材料 第二章 金属及合金相的晶体结构

合集下载

金属学及热处理习题参考答案(1-9章)

金属学及热处理习题参考答案(1-9章)

第一章金属及合金的晶体结构一、名词解释:1 •晶体:原子(分子、离子或原子集团)在三维空间做有规则的周期性重复排列的物质。

2•非晶体:指原子呈不规则排列的固态物质。

3 •晶格:一个能反映原子排列规律的空间格架。

4•晶胞:构成晶格的最基本单元。

5. 单晶体:只有一个晶粒组成的晶体。

6•多晶体:由许多取向不同,形状和大小甚至成分不同的单晶体(晶粒)通过晶界结合在一起的聚合体。

7•晶界:晶粒和晶粒之间的界面。

8. 合金:是以一种金属为基础,加入其他金属或非金属,经过熔合而获得的具有金属特性的材料。

9. 组元:组成合金最基本的、独立的物质称为组元。

10. 相:金属中具有同一化学成分、同一晶格形式并以界面分开的各个均匀组成部分称为相。

11. 组织:用肉眼观察到或借助于放大镜、显微镜观察到的相的形态及分布的图象统称为组织。

12. 固溶体:合金组元通过溶解形成成分和性能均匀的、结构上与组元之一相同的固相、填空题:1 .晶体与非晶体的根本区别在于原子(分子、离子或原子集团)是否在三维空间做有规则的周期性重复排列。

2•常见金属的晶体结构有体心立方晶格、面心立方晶格、密排六方晶格三种。

3•实际金属的晶体缺陷有点缺陷、线缺陷、面缺陷、体缺陷。

4•根据溶质原子在溶剂晶格中占据的位置不同,固溶体可分为置换固溶体和间隙固溶体两种。

5•置换固溶体按照溶解度不同,又分为无限固溶体和有限固溶体。

6 •合金相的种类繁多,根据相的晶体结构特点可将其分为固溶体和金属化合物两种。

7. 同非金属相比,金属的主要特征是良好的导电性、导热性,良好的塑性,不透明,有光—泽,正的电阻温度系数。

8. 金属晶体中最主要的面缺陷是晶界和亚晶界。

9. 位错两种基本类型是刃型位错和螺型位错,多余半原子面是刃型位错所特有的10. 在立方晶系中,{120}晶面族包括(120)、(120)、(102)、(102)、(210)、(210)> (201)、(201)、(012)、(012)、(021)、(021)、等晶面。

材料科学基础第2章

材料科学基础第2章
化合物; C越小,越易形成固溶体
可编辑ppt
10
2.3.1 固溶体
固溶体(solid solution) :
合金组元通过溶解形成一种成分和性能均匀的、 且结构与组元之一相同的固相称为固溶体。
➢ 固溶体的最大特点是保持溶剂的晶体结构。
➢ 与固溶体晶格相同的组元为溶剂,一般在合金中 含量较多;另一组元为溶质,含量较少。
✓ 各向异性:由于在不同方向上的原子排列的紧密程 度不同使晶体在不同方向上的物理、化学和力学性 能不同。而一般整个晶体不显示各向异性,称为伪 等向性。
✓ 晶粒:组成晶体的结晶颗粒。 ✓ 多晶体:凡由两颗以上晶粒组成的晶体一般金属都
是多晶体。。
可编辑ppt
4
晶粒
可编辑ppt
5
Байду номын сангаас
多相合金
可编辑ppt
6
可编辑ppt
12
(3)按溶质原子在溶剂中的分布特点分类 无序固溶体:溶质原子在溶剂中任意分布, 无规律性。
有序固溶体:溶质原子按一定比例和有规 律分布在溶剂晶格的点阵或间隙里。
(4)按基体类型分类: 一次固溶体:以纯金属为基形成的固溶体。
二次固溶体:以化合物为基形成的固溶体。
可编辑ppt
13
固溶体的两种类型(置换和间隙)
中间相可以用分子式来大致表示其组成。
合金相的性质由以下三个因素控制: (1)电化学因素(电负性或化学亲和力因素)
电负性—化学亲和力越大越容易形成化合物,电负性 相近的元素容易形成固溶体。
(2)原子尺寸因素 △r=(rA-rB)/rA △r越大,越易形 成中间相。 △r越小,越易形成固溶体
(3)原子价因素(电子浓度因素): C电子=[A(100-x) +Bx]/100 C越大,越易形成

材料科学基础_第二章-合金的相结构

材料科学基础_第二章-合金的相结构
间隙化合物的熔点、硬度较高,也是强化相。
(2) TCP相 TCP相(topologically close-packed phase)的特点: ①由配位数为12、14、15、16的配位多面体堆垛而成;②呈层状 结构。
TCP相类型:①Lavs相 AB2型 镁合金、不锈钢中出现
②σ相 AB型或AxBx型 有害相
b.间隙化合物 间隙化合物的晶体结构比较复杂。其表达式有如下类型: M3C、M7C3、M23C6、M6C。间隙化合物中金属元素M常被其 它金属元素所代替形成化合物为基的固溶体(二次固溶体)。
在H、N、C、B等非金属元素中,由于H和N的原子半径很小,与所 有过渡族金属都满足rX/rM<0.59,所以过渡族金属的氢化物、氮化物 都为间隙相;而硼原子半径rB/rM>0.59较大, rB/rM>0.59,硼化物 均为间隙化合物;而碳原子半径处于中间,某些碳化物为间隙相,某些 为间隙化合物。
4.超结构—有序固溶体
超结构(super structure/lattice)类型: 有序化条件:异类原子之间的相互吸引大于同类原 子间 有序化影响因素:温度、冷却速度和合金成分
5.金属间化合物的性质及应用(P56) (1)——(7)
CuAu有序固溶体的晶体结构
2.4 离子晶体
离子晶体有关概念 1.离子晶体(ionic crystal) :由正、负离子通过离子键按
相分类:固溶体和中间相(金属间化合物)
固溶体——
中间相——
中间相可以用分子式来大致表示其组成。
合金相的性质由以下三个因素控制:
(1)电化学因素(电负性或化学亲和力因素)
电负性——
(2)原子尺寸因素 △r=(rA-rB)/rA 中间相。 △r越小,越易形成固溶体

上海交大-材料科学基础-第二章-1

上海交大-材料科学基础-第二章-1

晶面的位向
h : k : l cos : cos : cos
cos2 cos2 cos2 1 立方晶系
晶面间距
dhkl
a h
cos
b h
cos
c h
cos
d
2hkl [(
h a
)2
( h )2 b
( h )2 ] c
cos2
cos2
cos2
式中h、k、l为晶面指数(hkl),a、b、c为 点阵常数,α、β、γ为晶面法线方向与晶轴夹角。
每个原子周围的情况完全相同,则这种原子所组成的
网格称为简单晶格。
复式晶格:如果晶体由两种或两种以上原子组成,同 种原子各构成和格点相同的网格,网格的相对位移而 形成复式晶格。
cc
金刚石结构
2.1.2 晶向指数和晶面指数
晶列:布拉菲格子的格点可以看成是分布在一系列相 互平行的直线上,而无遗漏,这样直线称为晶列;
uvw 放入方括号内,写成[uvw],即为待标定晶向的晶 向指数。若为负值,则在指数上加一负号。(化整数, 列括号)
xa : yb : zc u :v : w abc
立方晶系中一些常用的晶向指数
例:如图在立方体中, a i , b j , c k
方法2
D是BC的中点,求BE,AD的晶列指数
第二章 固体结构
本章主要内容
❖ 2.1晶体学基础 ❖ 2.2金属的晶体结构 ❖ 2.3合金相结构 ❖ 2.4离子晶体结构 ❖ 2.5共价晶体结构
概述
❖ 物质按聚集状态分类: 气态、液态和固态; ❖ 按原子(或分子)排列特征分类:晶体和非晶体。
绝大部分陶瓷、少数高分子材料、金属及合金是晶体; 多数高分子材料、玻璃及结构复杂材料是非晶体。

第2章 金属及合金相的晶体结构

第2章 金属及合金相的晶体结构

1. 面心立方结构
面心立方结构金属:γ-Fe, Al, Cu, Ni, Au, Ag和Pt等。
结构符号A1,Pearson符号cF4。 每个晶胞含4个原子。
面心原子shared by 2 cells: 6 x 1/2 = 3 顶角原子shared by 8 cells: 8 x 1/8 = 1
略受压缩的八面体间隙; 八面体间隙中心位于棱边中心和面心 八面体间隙半径: r=1/2(a-2R)
r≈0.155 R 晶胞含6 (6×1/2+12×1/4 )个八面体间隙。 平均1个原子3有个八面体间隙。
非正四面体间隙。 四面体间隙半径: r= (a√5/4-R)
r≈0.291 R 晶胞含12 (4 ×6 ×1/2)个四面体间隙。 平均1个原子含6个四面体间隙。
ZA, ZB 为A、B组元价电子数, VB为B组元摩尔分数。
1933年,Bernal 建议称之为电子化合物。 Massalski认为称其为电子相更恰当。
§2.12正常价化合物
正离子价电子数正好能使负离子具有稳定的电子层结构,即 AmBn化合物中,meC=n(8-eA), 结合一般是离子键。 eA和eC分别是正和负离子在非电离状态下的价电子数。
§2.13 拓扑密堆积相(TCP相)
在很多化合物结构中,原子尺寸起主要作用,并倾向于紧密堆 垛,称为拓朴密堆相,包括间隙化合物、Laves、σ相等。
间隙化合物
由原子半径r比较大的过渡金属(M)与r比较小的H, B, C, N, O, 等非金属组成的化合物,非金属原子占据金属原子结构间隙。 具有金属光泽和导电性的高熔点、高硬度较脆的化合物。
§2.9间隙固溶体
面心立方结构
r=0.414R
r=0.225R

第2章 贵金属材料晶体学基础

第2章 贵金属材料晶体学基础

每个面心立方结构晶胞中实际只有 1/8×8+1/2 ×6=4 晶格常数只用晶胞的棱边长a一个数值表示,原 子间最小距离为两个原子中心的距离,等于原子的 直径d: d=√2/2a 面心立方结构n=4 致密度:K=nv/V K=n×原子球体体积/晶胞体积 = 4 ×(4/3πR3)/a3 =0.74=74%
c 密排六方结构
每个面心立方结构晶胞中实际只有: 1/6×12+1/2×2+3=6 晶格常数有2个,六方底面的边长a与上下底面的间 距c(即六方柱的高度),它们之比c/a称为密排六方 结构的轴比,理想轴比为1.633。 原子的直径d与a的关系为: d=a
K=nv/V =0.74=74% 配位数为12 最密排面为{0001}面 密排六方结构和面心立方结构的配位数 和致密度都相等,因为都为最紧密堆积, 从晶体化学来看还有很多相似的性质。
第2章 贵金属材料晶 体学基础
第1节晶体结构及晶体结构间隙
1 晶体 晶体是内部质点(原子、离子或分子)在三维 空间周期性地重复排列构成的固体物质 晶体具有自限性、均一性、各项异性、对称性、最 小内能性 (1) 晶体与非晶体 晶体 非晶体 内部构造 宏观外形 方向性 具有格子构造 具有规则的几何外 形 各向异性 不具格子构造 不具有规则的几 何外形 各向同性
1 固溶体 固溶体是原子溶入固体溶剂中所形成的均一的 结晶相。固溶体的一个特点是成分可以在一定范围 内连续变化,这种变化不引起原来溶剂金属的点阵 类型发生改变 固溶体 置换固溶体 间隙固溶体
(1)置换固溶体 溶质原子置换了溶剂结构中的一些溶剂原子
影响固溶体固溶度的因素: a 组员的晶体结构因素 b 原子尺寸因素 c 化学亲和力因素
(1)正常价化合物 一般有AB,A2B(AB2),A3B2三种类型,分 子式对应相同类型分子的离子化合物。

工程材料02(金属与合金的晶体结构)

金属材料的性能特点一般地,金属材料与非金属材料相比,金属材料具有良好的力学性能,而且工艺性能也较好。

即使都是金属材料,不同成分和不同状态下的性能也会有很大的差异。

造成这些性能差异的主要原因是材料内部结构不同,因此掌握金属与合金的内部结构特点,对于合理选材具有重要意义。

金属材料是靠原子间金属键结合起来的。

金属键——金属材料内部,呈一定规律排列的正离子与公有化的自由电子靠库仑力结合起来,这种结合力即为金属键。

(正离子+公有电子云、无方向性、非饱和性)金属材料的性能特点:1、良好的导电、导热性。

2、正的电阻温度系数3、良好的塑性4、不透明、有金属光泽第一节晶体的基本知识金属材料一般都是晶体,具有晶体的特性。

一、晶体——内部原子呈规则排列的物质。

晶体材料(单晶体)的特性:①具有固定的熔点。

②具有规则的几何外形。

③具有“各向异性”。

二、晶格、晶胞和晶格常数1、晶格——描述晶体中原子排列规律的空间点阵。

将原子的振动中心抽象为一几何点,再用直线的连接表示原子之间的相互作用。

2、晶胞——由于晶格排列具有周期性,研究晶格时,取出能代表晶格特征的最小基本单元即称为晶胞。

3、晶格常数——用来描述晶胞大小与形状的几何参数。

三条棱长:a、b、c三条棱的夹角:α、β、γ对于简单立方晶胞:棱长a=b=c 夹角α= β= γ= 90°第二节纯金属的晶体结构一、典型的晶格类型各种晶体由于其晶格类型和晶格常数不同,往往呈现出不同的物理、化学及力学性能。

除少数金属具有复杂晶格外,大多数晶体结构比较简单,典型的晶格结构主要有以下三种:1、体心立方晶格(bcc)2、面心立方晶格(fcc)3、密排六方晶格(hcp)1、体心立方晶格(bcc )晶格常数: a = b = c ;α=β=γ= 90°密排方向(原子排列最紧密的方向):立方体的对角线方向原子半径:属于bcc 晶格的金属主要有:α-Fe 、Cr 、W 、Mo 、V 等ar 432、面心立方晶格(fcc )晶格常数: a = b = c ;α=β=γ= 90°密排方向:立方体表面的对角线方向原子半径:属于fcc 晶格的金属主要有:γ-Fe 、Cu 、Al 、Au 、Ag 等。

上海交大材基-第二章晶体结构--复习提纲讲解

第2章晶体结构提纲:2.1 晶体学基础2.2 金属的晶体结构2.3 合金相结构2.4 离子晶体结构2.5 共价晶体结构2.6 聚合物的晶态结构2.7 非晶态结构学习要求:掌握晶体学基础及典型晶体的晶体结构,了解复杂晶体(包括合金相结构、离子晶体结构,共价晶体的结构,聚合物的晶态结构特点)、准晶态结构、液晶结构和非晶态结构。

1.晶体学基础(包括空间点阵概念、分类以及它与晶体结构的关系;晶胞的划分,晶向指数、晶面指数、六方晶系指数、晶带和晶带定律、晶面间距的确定、极射投影);2.三种典型金属晶体结构(晶胞中的原子数、点阵常数与原子半径、配位数与致密度、堆垛方式、间隙类型与大小);3.合金相结构(固溶体、中间相的概念、分类与特征);4.离子晶体的结构规则及典型晶体结构(AB、AB2、硅酸盐);5、共价晶的结构规则及典型晶体结构体(金刚石)6、聚合物的晶态结构、准晶态结构、液晶结构和非晶态结构。

重点内容1.选取晶胞的原则;Ⅰ) 选取的平行六面体应与宏观晶体具有同样的对称性;Ⅱ)平行六面体内的棱和角相等的数目应最多;Ⅲ)当平行六面体的棱角存在直角时,直角的数目应最多;Ⅳ)在满足上条件,晶胞应具有最小的体积。

2.7个晶系,14种布拉菲空间点阵的特征;(1)简单三斜(2)简单单斜底心单斜(3)简单正交底心正交体心正交面心正交(4)简单六方(5)简单四方体心四方(6)简单菱方(7)简单立方体心立方面心立方3.晶向指数与晶面指数的标注,包括六方体系,重要晶向和晶面需要记忆。

4.晶向指数,晶面指数,晶向族,晶面族,晶带轴,共带面,晶面间距5.8种,即1,2,3,4,6,i,m,。

或C1,C2,C3,C4,C6 ,C i,C s,S4。

微观对称元素6.极射投影与Wulff网;标hkl直角坐系d4⎧⎨⎩微观11213215243滑动面 a,b,c,n,d螺旋轴 2;3,3;4,4,4;6,6,6,6,67.三种典型金属晶体结构的晶体学特点;在金属晶体结构中,最常见的是面心立方(fcc)、体心立方(bcc)和密排六方(hcp)三种典型结构,其中fcc和hcp系密排结构,具有最高的致密度和配位数。

机械工程材料 第二章 金属的晶体结构与结晶


均匀长大
树枝状长大
2-2
晶粒度
实际金属结晶后形成多晶体,晶粒的大小对力学性能影响很大。 晶粒细小金属强度、塑性、韧性好,且晶粒愈细小,性能愈好。
标准晶粒度共分八级, 一级最粗,八级最细。 通过100倍显微镜下的 晶粒大小与标准图对 照来评级。
2-2
• 影响晶粒度的因素
• (1)结晶过程中的形核速度N(形核率) • (2)长大速度G(长大率)
面心立方晶 格
912 °C α - Fe
体心立方晶 格
1600
温 度
1500 1400
1300
1200
1100
1000
900
800
700 600 500
1534℃ 1394℃
体心立方晶格
δ - Fe
γ - Fe
γ - Fe
912℃
纯铁的冷却曲线
α – Fe
体心立方晶 格
时间
由于纯铁具有同素异构转变的特性,因此,生产中才有可能通过 不同的热处理工艺来改变钢铁的组织和性能。
2-3
• 铁碳合金—碳钢+铸铁,是工业应用最广的合金。 含碳量为0.0218% ~2.11%的称钢 含碳量为 2.11%~ 6.69%的称铸铁。 Fe、C为组元,称为黑色金属。 Fe-C合金除Fe和C外,还含有少量Mn 、Si 、P 、 S 、 N 、O等元素,这些元素称为杂质。
2-3
• 铁和碳可形成一系列稳定化合物: Fe3C、 Fe2C、 FeC。 • 含碳量大于Fe3C成分(6.69%)时,合金太脆,已无实用价值。 • 实际所讨论的铁碳合金相图是Fe- Fe3C相图。
2-2
物质从液态到固态的转变过程称为凝固。 材料的凝固分为两种类型:

2金属及合金的结构


类型
包括空位、间隙原子、杂质或溶质原 子,以及由它们组成的复杂点缺陷,如空 位对、空位团和空位—溶质原子对等。
点缺陷的形成
out
点缺陷的平衡浓度
点缺陷的运动
22
点缺陷的运动
晶体中的点缺陷并不是固定不动的,而是处于不断 的运动过程中。 由于热激活,某个原子有可能获得足够的能量而 跳入空位中,即发生空位迁移 出于热运动,晶体中的间隙原子也可由—个间隙 位臵迁移到另一个间隙位臵;也会落入邻近的空位, 而使两者都消失,即发生复合. 由于能量起伏,其他地方可能又会出现新的空位 和间隙原子,以保持该温度下平衡浓度不变。
最近邻
0.74
0.68
0.74
致密度
是指晶胞中原子所占体积分数,即K = n v′/ V 。式中,n为晶胞所含原子数、v′为单个 原子体积、V为晶胞体积。
out
5
晶体的原子堆垛方式和间隙
纯金属最密排结构
原子密排面在空间一层一层平行地堆垛→晶体结构
out
6
间隙数
FCC:
Interstitial Site
合金
两种或两种以上金属元素,或金属元素 与非金属元素,经熔炼、烧结或其它方 法组合而成并具有金属特性的物质 元就是组成合金的元素。
组元 组成合金最基本的独立的物质,通常组 相
out
是合金中具有同一聚集状态、相同晶体 结构,成分和性能均一,并以界面相互 10 分开的组成部分→固溶体和中间相
合金组元之间的相互作用及其所形成的合金相的性质主要 是由它们各自的电化学因素、原子尺寸因素和电子浓度三个 因素控制的。
动理论与实际相差甚远.
27
螺型位错的运动 方向始终垂直位 错线和柏氏矢量
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八面体间隙,第一层密排面上3个相邻原子之间的间 隙之上正对着第二层密排面上3个相邻原子之间的 间隙,这6个原子之间形成一个八面体间隙,6个原 子的中心构成了正八面体的顶角。
2.间隙的密度 密堆积结构中的两层密排面及所形成的两类间隙。
每个八面体间隙周围有6个原子,每个原子周围有6
个八面体间隙因此平均一个原子有一个八面体间隙。
原子体积(Ω),即晶胞体积除以晶胞原子数;
(间)
价电子浓度
Hume-Rothery相 休姆
由于这些相都有较宽的固溶度,从化学意义上看, 不应该算是化合物.把这种相称为电子相。 在电子相中,无序的相只在高温稳定.冷却时要 进行共析分解或变为有序固洛体,例如铜 锌系中的β相要转变为β’相(B2型结构):此外, 不同合金系中,γ相的晶体结构不完全一样,但 非常接近,且晶胞都比较大。 例如,钢锌系中的γ相,《结构报告》符号为 D82,Pearson符号为cI52,一个晶胞有52个原 于。
锡在13.2℃以上具有体心四方结构(A5型结构,t14),又称β— Sn或白锡,132℃以下为金刚石型结构(A4型结构,cF8),又称 αSn或灰锡:由于二者比容的巨大差别,白锡转变为灰锡时, 体 积大约膨胀26.2%、因此会产生很大的应变能,使灰锡变形及 开裂,成为灰色粉末。
3. 面上原子 1/2
4. 晶胞内部 1
γ铁、铝、铜、镍、铅、金、银、铂等
ABC ABC 形式的堆积,
ห้องสมุดไป่ตู้
为什么是面心立方堆积?
我们来加以说明。
C B A
金属晶体结构中的间隙可以容纳尺较小的非金属元 素的原子,形成间隙固溶体;在间隙化合物中,非 金属原于也是位于密堆积结构的间隙中。 1.间隙的类型 密堆积结构中有两类间隙:四面体间隙和八面体间隙。 四面体间隙.密排面 上3个相邻原子之间的 间隙之上再放置一个 原子,这4个原于之间 就形成了一个四面体 间隙,4个原子的中心 构成了正四面体的顶 角。
c
(10 1 2)
(0001)
a3 a2 [100] (10 1 1) [2110] a1
(10 1 0) [110]
(1120)
[010] [1210]
[1120]
第二章 金属及合金相的晶体结构
V
Va =
V
V
三维晶胞的原子计数
在晶胞不同位置的原子由不同数目
的晶胞分享:
1. 顶角原子 1/8 2. 棱上原子 1/4
间隙半径:
=1/2[a- √ 2/4 a]
r四面体=0.225r
八面体间隙的中心分布在晶胞立方体棱边的中心 及立方体的中心。如果把晶胞分成大小相等的8个 小立方体.则四面体间隙的中心正好位于这些小 立方体的中心。我们已经知道,在密堆积结构今, 平均一个原子有一个八面体间隙和两个四面体间 隙,因此,在面心立方结构的晶胞中有4个八面体 间隙和8个四面体间隙。

每个四面体间隙周围有4个原子,每个原子周围 有8个四面体间隙(图中只表示出4个),因此平均一 个原子有两个四面体间隙。
二倍,也是原子数的二倍。
在密堆积结构中,四面体间隙数是八面体间隙数的

可算出四面体间隙和八面体间隙中,间隙半径与 原子半径的比值分别为0.225和0.414。
晶体结构中仍有空隙,面心立方
形成Laves相的两个元素在周期表中可以相距较远, 但也可以很靠近(如KNa2).同一元素在某个Laves相 中可以是较大的元素A,而在另一个Laves相中则为 较小的元家B, Laves相中既有过渡族元素.也有非 过渡族元素。 在223个Laves相中,有210个至少有一个组元是过 渡族元素;具有Mgcu2型结构的有152个;具有 MgZn2型结构的67个,只有少数几个具有MgNi2型 结构。
相关文档
最新文档