的分式方程,此题得解.【解析】设更新技术前每天生产x万件产品,则更新技术后每天生产(x+30)万件产品,依题意,得:400=500r30.故选:B.7.(2020•福建)我国古代著作《四元玉鉴》记载“买椽多少”问题:“六贯二百一十钱,倩人去买几株椽.每株脚钱三文足,无钱准与一株椽.”其大意为:现请人代买一批椽,这批椽的价钱为6210文.如果每株椽的运费是3文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?设这批椽的数量为x株,则符合题意的方程是()A.3(x﹣1)=6210B.6210K1=3C.3x﹣1=6210D.6210=3【分析】根据单价=总价÷数量结合少拿一株椽后剩下的椽的运费恰好等于一株椽的价钱,即可得出关于x的分式方程,此题得解.【解析】依题意,得:3(x﹣1)=6210.故选:A.8.(2020•辽阳)随着快递业务的增加,某快递公司为快递员更换了快捷的交通工具,公司投递快件的能力由每周3000件提高到4200件,平均每人每周比原来多投递80件,若快递公司的快递员人数不变,求原来平均每人每周投递快件多少件?设原来平均每人每周投递快件x件,根据题意可列方程为()A.3000=4200K80B.3000+80=4200 C.4200=3000−80D.3000=4200r80x件,则现在平均每人每周投递快件(x+80)件,根据人数=投递快递总数量÷人均投递数量结合快递公司的快递员人数不变,即可得出关于x 的分式方程,此题得解.【解析】设原来平均每人每周投递快件x件,则现在平均每人每周投递快件(x+80)件,依题意,得:3000=4200r80.故选:D.9.(2020•自贡)某工程队承接了80万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了35%,结果提前40天完成了这一任务.设实际工作时每天绿化的面积为x万平方米,则下面所列方程中正确的是()A.80(1+35%)−80=40B.80(1+35%)−80=40 C.80−80(1+35%)=40D.80−80(1+35%)=40【分析】设实际工作时每天绿化的面积为x万平方米,则原计划每天绿化的面积为1+35%万平方米,根据工作时间=工作总量÷工作效率结合实际比原计划提前40天完成了这一任务,即可得出关于x 的分式方程,此题得解.【解析】设实际工作时每天绿化的面积为x 万平方米,则原计划每天绿化的面积为1+35%万平方米,依题意,得:801+35%−80=40,即80(1+35%)−80=40.故选:A .10.(2020•襄阳)在襄阳市创建全国文明城市的工作中,市政部门绿化队改进了对某块绿地的灌浇方式.改进后,现在每天用水量是原来每天用水量的45,这样120吨水可多用3天,求现在每天用水量是多少吨?【分析】设原来每天用水量是x 吨,则现在每天用水量是45吨,根据现在120吨水比以前可多用3天,即可得出关于x 的分式方程,解之经检验后即可得出结论.【解析】设原来每天用水量是x 吨,则现在每天用水量是45x 吨,依题意,得:12045−120=3,解得:x =10,经检验,x =10∴45x =8.答:现在每天用水量是8吨.11.(2021·山东东营市·中考真题)某地积极响应“把绿水青山变成金山银山,用绿色杠杆撬动经济转型”发展理念,开展荒山绿化,打造美好家园,促进旅游发展.某工程队承接了90万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了任务.设原计划每天绿化的面积为x 万平方米,则所列方程为________.【答案】()909030125%x x-=+【分析】原计划每天绿化的面积为x 万平方米,则实际每天绿化的面积为()125%x +万平方米,根据工作时间=工作总量÷工作效率,结合实际比原计划提前30天完成了这一任务,即可列出关于x 的分式方程.【详解】设原计划每天绿化的面积为x 万平方米,则实际每天绿化的面积为()125%x +万平方米,依据题意:()909030125%x x-=+故答案为:()909030125%x x-=+【点睛】本题考查了由实际问题抽象出分式方程,找到关键描述语,找到合适的等量关系是解决问题的关键.12.(2021·辽宁本溪市·中考真题)为了弘扬我国书法艺术,培养学生良好的书写能力,某校举办了书法比赛,学校准备为获奖同学颁奖.在购买奖品时发现,A 种奖品的单价比B 种奖品的单价多10元,用300元购买A 种奖品的数量与用240元购买B 种奖品的数量相同.设B 种奖品的单价是x 元,则可列分式方程为________.【答案】30024010x x=+【分析】设B 种奖品的单价为x 元,则A 种奖品的单价为(x+10)元,利用数量=总价÷单价,结合用300元购买A 种奖品的件数与用240元购买B 种奖品的件数相同,即可得出关于x 的分式方程.【详解】解:设B 种奖品的单价为x 元,则A 种奖品的单价为(x+10)元,依题意得:30024010x x =+,故答案为:30024010x x=+【点睛】本题考查了根据实际问题列分式方程,解题的关键是找准等量关系,正确列出分式方程.13.(2022·江西)甲、乙两人在社区进行核酸采样,甲每小时比乙每小时多采样10人,甲采样160人所用时间与乙采样140人所用时间相等,甲、乙两人每小时分别采样多少人?设甲每小时采样x人,则可列分式方程为__________.【答案】16014010 x x=-【分析】先表示乙每小时采样(x-10)人,进而得出甲采样160人和乙采样140人所用的时间,再根据时间相等列出方程即可.【详解】根据题意可知乙每小时采样(x-10)人,根据题意,得16014010x x=-.故答案为:16014010x x=-.【点睛】本题主要考查了列分式方程,确定等量关系是列方程的关键.14.(2022·四川乐山)第十四届四川省运动会定于2022年8月8日在乐山市举办,为保证省运会期间各场馆用电设施的正常运行,市供电局为此进行了电力抢修演练.现抽调区县电力维修工人到20千米远的市体育馆进行电力抢修.维修工人骑摩托车先行出发,10分钟后,抢修车装载完所需材料再出发,结果他们同时到达体育馆,已知抢修车是摩托车速度的1.5倍,求摩托车的速度.【答案】摩托车的速度为40千米/时【分析】设摩托车的速度为x千米/时,则抢修车的速度为1.5x千米/时,根据抢修车比摩托车少用10分钟,即可得出关于x的分式方程,解之经检验后即可得出结论.【详解】解:设摩托车的速度为x千米/时,则抢修车的速度为1.5x千米/时,依题意,得:2020101.560x x-=,解得:x=40,经检验,x=40是所列方程的根,且符合题意,答:摩托车的速度为40千米/时.【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.15.(2022·重庆)在全民健身运动中,骑行运动颇受市民青睐,甲、乙两骑行爱好者约定从A 地沿相同路线骑行去距A地30千米的B地,已知甲骑行的速度是乙的1.2倍.(1)若乙先骑行2千米,甲才开始从A地出发,则甲出发半小时恰好追上乙,求甲骑行的速度;(2)若乙先骑行20分钟,甲才开始从A地出发,则甲、乙恰好同时到达B地,求甲骑行的速度.【答案】(1)24/千米时(2)18千米/时【分析】(1)设乙的速度为x千米/时,则甲的速度为1.2x千米/时,根据甲出发半小时恰好追上乙列方程求解即可;(2)设乙的速度为x 千米/时,则甲的速度为1.2x 千米/时,根据甲、乙恰好同时到达B 地列方程求解即可.(1)解:设乙的速度为x 千米/时,则甲的速度为1.2x 千米/时,由题意得:0.5 1.20.52x x ⨯=+,解得:20x =,则1.224x =(千米/时),答:甲骑行的速度为24千米/时;(2)设乙的速度为x 千米/时,则甲的速度为1.2x 千米/时,由题意得:301303 1.2x x-=,解得15x =,经检验15x =是分式方程的解,则1.218x =(千米/时),答:甲骑行的速度为18千米/时.【点睛】本题考查了一元一次方程的应用和分式方程的应用,找准等量关系,正确列出方程是解题的关键.16.(2022·四川自贡)学校师生去距学校45千米的吴玉章故居开展研学活动,骑行爱好者张老师骑自行车先行2小时后,其余师生乘汽车出发,结果同时到达;已知汽车速度是自行车速度的3倍,求张老师骑车的速度.【答案】张老师骑车的速度为15千米/小时【分析】实际应用题的解题步骤“”,根据问题设未知数,找到题中等量关系张老师先走2小时,结果同时达到列分式方程,求解即可.【详解】解:设张老师骑车的速度为x 千米/小时,则汽车速度是3x 千米/小时,根据题意得:454523x x=+,解之得15x =,经检验15x =是分式方程的解,答:张老师骑车的速度为15千米/小时.【点睛】本题考查分式方程解实际应用题,根据问题设未知数,读懂题意,找到等量关系列出分式方程是解决问题的关键.17.(2022·江苏扬州)某中学为准备十四岁青春仪式,原计划由八年级(1)班的4个小组制作360面彩旗,后因1个小组另有任务,其余3个小组的每名学生要比原计划多做3面彩旗才能完成任务.如果这4个小组的人数相等,那么每个小组有学生多少名?【答案】每个小组有学生10名.【分析】设每个小组有学生x名,根据题意列出方程,求出方程的解即可得到结果.【详解】解:设每个小组有学生x名,根据题意,得3603603 34-=x x,解这个方程,得x=10,经检验,x=10是原方程的根,∴每个小组有学生10名.【点睛】此题考查了分式方程的应用,弄清题意是解本题的关键.18.(2021·辽宁丹东市·中考真题)为落实“乡村振兴计划”的工作要求,某区政府计划对乡镇道路进行改造,安排甲、乙两个工程队完成,已知乙队比甲队每天少改造20米,甲队改造400米的道路与乙队改造300米的道路所用时间相同,求甲、乙两个工程队每天改造的道路长度分别是多少米?【答案】甲工程队每天改造的道路长度是80米,乙工程队每天改造的道路长度是60米.【分析】根据题意列出方程求解即可.【详解】解:设甲工程队每天改造的道路长度是x米,列方程得:40030020 x x=-,解得:x=80.80-20=60.答:甲工程队每天改造的道路长度是80米,乙工程队每天改造的道路长度是60米.【点睛】此题考查了分式方程应用题的解法,解题的关键是根据题意找到等量关系并列出方程.19.(2021·江苏徐州市·中考真题)某网店开展促销活动,其商品一律按8折销售,促销期间用400元在该网店购得某商品的数量较打折前多出2件.问:该商品打折前每件多少元?【答案】50【分析】该商品打折卖出x件,找到等量关系即可.【详解】解:该商品打折卖出x件4008400102x x ⋅=+解得x =8经检验:8x =是原方程的解,且符合题意∴商品打折前每件400=508元答:该商品打折前每件50元.【点睛】此题考查分式方程实际问题中的销售问题,找到等量关系是解题的关键.20.(2021·江苏常州市·中考真题)为落实节约用水的政策,某旅游景点进行设施改造,将手拧水龙头全部更换成感应水龙头.已知该景点在设施改造后,平均每天用水量是原来的一半,20吨水可以比原来多用5天,该景点在设施改造后平均每天用水多少吨?【答案】该景点在设施改造后平均每天用水2吨.【分析】设该景点在设施改造后平均每天用水x 吨,则原来平均每天用水2x 吨,列出分式方程,即可求解.【详解】解:设该景点在设施改造后平均每天用水x 吨,则原来平均每天用水2x 吨,由题意得:202052x x-=,解得:x =2,经检验:x =2是方程的解,且符合题意,答:该景点在设施改造后平均每天用水2吨.【点睛】本题主要考查分式方程的实际应用,找出等量关系,列出方程,是解题的关键.21.(2021·吉林长春市·中考真题)为助力乡村发展,某购物平台推出有机大米促销活动,其中每千克有机大米的售价仅比普通大米多2元,用420元购买的有机大米与用300元购买的普通大米的重量相同,求每千克有机大米的售价为多少元?【答案】每千克有机大米的售价为7元.【分析】设每千克有机大米的售价为x 元,则每千克普通大米的售价为(x -2)元,根据“用420元购买的有机大米与用300元购买的普通大米的重量相同”,列出分式方程,即可求解.【详解】解:设每千克有机大米的售价为x元,则每千克普通大米的售价为(x-2)元,根据题意得:4203002x x=-,解得:x=7,经检验:x=7是方程的解,且符合题意,答:每千克有机大米的售价为7元.【点睛】本题主要考查分式方程的实际应用,找准等量关系,列出分式方程,是解题的关键.22.(2021·辽宁营口市·中考真题)为增加学生阅读量,某校购买了“科普类”和“文学类”两种书籍,购买“科普类”图书花费了3600元,购买“文学类”图书花费了2700元,其中“科普类”图书的单价比“文学类”图书的单价多20%,购买“科普类”图书的数量比“文学类”图书的数量多20本.(1)求这两种图书的单价分别是多少元?(2)学校决定再次购买这两种图书共100本,且总费用不超过1600元,求最多能购买“科普类”图书多少本?【答案】(1)“文学类”图书的单价为15元,则“科普类”图书的单价为18元;(2)最多能购买“科普类”图书33本.【分析】(1)设“文学类”图书的单价为x元,则“科普类”图书的单价为1.2x元,根据数量=总价÷单价,结合购买“科普类”“文学类”图书的数量多20本,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设能购买“科普类”图书m本,根据总价=单价×数量,列出不等式,即可求解.【详解】解:(1)设“文学类”图书的单价为x元,则“科普类”图书的单价为1.2x元,依题意,得:3600270020 1.2x x-=,解得:x=15,经检验,x=15是所列分式方程的解,且符合题意,∴1.2x=18.答:“文学类”图书的单价为15元,则“科普类”图书的单价为18元;(2)设能购买“科普类”图书m本,根据题意得:18m+15(100-m)≤1600,解得:1003m≤,∵m为整数,∴最多能购买“科普类”图书33本.【点睛】本题考查了分式方程的应用以及不等式的应用,找准数量关系,正确列出分式方程和一元一次不等式是解题的关键.23.(2021·山东济宁市·中考真题)某商场购进甲、乙两种商品共100箱,全部售完后,甲商品共盈利900元,乙商品共盈利400元,甲商品比乙商品每箱多盈利5元.(1)求甲、乙两种商品每箱各盈利多少元?(2)甲、乙两种商品全部售完后,该商场又购进一批甲商品,在原每箱盈利不变的前提下,平均每天可卖出100箱.如调整价格,每降价1元,平均每天可以多卖出20箱,那么当降价多少元时,该商场利润最大?最大利润是多少?【答案】(1)甲种商品每箱盈利15元,则乙种商品每箱盈利10元;(2)当降价5元时,该商场利润最大,最大利润是2000元.【分析】(1)设甲种商品每箱盈利x元,则乙种商品每箱盈利(x-5)元,根据题意列出方程,解方程即可得出结论;(2)设甲种商品降价a20a箱,利润为w元,根据题意列出函数解析式,根据二次函数的性质求出函数的最值.【详解】解:(1)设甲种商品每箱盈利x元,则乙种商品每箱盈利(x-5)元,根据题意得:9004001005x x+=-,整理得:x2-18x+45=0,解得:x=15或x=3(舍去),经检验,x=15是原分式方程的解,符合实际,∴x-5=15-5=10(元),答:甲种商品每箱盈利15元,则乙种商品每箱盈利10元;(2)设甲种商品降价a元,则每天可多卖出20a箱,利润为w元,由题意得:w=(15-a)(100+20a)=-20a2+200a+1500=-20(a-5)2+2000,∵a=-20,当a=5时,函数有最大值,最大值是2000元,答:当降价5元时,该商场利润最大,最大利润是2000元.【点睛】本题考查了分式方程及二次函数的应用,解题的关键是理解题意,找出等量关系,准确列出分式方程及函数关系式.24.(2021·内蒙古中考真题)小刚家到学校的距离是1800米.某天早上,小刚到学校后发现作业本忘在家中,此时离上课还有20分钟,于是他立即按原路跑步回家,拿到作业本后骑自行车按原路返回学校.已知小刚骑自行车时间比跑步时间少用了4.5分钟,且骑自行车的平均速度是跑步的平均速度的1.6倍.(1)求小刚跑步的平均速度;(2)如果小刚在家取作业本和取自行车共用了3分钟,他能否在上课前赶回学校?请说明理由.【答案】(1)小刚跑步的平均速度为150米/分;(2)小刚不能在上课前赶回学校,见解析【分析】(1)根据题意,列出分式方程即可求得小刚的跑步平均速度;(2)先求出小刚跑步和骑自行车的时间,加上取作业本和取自行车的时间,与上课时间20分钟作比较即可.【详解】解:(1)设小刚跑步的平均速度为x米/分,则小刚骑自行车的平均速度为1.6x米/分,根据题意,得180018004.51.6x x+=,解这个方程,得150x=,经检验,150x=是所列方程的根,所以小刚跑步的平均速度为150米/分.(2)由(1)得小刚跑步的平均速度为150米/分,则小刚跑步所用时间为180012150=(分),骑自行车所用时间为12 4.57.5-=(分),在家取作业本和取自行车共用了3分,++=(分).所以小刚从开始跑步回家到赶回学校需要127.5322.5>,因为22.520所以小刚不能在上课前赶回学校.【点睛】本题考查路程问题的分式方程,解题关键是明确题意,列出分式方程求解.25.(2020•广东)某社区拟建A,B两类摊位以搞活“地摊经济”,每个A类摊位的占地面积比每个B类摊位的占地面积多2平方米.建A类摊位每平方米的费用为40元,建B类摊位每平方米的费用为30元.用60平方米建A类摊位的个数恰好是用同样面积建B类摊位个数的35.(1)求每个A,B类摊位占地面积各为多少平方米?(2)该社区拟建A,B两类摊位共90个,且B类摊位的数量不少于A类摊位数量的3倍.求建造这90个摊位的最大费用.【分析】(1)设每个B类摊位的占地面积为x平方米,则每个A类摊位占地面积为(x+2)平方米,根据用60平方米建A类摊位的个数恰好是用同样面积建B类摊位个数的35这个等量关系列出方程即可.(2)设建A摊位a个,则建B90﹣a)个,结合“B类摊位的数量不少于A类摊位数量的3倍”列出不等式并解答.【解析】(1)设每个B类摊位的占地面积为x平方米,则每个A类摊位占地面积为(x+2)平方米,根据题意得:60r2=60⋅35,解得:x=3,经检验x=3是原方程的解,所以3+2=5,答:每个A类摊位占地面积为5平方米,每个B类摊位的占地面积为3平方米;(2)设建A摊位a个,则建B摊位(90﹣a)个,由题意得:90﹣a≥3a,解得a≤22.5,∵建A类摊位每平方米的费用为40元,建B类摊位每平方米的费用为30元,∴要想使建造这90个摊位有最大费用,所以要多建造A类摊位,即a取最大值22时,费用最大,此时最大费用为:22×40×5+30×(90﹣22)×3=10520,答:建造这90个摊位的最大费用是10520元.26.(2020•牡丹江)某商场准备购进A,B两种书包,每个A种书包比B种书包的进价少20元,用700元购进A种书包的个数是用450元购进B种书包个数的2倍,A种书包每个标价是90元,B种书包每个标价是130元.请解答下列问题:(1)A,B两种书包每个进价各是多少元?(2)若该商场购进B种书包的个数比A种书包的2倍还多5个,且A种书包不少于18个,购进A,B两种书包的总费用不超过5450元,则该商场有哪几种进货方案?(3)该商场按(2)中获利最大的方案购进书包,在销售前,拿出5个书包赠送给某希望小学,剩余的书包全部售出,其中两种书包共有4个样品,每种样品都打五折,商场仍获利1370元.请直接写出赠送的书包和样品中,B种书包各有几个?【分析】(1)设每个A种书包的进价为x元,则每个B种书包的进价为(x+20)元,根据数量=总价÷单价结合用700元购进A种书包的个数是用450元购进B种书包个数的2倍,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设该商场购进m个A种书包,则购进(2m+5)个B种书包,根据购进A,B两种书包的总费用不超过5450元且A种书包不少于18个,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,再结合m为正整数即可得出各进货方案;(3)设销售利润为w元,根据总利润=销售每个书包的利润×销售数量,即可得出w关于m的函数关系式,利用一次函数的性质可得出获得利润最大的进货方案,设赠送的书包中B 种书包有a个,样品中B种书包有b个,则赠送的书包中A种书包有(5﹣a)个,样品中A 种书包有(4﹣b)个,根据利润=销售收入﹣成本,即可得出关于a,b的二元一次方程,结合a,b,(5﹣a),(4﹣b)均为正整数,即可求出结论.【解析】(1)设每个A种书包的进价为x元,则每个B种书包的进价为(x+20)元,依题意,得:700=2×450r20,。
初二数学分式方程精华题(含答案)

初二数学分式方程精华题(含答案)1.分式方程解:本题考查分式方程的解法,根据题意可列出方程:frac{x}{x+12}=\frac{1}{2}$$化简后得到:2x=x+12$$解得$x=6$,因此选项C正确。
2.若分式方程 $\frac{x}{a}=\frac{2}{x-4}$ 有增根,则a的值为()解:根据题意,可列出方程:frac{x}{a}=\frac{2}{x-4}$$移项化简得到:x^2-4ax-8=0$$由于有增根,因此判别式 $b^2-4ac<0$,即:4a)^2-4\times 1\times (-8)<0$$化简得到 $a^2+2>0$,因此 $a$ 可以取任意实数,选项中没有正确答案。
3.解关于x的方程 $\frac{x-3m}{x-1}=\frac{1}{x-1}$ 产生增根,则常数m的值等于()解:根据题意,可列出方程:frac{x-3m}{x-1}=\frac{1}{x-1}$$移项化简得到:x^2-4mx+3m=0$$由于有增根,因此判别式 $b^2-4ac<0$,即:16m^2-12m<0$$化简得到 $0<m<\frac{3}{4}$,因此选项C正确。
4.求 $\frac{1-x}{2-xx}=3$,去分母后的结果,其中正确的是()解:根据题意,可列出方程:frac{1-x}{2-xx}=3$$移项化简得到:x^2+3x-5=0$$解得$x=1$或$x=-5$,代入原式可知$x=-5$不合法,因此$x=1$是方程的唯一解。
将$x=1$代入原式得到:frac{1-x}{2-xx}=\frac{0}{1}=0$$因此选项A正确。
5.计算:$\frac{b^2+2b+2a}{2b^3-7a^2b}=?$解:根据题意,可将分子分母同时除以$b$,得到:frac{b^2+2b+2a}{2b^3-7a^2b}=\frac{\frac{b^2}{b}+\frac{2b}{b}+\frac{2a}{b}}{\frac{2 b^3}{b}-\frac{7a^2b}{b}}=\frac{b+2+\frac{2a}{b}}{2b^2-7a^2}$$因此答案为$\frac{b+2+\frac{2a}{b}}{2b^2-7a^2}$。
分式方程题型集锦

分式方程题型集锦一、增根产生的原因及去除方法(一):定义:增根是解分式方程时,把分式方程转化为整式方程这一变形中,由于去分母扩大了未知数的取值范围而产生的未知数的值.增根不是原分式方程的根(一元方程的“解”也叫“根”),但它是去分母后所得的整式方程的根。
增根是不适合原方程的根,它不能作为方程的根,是需要排除掉的根。
(二)去除增根方法:要去除因为化解分式方程产生的增根,办法是可以把解方程的结果(即x等于什么具体数),一一代入最简公分母检验,如果使最简公分母为零,那么这个根就是原要去掉的原来方程的增根。
二、有增根与无解是两个不同的概念分式方程的增根与无解是分式方程中常见的两个不同概念,学习分式方程时,常常容易会对这两个概念混淆不清。
(一)、分式方程有增根,是指解分式方程时,在把分式方程转化为整式方程的变形过程中,方程的两边都乘了一个可能使分母为零的整式,从而扩大了未知数的取值范围,因而得出的根只符合新的整式方程,而并不符合原来的分式方程。
(二)、分式方程无解,是指不论未知数取何值,使分式、整式方程两边的值都不相等。
把分式方程化为整式方程,若整式方程无解,则分式方程一定无解;若整式方程有解,但要使分式方程无解,则该解必必须是能使最简公分母为0时对应的未知数的数值,此时相应的参数(字母系数值)使分式方程无解。
分式方程无解包含两种情形:1、把分式方程化为整式方程,若整式方程无解,则分式方程一定无解(方程得出的解若能使新的化简式无解,自然代入原分式方程也会无解)。
2、若整式方程有解,但要使分式方程无解,则该解必为是能使最简公分母为0时对应的未知数的数值,此时相应的参数(字母系数)使分式方程无解。
(方程得出的解若能使新的化简式有解,但却要想使原分式方程无解,那就要取出增根。
“增根代入化简式,直接求系数”)。
方程无解的条件,关键是看转化后的整式方程解的情况.既要考虑整式方程无解的条件,又要考虑整式方程有解,但它是分式方程增根的可能性.考虑问题要全面、周到。
分式方程重难点题型

分式方程例1、当x =3时,分式b x a x 352-+的值为0,而当x =2时,分式无意义,则求ab 的值是多少?例2、不论x 取何值,分式m x x +-212总有意义,求m 的取值范围。
例3、(1)已知0132=+-x x ,求① 221x x +的值。
② 求441x x +的值(2)已知31=+x x ,求1242++x x x 的值。
例4、已知21)2)(1(43-+-=---x B x A x x x 是恒等式,求A 和B 的值。
练习:1、已知21)2)(1(73-+-=---y B y A y y y ,求A ,B 的值。
例5、已知2,3==xy xy ,求代数式y x x y +的值。
例6、计算1814121111842+-+-+-+--x x x x x例7、试证明代数式12211222+-÷-+-x x x x x 的值与x 无关,写出证明过程。
例8、计算)2009)(2007(2)5)(3(2)3)(1(2+++++++++x x x x x x例9、设实数y x ,满足0256822=++++y x y x ,求y x x y xy x y x 24442222+-++-的值。
例10、若分式方程2x 3x 3-x 2+-=1-x A —2-x B 有无数个解,则A 为______B 为______例11、若已知方程x+x1=a+a 1的解为x=a 或x=a 1,则方程x+5+5x 1+=25的解为_____例12、已知关于x 的方程3-x x -2=3-x m 有一个正数解,求m 的取值范围。
例13、甲乙二人分别从A 、B 两地同时出发相向而行,两个相遇在离A 地10km 处。
相遇后,两人速度不变继续前进,分别到达B 、A 之后,立即返回,又相遇在离B 地3km 处。
求A 、B 两地之间的距离。
一、选择题。
1、下列代数式中,是分式的是( )A 、2x B 、π21-x C 、x 21 D 、y x xy 221+ 2、使分式有意义的x 的取值范围是( )A 、2≠xB 、2=xC 、0=xD 、2-≠x 3、下列各式成立的是( )A 、22a b a b =B 、ca cb a b ++= C 、222)(b a b a b a b a +-=+- D 、2222yx y x y x y x -+=-+ 4、计算:xy y y x x 222-+-,结果为( ) A 、1 B 、-1 C 、y x +2 D 、y x +5、几名同学包租一两面包车去游玩,面包车的租价为180元,出发时,又增加了两名同学,结果每名同学比原来少分摊了3元车费,若设实际参加游玩的同学共有x 人,则所列方程为( )A 、32180180=+-x x B 、31802180=-+xx C 、32180180=--x x D 、31802180=--x x 二、填空题。
专题5.31 分式方程的应用(题型分类专题)(例题讲解)八年级数学下册基础知识专项讲练(北师大版)

专题5.31分式方程的应用(题型分类专题)(例题讲解)列分式方程解应用题中考中是必考内容之一,下面结合近几年中考题型举例进行巩固:类型一、直接列分式方程求解1.(2022·辽宁丹东·统考中考真题)为推动家乡学校篮球运动的发展,某公司计划出资12000元购买一批篮球赠送给家乡的学校.实际购买时,每个篮球的价格比原价降低了20元,结果该公司出资10000元就购买了和原计划一样多的篮球,每个篮球的原价是多少元?【答案】每个篮球的原价是120元.【分析】设每个篮球的原价是x元,则每个篮球的实际价格是(x﹣20)元,根据“该公司出资10000元就购买了和原计划一样多的篮球”列出方程并解答.解:设每个篮球的原价是x元,则每个篮球的实际价格是(x﹣20)元,根据题意,得12000x=1000020x-.解得x=120.经检验x=120是原方程的解.答:每个篮球的原价是120元.【点拨】本题考查了分式方程的应用,根据题意列出方程是解题的关键.举一反三:【变式1】(2022·贵州铜仁·统考中考真题)科学规范戴口罩是阻断新冠病毒传播的有效措施之一,某口罩生产厂家接到一公司的订单,生产一段时间后,还剩280万个口罩未生产,厂家因更换设备,生产效率比更换设备前提高了40%.结果刚好提前2天完成订单任务.求该厂家更换设备前和更换设备后每天各生产多少万个口罩?【答案】该厂家更换设备前每天生产口罩40万只,更换设备后每天生产口罩56万只.【分析】设该厂家更换设备前每天生产口罩x万只,则该厂家更换设备后每天生产口罩(1+40%)x万只,利用工作时间=工作总量÷工作效率,结合提前2天完成订单任务,即可得出关于x的分式方程,解之经检验后即可得出结论.解:设该厂家更换设备前每天生产口罩x万只,则该厂家更换设备后每天生产口罩(1+40%)x万只,依题意得:2802(140%2)80x x-=+,解得:x=40,经检验,x=40是原方程的解,且符合题意.答:该厂家更换设备前每天生产口罩40万只,更换设备后每天生产口罩56万只.【点拨】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.【变式2】(2022·贵州贵阳·统考中考真题)国发(2022)2号文发布后,贵州迎来了高质量快速发展,货运量持续增加.某物流公司有两种货车,已知每辆大货车的货运量比每辆小货车的货运量多4吨,且用大货车运送80吨货物所需车辆数与小货车运送60吨货物所需车辆数相同.每辆大、小货车货运量分别是多少吨?【答案】每辆大货车货运量是16吨,每辆小货车货运量是12吨【分析】设每辆小货车货运量x 吨,则每辆大货车货运量()4x +吨,根据题意,列出分式方程,解方程即可求解.解:设每辆小货车货运量x 吨,则每辆大货车货运量()4x +吨,根据题意,得,80604x x=+,解得12x =,经检验,12x =是原方程的解,412416x +=+=吨,答:每辆大货车货运量是16吨,每辆小货车货运量是12吨.【点拨】本题考查了分式方程的应用,根据题意列出方程是解题的关键.类型二、分式方程✮✮不等式(组)2.(2021·山东济南·统考中考真题)端午节吃粽子是中华民族的传统习俗.某超市节前购进了甲、乙两种畅销口味的粽子.已知购进甲种粽子的金额是1200元,购进乙种粽子的金额是800元,购进甲种粽子的数量比乙种粽子的数量少50个,甲种粽子的单价是乙种粽子单价的2倍.(1)求甲、乙两种粽子的单价分别是多少元?(2)为满足消费者需求,该超市准备再次购进甲、乙两种粽子共200个,若总金额不超过1150元,问最多购进多少个甲种粽子?【答案】(1)乙种粽子的单价为4元,则甲种粽子的单价为8元;(2)最多购进87个甲种粽子【分析】(1)设乙种粽子的单价为x 元,则甲种粽子的单价为2x 元,然后根据“购进甲种粽子的金额是1200元,购进乙种粽子的金额是800元,购进甲种粽子的数量比乙种粽子的数量少50个”可列方程求解;(2)设购进m 个甲种粽子,则购进乙种粽子为(200-m )个,然后根据(1)及题意可列不等式进行求解.解:(1)设乙种粽子的单价为x 元,则甲种粽子的单价为2x 元,由题意得:1200800502x x+=,解得:4x =,经检验4x =是原方程的解,答:乙种粽子的单价为4元,则甲种粽子的单价为8元.(2)设购进m 个甲种粽子,则购进乙种粽子为(200-m )个,由(1)及题意得:()842001150m m +-≤,解得:87.5m ≤,∵m 为正整数,∴m 的最大值为87;答:最多购进87个甲种粽子.【点拨】本题主要考查分式及一元一次不等式的应用,熟练掌握分式方程的解法及一元一次不等式的解法是解题的关键.举一反三:【变式1】(2022·辽宁营口·一模)某单位计划选购甲,乙两种物品,已知甲物品单价比乙物品单价高20元,用240元单独购买甲物品的数量是用80元单独购买乙物品数量的2倍.(1)求甲,乙两种物品的单价分别是多少元?(2)如果该单位计划购买甲,乙两种物品共80件,且总费用不超过4060元,求最多能购买甲物品多少件?【答案】(1)甲物品的单价是60元,乙物品的单价是40元(2)43件【分析】(1)设乙物品的单价是x 元,则甲物品的单价是()20x +元,利用数量=总价÷单价,结合用240元单独购买甲物品的数量是用80元单独购买乙物品数量的2倍,可得出关于x 的分式方程,解之经检验后,可得出乙物品的单价,再将其代入()20x +中,可求出甲物品的单价;(2)设购买m 件甲物品,则购买()80m -件乙物品,利用总价=单价×数量,结合总价不超过4060元,可得出关于m 的一元一次不等式,解之取其中的最大值,即可得出结论.解:(1)设乙物品的单价是x 元,则甲物品的单价是()20x +元,根据题意得:24080220x x=⨯+,解得:40x =,经检验,40x =是所列方程的解,且符合题意,∴20402060x +=+=.答:甲物品的单价是60元,乙物品的单价是40元.(2)设购买m 件甲物品,则购买()80m -件乙物品,根据题意得:()6040804060m m +-≤,解得:43m ≤,又∵m 为正整数,∴m 的最大值为43.答:最多能购买甲物品43件.【点拨】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是正确分析题目中的等量关系.【变式2】(2023·山东济南·一模)为有效落实双减工作,切实做到减负提质,很多学校决定在课后看护中增加乒乓球项目.体育用品商店得知后,第一次用900元购进乒乓球若干盒,第二次又用900元购进该款乒乓球,但这次每盒的进价是第一次进价的1.2倍,购进数量比第一次少了30盒.(1)求第一次每盒乒乓球的进价是多少元?(2)若要求这两次购进的乒乓球按同一价格全部销售完后获利不低于510元,则每盒乒乓球的售价至少是多少元?【答案】(1)5元(2)7元【分析】(1)设第一次每盒乒乓球的进价是x 元,则第二次每盒乒乓球的进价是1.2x 元,根据购进数量比第一次少了30盒列方程即可;(2)设每盒乒乓球的售价为y 元,根据全部销售完后获利不低于510元列出不等式即可.(1)解:设第一次每盒乒乓球的进价是x 元,则第二次每盒乒乓球的进价是1.2x 元,由题意得:900900301.2x x=+解得:x =5,经检验:x =5是原分式方程的解,,且符合题意,答:第一次每盒乒乓球的进价是5元;(2)解:设每盒乒乓球的售价为y 元,第一次每盒乒乓球的进价为5元,则第二次每盒乒乓球的进价为5 1.26⨯=(元),由题意得:()()9009005651056y y ⨯-+-≥,解得:7y ≥.答:每盒乒乓球的售价至少是7元.【点拨】本题考查了分式方程和一元一次不等式的应用,解题关键是准确理解题意,根据题目中的数量关系列出方程和不等式.类型三、分式方程✮✮一次函数增减性3.(2022·山东东营·统考中考真题)为满足顾客的购物需求,某水果店计划购进甲、乙两种水果进行销售.经了解,甲水果的进价比乙水果的进价低20%,水果店用1000元购进甲种水果比用1200元购进乙种水果的重量多10千克,已知甲,乙两种水果的售价分别为6元/千克和8元/千克.(1)求甲、乙两种水果的进价分别是多少?(2)若水果店购进这两种水果共150千克,其中甲种水果的重量不低于乙种水果重量的2倍,则水果店应如何进货才能获得最大利润,最大利润是多少?【答案】(1)甲种水果的进价是4元/千克,乙种水果的进价是5元/千克;(2)水果店购进甲种水果100千克,乙种水果50千克时获得最大利润,最大利润是350元.【分析】(1)设乙种水果的进价是x 元/千克,根据“甲水果的进价比乙水果的进价低20%,水果店用1000元购进甲种水果比用1200元购进乙种水果的重量多10千克”列出分式方程,解方程检验后可得出答案;(2)设水果店购进甲种水果a 千克,获得的利润为y 元,则购进乙种水果(150-a )千克,根据利润=(售价-进价)×数量列出y 关于a 的一次函数解析式,求出a 的取值范围,然后利用一次函数的性质解答.(1)解:设乙种水果的进价是x 元/千克,由题意得:()1000120010120%x x=+-,解得:5x =,经检验,5x =是分式方程的解且符合题意,则()120%0.854x -=⨯=,答:甲种水果的进价是4元/千克,乙种水果的进价是5元/千克;(2)解:设水果店购进甲种水果a 千克,获得的利润为y 元,则购进乙种水果(150-a )千克,由题意得:()()()6485150450y a a a =-+--=-+,∵-1<0,∴y 随a 的增大而减小,∵甲种水果的重量不低于乙种水果重量的2倍,∴()2150a a -≥,解得:100a ≥,∴当100a =时,y 取最大值,此时100450350y =-+=,15050a -=,答:水果店购进甲种水果100千克,乙种水果50千克时获得最大利润,最大利润是350元.【点拨】本题考查了分式方程的应用,一次函数与一元一次不等式的应用,正确理解题意,找出合适的等量关系列出方程和解析式是解题的关键.举一反三:【变式1】(2020·新疆·统考中考真题)某超市销售A 、B 两款保温杯,已知B 款保温杯的销售单价比A 款保温杯多10元,用480元购买B 款保温杯的数量与用360元购买A 款保温杯的数量相同.(1)A 、B 两款保温杯的销售单价各是多少元?(2)由于需求量大,A 、B 两款保温杯很快售完,该超市计划再次购进这两款保温杯共120个,且A 款保温杯的数量不少于B 款保温杯数量的两倍.若A 款保温杯的销售单价不变,B 款保温杯的销售单价降低10%,两款保温杯的进价每个均为20元,应如何进货才能使这批保温杯的销售利润最大,最大利润是多少元?【答案】(1)A 款保温杯的销售单价是30元,B 款保温杯的销售单价是40元(2)进货方式为购进B 款保温杯数量为40个,A 款保温杯数量为80个,最大利润是1440元【分析】(1)设A 款保温杯的销售单价是x 元,B 款保温杯的销售单价是(x +10)元,根据用480元购买B 款保温杯的数量与用360元购买A 款保温杯的数量相同列分式方程解答即可;(2)设购进B 款保温杯数量为y 个,则A 款保温杯数量为(120-y )个,根据题意求出0<y ≤40,设总销售利润为W 元,列出一次函数,根据一次函数的性质求解即可.(1)解:设A 款保温杯的销售单价是x 元,B 款保温杯的销售单价是(x +10)元,48036010x x=+,解答x =30,经检验,x =30是原方程的解,∴x +10=40,答:A 款保温杯的销售单价是30元,B 款保温杯的销售单价是40元;(2)B 款保温杯销售单价为40×(1-10%)=36元,设购进B 款保温杯数量为y 个,则A 款保温杯数量为(120-y )个,120-y ≥2y ,解得y ≤40,∴0<y ≤40,设总销售利润为W 元,W =(30-20)(120-y )+(36-20)y =6y +1200,∵W 随y 的增大而增大,∴当y =40时,利润W 最大,最大为6×40+1200=1440元,进货方式为购进B 款保温杯数量为40个,A 款保温杯数量为80个,最大利润是1440元.【点拨】此题考查了分式方程的实际应用,一次函数的实际应用,正确理解题意是解题的关键.【变式2】(2022·广东深圳·统考中考真题)某学校打算购买甲乙两种不同类型的笔记本.已知甲种类型的笔记本的单价比乙种类型的要便宜1元,且用110元购买的甲种类型的数量与用120元购买的乙种类型的数量一样.(1)求甲乙两种类型笔记本的单价.(2)该学校打算购买甲乙两种类型笔记本共100件,且购买的乙的数量不超过甲的3倍,则购买的最低费用是多少【答案】(1)甲类型的笔记本电脑单价为11元,乙类型的笔记本电脑单价为12元(2)最低费用为1100元【分析】(1)设甲类型的笔记本电脑单价为x 元,则乙类型的笔记本电脑为()10x +元.列出方程即可解答;(2)设甲类型笔记本电脑购买了a 件,最低费用为w ,列出w 关于a 的函数,利用一次函数的增减性进行解答即可.解:(1)设甲类型的笔记本电脑单价为x 元,则乙类型的笔记本电脑为()10x +元.由题意得:1101201x x =+解得:11x =经检验11x =是原方程的解,且符合题意.∴乙类型的笔记本电脑单价为:11112+=(元).答:甲类型的笔记本电脑单价为11元,乙类型的笔记本电脑单价为12元.(2)设甲类型笔记本电脑购买了a 件,最低费用为w ,则乙类型笔记本电脑购买了()100a -件.由题意得:1003a a -≤.∴25a ≥.()1112100111200121200w a a a a a =+-=+-=-+.∵100-<,∴当a 越大时w 越小.∴当100a =时,w 最小,最小值为110012001100-⨯+=(元).答:最低费用为1100元.【点拨】此题考查了分式方程的应用,以及一次函数的应用,掌握分式方程的应用,以及一次函数的应用是解题的关键.类型四、分式方程✮✮不等式(组)✮✮一次函数增减性➽➼方案问题4.(2022·黑龙江牡丹江·统考中考真题)某工厂准备生产A 和B 两种防疫用品,已知A 种防疫用品每箱成本比B 种防疫用品每箱成本多500元.经计算,用6000元生产A 种防疫用品的箱数与用4500元生产B 种防疫用品的箱数相等.请解答下列问题:(1)求A ,B 两种防疫用品每箱的成本;(2)该工厂计划用不超过90000元同时生产A 和B 两种防疫用品共50箱,且B 种防疫用品不超过25箱,该工厂有几种生产方案?(3)为扩大生产,厂家欲拿出与(2)中最低成本相同的费用全部用于购进甲和乙两种设备(两种都买).若甲种设备每台2500元,乙种设备每台3500元,则有几种购买方案?最多可购买甲,乙两种设备共多少台?(请直接写出答案即可)【答案】(1)A 种防疫用品2000元/箱,B 种防疫用品1500元/箱(2)共有6种方案(3)4种,33台【分析】(1)设B 种防疫用品成本x 元/箱,A 种防疫用品成本()500x +元/箱,根据题意列出分式方程解得即可;(2)设B 种防疫用品生产m 箱,A 种防疫用品生产()50m -箱,根据题意列得不等式解得即可;(3)先根据(2)求得最低成本,设购进甲和乙两种设备分别为a ,b 台,根据题意列得方程,解得正整数解即可.(1)解:设B 种防疫用品成本x 元/箱,A 种防疫用品成本()500x +元/箱,由题意,得45006000500x x =+,解得x =1500,检验:当x =1500时,()5000x x +≠,所以x =1500是原分式方程的解,50015005002000x +=+=(元/箱),答:A 种防疫用品2000元/箱,B 种防疫用品1500元/箱;(2)解:设B 种防疫用品生产m 箱,A 种防疫用品生产()50m -箱,()150020005090000m m +-≤,解得20m ≥,∵B 种防疫用品不超过25箱,∴2025m ≤≤,∵m 为正整数,∴m =20,21,22,23,24,25,共有6种方案;(3)解:设生产A 和B 两种防疫用品费用为w ,w =1500m +2000(50-m )=-500m +100000,∵k <0,∴w 随m 的增大而减小,∴当m =25时,w 取得最小值,此时w =87500,设购进甲和乙两种设备分别为a ,b 台,∴2500a +3500b =87500,∴17575b a -=,∵两种设备都买,∴a ,b 都为正整数,∴285a b =⎧⎨=⎩,2110a b =⎧⎨=⎩,1415a b =⎧⎨=⎩,720a b =⎧⎨=⎩,∴一共4种方案,最多可购买甲乙两种设备共28+5=33台.【点拨】本题考查了分式方程、一元一次不等式组、二元一次方程的实际应用,根据题意列出等式或不等式是解题的关键.举一反三:【变式1】(2022·贵州黔东南·统考中考真题)某快递公司为了加强疫情防控需求,提高工作效率,计划购买A 、B 两种型号的机器人来搬运货物,已知每台A 型机器人比每台B 型机器人每天少搬运10吨,且A 型机器人每天搬运540吨货物与B 型机器人每天搬运600吨货物所需台数相同.(1)求每台A 型机器人和每台B 型机器人每天分别搬运货物多少吨?(2)每台A 型机器人售价1.2万元,每台B 型机器人售价2万元,该公司计划采购A 、B 两种型号的机器人共30台,必须满足每天搬运的货物不低于2830吨,购买金额不超过48万元.请根据以上要求,完成如下问题:①设购买A 型机器人m 台,购买总金额为w 万元,请写出w 与m 的函数关系式;②请你求出最节省的采购方案,购买总金额最低是多少万元?【答案】(1)每台A 型机器人每天搬运货物90吨,每台B 型机器人每天搬运货物为100吨.(2)①0.860w m =-+;②当购买A 型机器人17台,B 型机器人13台时,购买总金额最少,最少金额为46.4万元.【分析】(1)设每台A 型机器人每天搬运货物x 吨,则每台B 型机器人每天搬运货物为(x +10)吨,然后根据题意可列分式方程进行求解;(2)①由题意可得购买B 型机器人的台数为()30m -台,然后由根据题意可列出函数关系式;②由题意易得()901003028300.86048m m m ⎧+-≥⎨-+≤⎩,然后可得1517m ≤≤,进而根据一次函数的性质可进行求解.(1)解:设每台A 型机器人每天搬运货物x 吨,则每台B 型机器人每天搬运货物为(x +10)吨,由题意得:54060010x x =+,解得:90x =;经检验:90x =是原方程的解;答:每台A 型机器人每天搬运货物90吨,每台B 型机器人每天搬运货物为100吨.(2)解:①由题意可得:购买B 型机器人的台数为()30m -台,∴()1.22300.860w m m m =+-=-+;②由题意得:()901003028300.86048m m m ⎧+-≥⎨-+≤⎩,解得:1517m ≤≤,∵-0.8<0,∴w 随m 的增大而减小,∴当m =17时,w 有最小值,即为0.8176046.4w =-⨯+=,答:当购买A 型机器人17台,B 型机器人13台时,购买总金额最少,最少金额为46.4万元.【点拨】本题主要考查分式方程的应用、一元一次不等式组的应用及一次函数的应用,熟练掌握分式方程的应用、一元一次不等式组的应用及一次函数的应用是解题的关键.【变式2】(2022·湖南怀化·统考中考真题)去年防洪期间,某部门从超市购买了一批数量相等的雨衣(单位:件)和雨鞋(单位:双),其中购买雨衣用了400元,购买雨鞋用了350元,已知每件雨衣比每双雨鞋贵5元.(1)求每件雨衣和每双雨鞋各多少元?(2)为支持今年防洪工作,该超市今年的雨衣和雨鞋单价在去年的基础上均下降了20%,并按套(即一件雨衣和一双雨鞋为一套)优惠销售.优惠方案为:若一次购买不超过5套,则每套打九折:若一次购买超过5套,则前5套打九折,超过部分每套打八折.设今年该部门购买了a 套,购买费用为W 元,请写出W 关于a 的函数关系式.(3)在(2)的情况下,今年该部门购买费用不超过320元时最多可购买多少套?【答案】(1)每件雨衣40元,每双雨鞋35元(2)()600.954052705600.848305a a a W a a a ⨯⨯=≤<⎧=⎨+-⨯⨯=+≥⎩(3)最多可购买6套【分析】(1)根据题意,设每件雨衣()5+x 元,每双雨鞋x 元,列分式方程求解即可;(2)根据题意,按套装降价20%后得到每套60元,根据费用=单价×套数即可得出结论;(3)根据题意,结合(2)中所求,得出不等式4830320a +≤,求解后根据实际意义取值即可.(1)解:设每件雨衣()5+x 元,每双雨鞋x 元,则4003505x x=+,解得35x =,经检验,35x =是原分式方程的根,540x ∴+=,答:每件雨衣40元,每双雨鞋35元;(2)解:根据题意,一套原价为354075+=元,下降20%后的现价为()75120%60⨯-=元,则()600.954,052705600.84830,5a a a W a a a ⨯⨯=≤<⎧=⎨+-⨯⨯=+≥⎩;(3)解:320270> ,∴购买的套数在5a ≥范围内,即4830320a +≤,解得145 6.04224a ≤≈,答:在(2)的情况下,今年该部门购买费用不超过320元时最多可购买6套.【点拨】本题考查实际应用题,涉及分式方程的实际应用、一次分段函数的实际应用和不等式解实际应用题等知识,熟练掌握实际应用题的求解步骤“设、列、解、答”,根据题意得出相应关系式是解决问题的关键.。
分式方程重点题型

分式易考题型※【典例剖析】例1(分式概念)(1) 当x 时,分式x -13无意义; (2)当x 时,分式392--x x 的值为零. 随堂练习11要使式子33-+x x ÷42-+x x 有意义,x 的取值应为 。
2、当x 时,分式33+-x x 的值为0。
3、使分式1122+-a a 有意义的a 的取值是( ) A 、a ≠1 B 、a ≠±1 C 、a ≠-1 D 、a 为任意实数4、当x = -3时,下列分式中有意义的是( )A 、33-+x xB 、33+-x x C 、)2)(3()2)(3(--++x x x x D 、)2)(3()2)(3(-++-x x x x 5、判断下列各分式中x 取什么值时,分式的值为0?x 取什么值时,分式无意义⑴)1)(3(2x x x --+; ⑵2522+-x x ; ⑶2231--+x x .例2(分式的约分) 已知311=-y x ,求yxy x y xy x ---+55的值.随堂练习21、下列变形不正确的是( ) A.2222+-=---a a a a B.11112--=+x x x (x ≠1) C.1212+++x x x =21 D.2126336-+=-+y x y x 2、若2x =-y ,则分式22y x xy -的值为________. 3、化简求值:(1)222222484y x y xy x -+- 其中x =2,y =3. (2)已知yx =2,求222263y xy x y xy x +++-的值.例3(分式的乘除法)使分式22222)(y x ay ax y a x a y x ++⋅--的值等于5的a 的值是( ) A.5 B.-5 C.51 D.-51 随堂练习3计算:(1)(xy -x 2)÷xy y x - (2)24244422223-+-÷+-+-x x x x x x x x例4(分式加减法)例4-1化简求值:当x =21时,求1121122-+-++-x x x x x 的值.例4-262)1(33)1)(1()1(3)1)(1(313)1)(1(313132--=+--=-++--+-=---+-=----x x x x x x x x x x x x x x x x (1)上述计算过程中,从哪一步开始出现错误:(2)从B 到C 是否正确; 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分式方程的重要题型
第一种题型工程问题:
1.某市地铁1号线某段工程建设中,甲队单独完成这项工程需要150天,甲队单独施工30天后增
加乙队,两队又共同工作15天,共完成总工程的。
①.求乙队单独完成这项工程需要多少天?
②.为了加快工程进度,甲乙两队各自提高工作效率,提高后乙队的工作效率是,甲队的工作效
率是乙队的m倍(1≤m≤2),若两队合作40天完成剩余的工程,请写出a关于m的函数关系式,并求出乙队的最大工作效率是原来的几倍?
2.某工厂计划在规定的时间内生产24000个零件,若每天此原计划多生产30个零件,则在规定的
时间内可以多生产300个零件。
①.求原计划每天生产的零件个数和规定的天数。
②.为了提前完成生产任务,工厂在安排原有工人按原计划正常生产的同时,引进了5组机器人
生产流水线共同参与零件生产,已知每组机器人生产流水线每天生产零件的个数比20个工人原计划每天生产的零件总数还多20%,按此测算,恰好提前两天完成24000个零件的生产任务,求原计划安排的工人人数。
3.某一公路道路维修工程,准备从甲乙两个工程队中选一个队单独完成,根据两队每天的工程费用
和每天完成的工程量可知,若由两队合作此项维修工程,6天可以完成,共需工程费用385200元,若由一队单独完成此项维修工程,甲队比乙队少用5天,甲队每天的工程费用比乙队多4000元,从节省资金的角度考虑,应选择哪个工程队单独完成此项维修工程?
4.某市为创建全国文明城市,开展“美化绿化城市”活动,计划经过若干年后,城区绿化总面积新增
360万平方米,自2013年年初开始实施后,实际每年绿化面积是原计划的1.6倍,这样可提前4年完成任务。
①.问实际每年绿化面积是多少万平方米?
②.为加大创城力度,市政府决定从2016年起加快绿化速度,要求不超过两年完成,那么实际
平均每年绿化面积至少还要增加多少万平方米?
5.某校为美化校园,计划对面积为1800㎡的区域进行绿化。
安排甲乙两个工程队完成,已知甲队
每天完成绿化的面积是乙队每天完成绿化面积的两倍,并且在单独完成面积为400㎡的区域绿化时,甲队比乙队少用4天。
①.求甲乙两工程队,每天能完成绿化的面积分别是多少㎡?
②.若学校每天需付给甲队的绿化费用为0.4万元,乙队为0.25万元,要是这次绿化总费用不超
过8万元,至少应安排甲队工作多少天?
6.甲乙两个工程队计划维修一条长15千米的乡村公路,已知甲工程队每天比乙工程队每天多修0.5
千米,乙工程队单独完成修路任务所需天数是甲队工程队单独完成修路任务所需天数的1.5倍。
①.求甲乙两个工程队每天各修路多少千米??
②.若甲工程队每天的修路费用为0.5万元,乙工程队每天修路的费用为0.4万元,使两个工程
队修路费用总费用不超过5.2万元,甲工程队至少修路多少天?
7.京广高速铁路工程指挥部,要对某段工程进行招标,接到了甲乙两个工程队的投标书,从投标书
中得知:甲队单独完成这项工程所需的天数是乙队单独完成这项工程所需天数的,若由甲队先做10天,剩下的工程再由甲、乙两队合作30天完成。
①.求甲乙两队单独完成这项工程所需多少天?
②.已知甲队每天的施工费为8.4万元,乙队每天的施工费为5.6万元,工程的施工费用为500
万元,为缩短工期并高效完成工程,拟安排预算的施工费用是否够用?若不够用,需追加预算多少万元,请给出你的判断并说明理由。
8.某工厂对零件进行检测,引进了检测机,已知一台检测机工作效率相当于一名检测员的20倍,
若用这台检测机检测900个零件,要比15名检测员检测这些零件少三个小时。
①.求一台零件检测机每小时检测零件多少个?
②.现有一项零件检测任务,要求不超过7小时检测完成3450个零件,该厂调配了两台检测机
和30名检测员,工作三小时后又调了一些检测机进行支援,则该厂至少再调配几台检测机才能完成任务?
第二种题型,工程问题与一次函数的综合题型
1.某书店为了迎接“读书节”,制定了活动计划,以下是活动计划的部分信息:
①.陈经理查看计划书时发现:A类图书标价是B类图书标价的1.5倍,若顾客用540元购买图
书,能单独购买A类图书的数量恰好比单独购买B类图书的数量少10本,请求出A、B两类图书的标价
②.经市场调查后,陈经理发现他们高估了“读书节”对图书馆销售的影响,便调整了销售方案:A
类图书每本按标价降低a(0<a<5)元销售,B类图书价格不变,那么书店应如何进货才能获最大利润?
2.某电脑公司销售甲种型号电脑,因受经济危机影响,电脑的价格不断下降,今年3月份的电脑价
格比去年同期每台降低1000元,如果卖出相同数量的电脑,去年销售额为10万元,今年销售额只有8万元。
①.今年3月份甲种型号电脑每台销售价多少元?
②.为了增加收入,电脑公司决定再销售乙种型号电脑,已知甲种电脑每台进价为3500元,乙
种电脑每台进价为3000元,公司预计用不多于5万元,且不少于4.8万元的资金购进这两种电脑共15台,共有多少种进货方案?
③.如果乙种电脑每台售价为3800元,为打开乙种电脑的销路,公司决定每台售出一台乙种嗯
电脑,返还顾客现金a元,要使(2)中所有方案获利相同,a的值应是多少?此时哪种方案对公司更有利?
3.为了迎接“十一”长假的购物高峰,某运动品牌专卖店准备购进甲乙两种运动鞋,,其中甲乙两种运
已知3000元购进甲种运动鞋的数量与
用2400元购进乙种运动鞋的数量相同。
①.求m的值
②.要使购进的甲乙两种运动鞋200双的总利润不低于21700元,也不超过22300元问专卖店
有几种进货方案?
③.在②的条件下,专卖店准备对甲种运动鞋进行优惠促销活动,决定对甲种运动鞋每双优惠a
(0<a<70)元出售,乙种运动鞋的价格不变,那么该专卖店要获得最大利润应如何进货?
4.某汽车销售公司销售某品牌A款汽车,随着汽车的普及,其价格也在不断下降,今年5月份A
款汽车的售价比去年同期每辆车降低1万元,如果卖出同样数量的A款汽车,去年销售额为100万元,今年的销售额只有90万元
①.今年5月份A款汽车每辆售价多少万元?
②.为了增加收入,汽车销售公司决定再经销同品牌的B款汽车,已知A款汽车每辆进价为7.5
万元,B款汽车每辆进价为6万元,公司预计用不多于105万元且不少于99万元的资金购进这两款汽车共15辆,有几种进货方案?
③.按照②中两种汽车进价不变,如果B款汽车每辆进价为8万元,为打开B款汽车的销路,公
司决定每售出一辆B款汽车,返还顾客现金a万元,要使②中所有的方案获利相同,a的值应是多少?
5.某商场计划购进冰箱,彩电进行销售,相关信息如下:
①.若商场用80000元购进冰箱的数量与用
64000元购进彩电的数量相同,求表中a
的值。
②.为满足市场需求,商场决定用不超过90000元采购冰箱、彩电共50台,且冰箱的数量不少
于彩电数量的。
a)该商城有几种进货方式?
b)若该商场将购进的冰箱、彩电全部售出,获取的最大利润为w元,请用所学的函数知识
求出w的值。
6.某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具进价与一件乙种玩具进价的和为40元,
用90元购进甲种玩具的件数与嗯嗯嗯嗯用150元购进乙种玩具件数的数量相同。
①.求每件甲种、乙种玩具的进价分别是多少?
②.商场计划购进甲乙两种玩具共48件,其中甲种玩具的件数少于一种玩具的件数,商场决定
此次进货的总资金不超过1000元,求共有几种进货方案?
7.“一带一路”的战略构想为国内许多企业发展带来了新的机遇,某公司生产A、B两种机械设备,
每台B种设备的成本是A种设备的1.5倍,公司若投入16万元生产A种设备,36万元生产B 种设备,则可生产两种设备共10台,请解答下列问题。
①.A、B两种设备每台的成本分别是多少万元?
②.若A、B两种设备每台的售价分别为6万元,10万元,公司决定生产两种设备共60台,计
划售后利润不低于126万元,且A种设备至少生产53台,求该公司有几种方案?
③.在②的条件下,销售前公司决定从这批设备中拿出一部分,赠送给“一带一路”路线的甲国,
剩余设备全部售出,公司仍获利44万元,赠送的设备采用水路运输和航空运输两种方式,共运输4次,水路运输每次运4台A种设备,航空运输每次运输2台B种设备(运输过程中产生的费用由甲国承担),求水路运输的次数。
第三种题型,行程问题与不等式
1.早晨,小明步行到离家900米的学校去上学,在学校时发现眼镜忘在家里,于是他立刻按原路步
行回家,拿到眼镜后立即按原路骑自行车返回学校,已知小明步行从学校到家所用时间比他骑自行车从家到学校所用的时间多10分钟,小明骑自行车速度是步行速度的3倍。
①.求小明步行的速度(米/分)
②.下午放学后,小明骑自行车回到家,然后步行去图书馆,如果小明骑自行车与步行速度不变,
小明步行从家到图书馆的时间不超过自行车从学校到家时间的两倍,那么小明家与图书馆的路程最多是多少米?
③.。