第五章 线性系统的频域分析法 单元测试题(

合集下载

第五章 线性系统的频域分析法习题

第五章  线性系统的频域分析法习题

501第五章 线性系统的频域分析法5-1 设闭环系统稳定,闭环传递函数为)(s Φ,试根据频率特性的定义证明:系统输入信号为余弦函数)cos()(φω+=t A t r 时,系统的稳态输出为)](cos[|)(|)(ωφωωj t j A t c ss Φ∠++Φ=。

证明:根据三角定理,输入信号可表示为 )90sin()( ++=φωt A t r ,根据频率特性的定义,有 ]90)(sin[|)(|)( +Φ∠++Φ=ωφωωj t j A t c ss , 根据三角定理,得证: )](cos[|)(|)(ωφωωj t j A t c ss Φ∠++Φ=。

5-2 若系统的单位阶跃响应t t e e t c 948.08.11)(--+-=,试确定系统的频率特性。

解:s s s s C 1361336)(2++=,361336)(2++=s s s G ,)9)(4(36)(ωωωj j j G ++=;2/122/12)81()16(36|)(|ωωω++=j G ,9arctan 4arctan )(ωωω--=∠j G 。

或:)(2.7)()(94t t e e t ct g ---== ;361336)]([)(2++==s s t g L s G ; 5-3 设系统如下图所示,试确定输入信号)452cos()30sin()(--+=t t t r作用下,系统的稳态误差)(t e ss 。

解:21)(++=Φs s s e ; )452sin()30sin()(+-+=t t t r6325.0|)(|=Φj e , 4.186.2645)(=-=Φ∠j ;7906.0|)2(|=Φj e , 4.18454.63)2(=-=Φ∠j ; 答案:)4.632sin(7906.0)4.48sin(6325.0)( +-+=t t t e ss 。

5-4 典型二阶系统的开环传递函数)2()(2n ns s s G ωζω+=, 当取t t r sin 2)(=时,系统的稳态输出为)45sin(2)( -=t t c ss ,试确定系统参数n ω和ζ。

线性系统的频域分析法试题答案

线性系统的频域分析法试题答案

线性系统的频域分析法【课后自测】5-1 频率特性有哪几种分类方法?解:幅频特性,相频特性,实频特性和虚频特性。

5-2 采用半对数坐标纸有哪些优点?解:可以简化频率特性的绘制过程,利用对数运算可以将幅值的乘除运算化为加减运算,并可以用简单的方法绘制近似的对数幅频特性曲线。

5-3 从伯德图上看,一个比例加微分的环节与一个比例加积分的环节串联,两者是否有可能相抵消。

若系统中有一个惯性环节使系统性能变差,那再添加一个怎样的环节(串联)可以完全消除这种影响,它的条件是什么?解:一个比例加微分的环节与一个比例加积分的环节串联,两者是有可能相抵消;。

若系统中有一个惯性环节使系统性能变差,那再添加一个一阶微分环节(串联)可以完全消除这种影响,两个环节的时间常数相同即可。

5-5 为什么要求在ωc 附近L (ω)的斜率为-20dB/dec ?解:目的是保证系统稳定性,若为-40 dB/dec ,则所占频率区间不能过宽,否则系统平稳性将难以满足;若该频率更负,闭环系统将难以稳定,因而通常取-20dB/dec 。

5-6 已知放大器的传递函数为()1K G s Ts =+ 并测得ω=1 rad/s、幅频A =φ=-π/4。

试问放大系数K 及时间常数T 各为多少?解:频率特性为:G (jω)=KjωT +1幅频和相频分别为:{|G (j1)|=√1+T2=12√2⁄φ(1)=−arctanT =−π4⁄ 得到:K =12,T =15-7 当频率ω1=2 rad/s 、ω2=20 rad/s 时, 试确定下列传递函数的幅值和相角: 1210(1)1(2)(0.11)G s G s s ==+解:(1)G 1(jω)=10jω=-j 10ω|G 1(jω)|=10ωφ1(ω)=−90°ω1=2 rad/s 时,|G 1(jω)|=102=5 ,φ1(ω)=−90° ω1=20 rad/s 时,|G 1(jω)|=1020=0.5 ,φ1(ω)=−90° (2)G 2(jω)=1jω(0.1jω+1)=1jω-0.1ω2|G 2(jω)|=ω√1+0.01ω2φ2(ω)=arctan 10ωω1=2 rad/s 时,|G 2(jω)|=12√1+0.01×22=0.49φ2(ω)=arctan 102=78.7°ω1=20 rad/s 时,|G 2(jω)|=120√1+0.01×202=0.02φ2(ω)=arctan 1020=26.6°5-8 设单位反馈系统的传递函数为10()1G s s =+ 当把下列信号作用在系统输入端时,求系统的稳态输出。

自控习题课1

自控习题课1

总结和习题
内蒙古工业大学信息工程学院自动化系
☝ 第五章 线性系统的频域分析法
习题
绘制开环幅相曲线
总结和习题
内蒙古工业大学信息工程学院自动化系
☝ 第五章 线性系统的频域分析法
习题
绘制对数幅频渐近特性曲线
开环系统Bode图的绘制步骤 开环系统Bode图的绘制步骤 Bode
将开环传递函数表示为典型环节的串联(相乘的形式) 将开环传递函数表示为典型环节的串联(相乘的形式); 确定各一、二阶环节的交接频率并由小到大标示在对数频率轴上; 确定各一、二阶环节的交接频率并由小到大标示在对数频率轴上; 交接频率并由小到大标示在对数频率轴上 绘制低频段的渐近线。渐近线的斜率取决于积分的个数ν 绘制低频段的渐近线。渐近线的斜率取决于积分的个数ν,等于 20νdB/dec。 处纵坐标等于20lgK 的点, 20νdB/dec。在ω=1处纵坐标等于20lgK 的点, ω = ν K 时, 纵坐标为0 纵坐标为0。 向右延长最低频段渐近线, 向右延长最低频段渐近线,每遇到一个转折频率改变一次渐近线 斜率;改变的频率取决于该转折频率对应的典型环节的种类。 斜率;改变的频率取决于该转折频率对应的典型环节的种类。 惯性环节,-20dB/dec 振荡环节, 惯性环节, 振荡环节, -40dB/dec 一阶微分环节, 一阶微分环节,+20dB/dec 二阶微分环节,+40dB/dec 二阶微分环节,
总结和习题
内蒙古工业大学信息工程学院自动化系
☝ 第五章 线性系统的频域分析法
习题
绘制开环幅相曲线 解:频率特性为
2 2[1 − 16ω 2 − j10ω ] G ( jω ) = = (2 jω + 1)(8 jω + 1) (1 + 4ω 2 )(1 + 64ω 2 )

第五章线性系统的频域分析法

第五章线性系统的频域分析法

对 A(ω ) 求导并令等于零,可解得 A(ω ) 的极值对应的频率 ω r 。
ω r = ω n 1 2ζ 2
该频率称为谐振峰值频率。可见,当 ζ = 当ζ
> 1 2
s = jω
G( jω) =| G( jω) | e
j∠G( jω)
= A(ω)e
j (ω)
G( jω) = G(s) |s= jω
G( jω) = G(s)|s= jω =| G( jω)| e j∠G( jω) = A(ω)e j(ω)
A A j (ω ) k1 = G( jω ) e k2 = G( jω ) e j (ω ) 2j 2j
可以作为系统模型
G( jω) = G(s) |s= jω = G( jω) e j(ω)
定义 幅频特性
A(ω ) =| G( jω ) |
(ω ) = ∠G ( jω )
它描述系统对不同频率输入信号在稳态时的放大特性; 它描述系统对不同频率输入信号在稳态时的放大特性; 相频特性
它描述系统的稳态响应对不同频率输入信号的相位移特性; 它描述系统的稳态响应对不同频率输入信号的相位移特性; 幅频特性和相频特性可在复平面上构成一个完整的向量 G ( jω ), 频率特性。 频率特性 G ( jω ) = A(ω )e j (ω ) ,它也是 ω 的函数。G( jω) 称为频率特性 还可将 G ( jω ) 写成复数形式,即
A(ω ) = 1 1 + T 2ω 2 ,
G (s) =
1 Ts + 1
G ( jω ) =
1 jT ω + 1
(ω ) = tg 1T ω
幅频特性 L(ω) = 20log A(ω) = 20log K 20log 1+ T 2ω2 低频段:当Tω << 1时,ω 高频段:当 Tω >> 1时, ω

频域分析阶段测试参考答案

频域分析阶段测试参考答案

④ x(2t) 表示将此磁带以二倍速度加快播放
3.能够无失真的通过截止频率为100π 的理想低通滤波器的是: A
A、 Sa(50πt + 1 ) ; 2
B、
1 50π
Sa (200π
)
C、 G50π (t) ;
D、 G200π (t)
4.某信号的频谱函数如下图所示,下列系统中能够对其实现无失真传输的是 A
,输入周期信号为 x(t) = sin 2t
,计
算系统的稳态响应。
解:
H ( jω ) = 1 ↔ h(t) = e−tu(t) ,该系统为稳定系统 1 + jω
H ( j2) = 1 = 1 , (H ( j2) = arctg( −2) = −arctg2
1+ j2 5
1
利用 e jωt → H ( jω )e jωt 和
)
(a) x(n) 奇对称 (b) x(n) 偶对称 (c) x(0) = 0

(d) ∑ x(n) = 0 n=−∞


∑ ∑ 分析: X (Ω) = x(n)e− jΩn , X (0) = x(n) = 0
n= −∞
n= −∞
11.如下所示的 4 个系统中,( (d) )完成低通滤波功能,((c) )完成高通滤波功
cosωt → H ( jω ) cos[ωt + ∠H ( jω )]
可知 x(t) = sin 2t → H ( j2) sin[ωt + ∠H ( j2)]
y(t) = 1 sin(2t − arctg2) 5
8

π 50π
G100π
(ω)
=
1 50

第五章 线性系统的频域分析法-5-2——【南航 自动控制原理】

第五章 线性系统的频域分析法-5-2——【南航 自动控制原理】

)2
A(0) 1 (0) 0
G(jn )
A() 0 () 180
j
G(j0)

0
G(jn )
共振点
G( jn ) (n ) 0 G( jn ) (n ) 180
变化趋势 0 n () 0 , A() :1
n () 180 , A() : 0
零阻尼振荡环节在自然振荡频率处,相角突变180°。
A()
谐振现象是振荡系统的 特性,谐振频率 r 与系 统固有频率 n 和阻尼比
有关。当谐振频率等于
频率响应峰值
Mr 1/ (2 1 2 )
阶跃响应超调
p exp( / 1 2 )
固有频率时,则发生共振。
共振的危害巨大。
当阻尼比较小,且系统谐振频率处于输入信号的
频率范围时,系统输出会出现很大的振荡,影响系
5.2 典型环节与开环系统的频率特性
环节是系统的基本组成单元。將环节进行分类形成 典型环节。典型环节的频率特性是开环系统频率特性 的分解,而开环系统频率特性是闭环系统分析与设计 的基础。
一、典型环节的频率特性
1.典型环节的分类
环节:系统增益、零点或极点对应的因式
分类:按照增益的正负性、零点或极点的位置(实数 或复数、位于左半平面或右半平面)进行划分,共分 为最小相位、非最小相位两大类、12种典型环节。
设互为倒数的典型环节频率特性为
G1(j)=A1()e j1() G2 (j) =A2 ()e j2 ()
则由 G1(s) 1/ G2 (s) 得
A1()e j1 ( ) =A21()e j2 ( )
L1() L2 ()
互为倒数典型环节的对数相频曲线关于0°线对称, 对数幅频曲线关于0dB线对称。

信号与系统第5章习题答案

信号与系统第5章习题答案

第5章连续时间信号的抽样与量化5.1试证明时域抽样定理。

证明:设抽样脉冲序列是一个周期性冲激序列,它可以表示为T(t)(tnT)sn由频域卷积定理得到抽样信号的频谱为:1F s ()F()T 2()1 T snFns式中F()为原信号f(t)的频谱,T ()为单位冲激序列T (t)的频谱。

可知抽样后信 号的频谱()F 由F()以s 为周期进行周期延拓后再与1T s 相乘而得到,这意味着如果 s s2,抽样后的信号f s (t)就包含了信号f(t)的全部信息。

如果s2m ,即抽样m 间隔 1 Tsf2m,则抽样后信号的频谱在相邻的周期内发生混叠,此时不可能无失真地重建 原信号。

因此必须要求满足1 Tsf2 m,f(t)才能由f s (t)完全恢复,这就证明了抽样定理。

5.2确定下列信号的最低抽样频率和奈奎斯特间隔:2t (1)Sa(50t)(2)Sa(100)2t (3)Sa(50t)Sa(100t)(4)(100)(60)SatSa解:抽样的最大间隔 T s 12f 称为奈奎斯特间隔,最低抽样速率f s 2f m 称为奈奎m斯特速率,最低采样频率s 2称为奈奎斯特频率。

m(1)Sa(t[u(50)u(50)],由此知m50rad/s ,则50)5025 f , m由抽样定理得:最低抽样频率50 f s 2f m ,奈奎斯特间隔1 T 。

sf50s2t(2))Sa(100)(1100200脉宽为400,由此可得radsm200/,则100f,由抽样定理得最低抽样频率m200f s2f m,奈奎斯特间隔1T。

sf200s(3)Sa[(50)(50)],该信号频谱的m50rad/s(50t)uu50Sa(100t)[u(100)u(100)],该信号频谱的m100rad/s10050Sa(50t)Sa(100t)信号频谱的m100rad/s,则f,由抽样定理得最低m抽样频率100f s2f m,奈奎斯特间隔1T。

自动控制原理第五章线性系统的频域分析法

自动控制原理第五章线性系统的频域分析法

自动控制原理第五章线性系统的频域分析法1、基本内容和要点(l)频率特性系统的稳态频率响应,频率响应的物理概念及数学定义;求取频率特性的分析法和实验法。

(2)典型环节的频率特性比例、惯性、积分、微分、振荡、延迟环节的频率特性和对数频率特性。

非最小相位环节的频率特性。

(3)反馈控制系统的开环频率特性研究系统开环频率特性的意义。

单环系统开环对数频率持性的求取与绘制。

最小相位系统开环对数幅频特性与相频特性间的对应关系。

(4)奈奎斯特稳定判据幅角定理。

S平面与F平面的映射关系。

根据开环频率特性判别闭环系统稳定性的奈氏判据。

奈氏判据在多环系统中的应用和推广。

系统的相对稳定性。

相角与增益稳定裕量。

(5)二阶和高阶系统的频率域性能指标与时域性指标。

系统频率域性能指标。

二阶和高阶系统暂态响应性能指标与频率域性能指标间的解析关系及近似关系。

(6)系统的闭环频率特性开环频率特性与闭环频率特性间的解析关系。

用等M圆线从开环频率特性求取闭环频率特性。

用尼氏图线从开环对数频率特性求取闭环频率特性。

2、重点(l)系统稳态频率响应和暂态时域响应的关系。

(2)系统开环频率特性的绘制,最小相位系统开环频率特性的特点。

(3)奈奎斯特稳定判据和稳定裕量。

5-1引言第三章,时域分析,分析系统零、极点与系统时域指标的关系;典型二阶系统极点或和n与时域指标tp、和t、tr及稳态误差等的关系,及高阶系统的近似指标计算;第四章,根轨迹分析,研究系统某一个参数变化对系统闭环极点的影响;本章讨论系统零、极点对系统频率域指标的关系,频域指标又分开环频域指标和闭环频域指标,它们都是在频域上评价系统性能的参数。

频域分析是控制理论的一个重要分析方法。

5-2频率特性1.频率特性的基本概念理论依据定理:设线性定常系统G()的输入信号是正弦信号某(t)某int,在过度过程结束后,系统的稳态输出是与输入同频率的正弦信号,其幅值和相角都是频率的函数,即为c(t)Y()in[t()]。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章 线性系统的频域分析法
单元测试题(C )
一、填空题:
1、频率特性仅适用于 系统及元件
2、 Bode 图的低频段特性完全由系统开环传递函数中的积分环节数和 决定。

3、二阶振荡环节的对数幅频渐进特性的高频段的斜率为 (db/dec )。

4、当w 为增益的截止频率c w 时,幅值特性20lg|G (j c w )|= 。

5、频率特性可以由微分方程或传递函数求得,还可以用____ _____方法测定。

6、一般来说,系统的相位裕量愈大,则超调量__ _;穿越频率愈大,则调节时间__ ______。

7、一个稳定的闭环系统,若它开环右半平面极点数为P ,则它的开环传递函数的Nyquist 曲线必 时针绕(-1, j0)点 周。

8、对于最小相位系统,其开环幅相特性曲线G(j w )在w ®∞时,总是以确定的角度收敛于复平面的 。

9、设系统的频率特性G(j w )=R(w ) +jI(w ),则相频特性Ð G(j w )= 。

10、频率特性可以由微分方程或传递函数求得,还可以 方法测定。

11、闭环频率特性的性能指标有零频值 、谐振峰值 和频带宽度 。

二、单项选择题 (在下列每小题的四个备选答案中选出一个正确的答案,并将其字母标号填入题干的括号内。


1、当ω从−∞→+∞变化时,惯性环节的极坐标图为一个( )。

A 位于第一象限的半圆
B 位于第四象限的半圆
C 整圆
D 不规则曲线
2、w 从0变化到+ ∝时,一阶不稳定环节频率特性的幅相特性极坐标图为( )
A .半圆
B .椭圆
C .圆
D .双曲线
3、利用奈奎斯特图可以分析闭环控制系统的( )
A .稳态性能
B .稳态和动态性能
C .动态性能
D .抗扰性能
4、下列频域性能指标中,反映闭环频域指标的是( )。

A .谐振峰值Mr
B .相位裕量g
C .模(或增益)裕量h (或G M )
D .截止频率c w
5、某系统开环频率特性G (j w )=2)
1(2+w j ,当w =1 rad/s 时,其频率特性幅值A(1)=( ) A .2 B .2 C .1 D .1/2
6、 ω从0变化到+∞时,延迟环节频率特性极坐标图为( )
A .圆
B .半圆
C .椭圆
D .双曲线
7、设有一个单位反馈系统的开环传递函数为G (S )=
)1(+TS S K ,若要求带宽增加a 倍,相位裕量保持不变,则K 应变为( )
A . 3K a
B . K a
C .aK
D . 2aK 8、设开环系统频率特性3)1(4)(w w j j G +=
,当w =1rad/s 时,其频率特性幅值 M (1)=( )
A .4
2 B .24 C .2 D .22 9、设开环系统频率特性G (j w )=
3)1(10w j +,则其频率特性相位移j (w )=-180o 时,对应频率w 为( )。

A . 10(rad/s )
B .3(rad/s )
C .3(rad/s )
D . 1(rad/s )
10、设开环系统频率特性G (j ω)=3)
1(4w j + ,当ω=1rad/s,其频率特性幅值 M (1)=( )。

A . 22
B .2
C .42
D .4
2 11、若开环传递函数G (S )=)
1(+TS S K ,若要求带宽增加10倍,相位裕量保持不变,则K 、T 将( )。

A .K 扩大10倍,T 不变 B . K 不变,T 缩小10倍
C . K 扩大10倍,T 缩小10倍
D . K 缩小10倍,T 扩大10倍
12、下列频域性能指标中,反映闭环频域性能指标的是( )。

A .谐振峰值M r
B .相位裕量γ
C .增益裕量K g (或h )
D .截止频率c w
三、已知一控制系统结构图如图所示,当输入r(t) = 2sint时,测得输出c(t)=4sin(t-45°),试确定
系统的参数x,w n。

相关文档
最新文档