七年级数学下册5.2.1平行线导学案2(无答案)(新版)新人教版
七年级数学下册 5.2.1 平行线导学案1(新版)新人教版(2)

倾听学生的回答,进行必要的点拨
对学生书写过程适当纠正。
关注学 生的讲解思路。
关注学生的推理过程.
引导学生感受数学在生活中的应用。
学生自主回答,互相补充。
对知识运用部分的问题先独立完成,再小组交流合作,完成知识运用。先独立完成后,小组交流,统一答案,准备组间交流。
对策:教师纠正错误的说法.
综合知识运用
1、如图直线AB、CD相交于点O,OE⊥CD, OF⊥AB,∠DOF=65°,求∠B
请学生到黑板上板书,讲解。
教师对学生的疑问先请学生解答,适时精讲。
生相互纠错,组长安排组员到黑板板书。
学生读题。到黑板讲解。
其余学生在座位上倾听 ,适当提出问题。
第五章平行线
导学目标
1.回顾与思考本章的 知识点,梳理知识树,
2.应用已学知识解决数学问题。
3.掌握数形结合的思想,转化思想。
重点
使学生熟练应用平行线的性质进行推理和计算.
难点
掌握数形结合的思想,转化思想。
教学过程
教学环节
教学内容
教学任务
教师活动
学生活动
预见性问题及对策
知识梳 理
巡视指导 ,抽查备习。
对自己做错的习题及时进行修改。
预见性问题:角找的不准,角的符号不写
对策:教师提醒、
综合知识运用
2、如图,∠1=72°,∠2=72°,∠3=60°,求∠4的度数。
3.如图 ,在直角三角形ABC中,
∠C=90°,AC=4,将三角形ABC沿CB 向右平移得到三角形DEF,若平移距离为2,则平行四边形ABED的面积等于多少?
预见性问题:结论会说但理解不到位.
2019年七年级数学下册 5.2.1 平行线导学案(新版)新人教版 .doc

2019年七年级数学下册 5.2.1 平行线导学案(新版)新人教版主备:审核:时间:2015年月第周一【明确目标】1.了解平行线的概念、平面内两条直线的相交和平行的两种位置关系,知道平行公理以及平行公理的推论。
2.会用符号语言表示平行公理的推论,会用三角尺和直尺过已知直线外一点画这条直线的平行线。
重点:探索和掌握平行公理及其推论重点:对平行线本质属性的理解,用几何语言描述图形的性质二【自主预习】:阅读教材第11至12页,完成下列各题。
1 平行线的定义2 平行线的表示方法:直线a与b互相平行,记作;()3 在同一平面内,两条直线有()种位置关系,分别是()预习疑难(预习后,请把你的疑难问题记录下来)三【合作探究】:活动1 认识平行线欣赏电脑画面,认识平行线。
师生共同得出平行线的定义:在同一平面内,不相交的两条直线叫做平行线。
活动2 探求新知教师通过演示实物模型,引导学生观察、讨论,通过步步设问,引导学生思考下列问题。
⑴在木条转动过程中,有没有直线a与直线b不相交的位置呢?⑵在同一平面内,两条直线的位置关系?⑶过直线AB外一点P,你能画出直线AB的平行线吗?能画出几条?⑷练习:过点P画直线MN的平行线。
⑸在木条转动过程中,有几个位置使得a与b平行?过点B画直线a的平行线,能画出几条?类比前面学过的“垂线的性质”,你能得出什么结论?活动3 平行公里平行公理:_____________________________四.【当堂反馈】一、填空题:1.在同一平面内,两条直线的位置关系有__________与_________两种。
2.在同一平面内,一条直线和两条平行线中的一条直线相交,那么这条直线与平行线中的另一条__________。
3.在同一平面内,两条相交直线不可能都与第三条直线平行,这是因为____________________________________________________________。
平行线(导学案)七年级数学下册同步备课系列(人教版)

学习笔记记录区_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________5.2.1平行线导学案一、学习目标:1.理解平行线的概念;2.掌握基本事实:过直线外一点有且只有一条直线与这条直线平行;3.能用三角尺和直尺过已知直线外一点画这条直线的平行线;4.了解平行于同一条直线的两条直线平行.重点:掌握基本事实:过直线外一点有且只有一条直线与这条直线平行;能用三角尺和直尺过已知直线外一点画这条直线的平行线.难点:平行线的画法、平行公理及其推论的应用.二、学习过程:自学导航思考:如图,分别将木条a、b 与木条c 钉在一起,并把它们想象成两端可以无限延伸的三条直线.转动直线a,想象一下,在这个过程中,有没有直线a 与直线b不相交的位置呢?【归纳】1.平行线的定义:在___________内,________的两条直线叫做平行线.(在同一平面内,不重合的两条直线只有两种位置关系:______和______.)2.平行线的表示法:我们知道了平行线的定义后,如何用几何语言来描述平行线呢?学习笔记记录区_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________通常用“_____”表示平行,读作“_____”.如下图中直线AB 与直线CD 平行,记作_________.如果用l ,m 表示这两条直线,那么直线l 与直线m 平行记作_______.思考:在图中转动木条a 的过程中,有几个位置使得直线a 与b平行?平行线画法:(观察动画演示,然后在下边画一画)合作探究思考:如图,过点B 画直线a 的平行线,能画出几条?再过点C 画直线a 的平行线,它和前面过点B画出的直线平行吗?【归纳】基本事实(平行公理):_____________________________________________________________.学习笔记记录区_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________(平行公理的推论):_______________________________________________________________________________________________________________.也就是说:如果b∥a,c∥a,那么_________.几何语言:∵________________,∴_________.考点解析考点1:平行线的概念★★例1.如图,能相交的是______,平行的是_______.(填序号)【迁移应用】1.在同一平面内,两条不重合的直线的位置关系是()A.平行B.相交C.相交或平行D.垂直2.下列说法正确的是()A.同一平面内没有公共点的两条直线平行B.两条不相交的直线一定平行C.同一平面内没有公共点的两条线段平行D.同一平面内没有公共点的两条射线平行3.如图,把教室中墙壁的棱看作直线的一部分,那么下列位置关系表示不正确的是()A .AB ⊥BCB .AD //BCC .CD //BFD .AE //BF学习笔记记录区_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________考点2:平行线的画法★★例2.如图①,直线MN ,PQ 交于点O ,R 为MN ,PQ 外一点,过点R 画直线AB//PQ,直线CD//MN.【迁移应用】读下列语句,并画出图形:(1)如图①,过点A 画直线MN //BC ;(2)如图②,过点C 画CE //DA ,交AB 于点E ,过点C 画CF //DB ,交AB 的延长线于点F .考点3:平行公理及其推论★★★例3.下列说法中正确的有()①一条直线的平行线只有一条;②过一点与已知直线平行的直线有且只有一条;学习笔记记录区_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________③因为a //b ,c //d ,所以a //d ;④经过直线外一点,有且只有一条直线与这条直线平行.A .1个B .2个C .3个D .4个【迁移应用】1.下面推理正确的是()A .因为a //b ,b //c ,所以c //dB .因为a //c ,b //d ,所以c //dC .因为a //b ,a //c ,所以b //cD .因为a //b ,c //d ,所以a //c2.已知在同一平面内有一直线AB 和一点P ,过点P 画AB 的平行线,可画______条.3.如图,若AB //l ,AC //l ,则A ,B ,C 三点共线,理由是____________________________.考点4:利用平行公理及其推论进行简单的说理★★★例4.如图①,已知直线a ,点B ,C .(1)过点B 画直线a 的平行线,能画几条?(2)过点C 画直线a 的平行线,它与过点B 的平行线平行吗?为什么?【迁移应用】1.如图,因为直线AB ,CD 相交于点P ,AB //EF ,所以CD 与EF 不平行,理由是__________________________________________________.学习笔记记录区_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________2.如图,把一张长方形的硬纸片ABCD 对折,MN 是折痕,把面ABNM 平摊在桌面上,另一面CDMN 不论怎样改变位置,总有AB //CD,你知道这是为什么吗?。
七年级数学下册 5.2.1 平行线导学案(新版)新人教版(13)

5.2.1 平行线课型:新授课课时:1【学习目标】1. 了解平行线的定义、公理及其推论。
2. 会用几何符号语言表示平行公理的推论。
3. 会用直尺和三角板过直线外一点画这条已知直线的平行线。
【预习导学】1. 在同一平面内,两条直线除了相交的位置关系外,还有其它位置关系吗?2. 在同一平面内,三条直线除了相交的位置关系外,还有其它位置关系吗?【合作探究】1. 课本第11页,观察图5.2-1,在同一平面内,两条直线除了相交的位置关系外,还有一种不相交的位置关系:,这时,我们说这两条直线互相平行,记做a b,读作a平行于b。
2. 课本第12页,讨论思考,图5.2-3,在同一平面内,过已知直线外一点,有且有条直线和已知直线平行,这就是公理。
3. 课本第12页,讨论图5.2-4,在同一平面内,如果两条直线同时和第三条直线平行,那么两条直线也互相平行,这就是公理的推论。
用几何符号语言表示:如果a∥b,c∥b,那么a∥c,或者这样表示:∵a∥b,c∥b,∴a∥c。
4. 完成课本第12页练习。
【学以致用】1. 在同一平面内,两条直线的位置关系有。
2. 过直线外一点,可以作条直线和这条已知直线平行。
3. 如果一条直线和两条平行线中的一条直线相交,那么这条直线和这两条平行线中的另外一条。
4.在同一平面内,三条直线最多有个交点,最少有个交点。
5. 读下列语句,并画出图形:1)直线a、b互相垂直,点P是直线a、b外一点,过点P作直线c垂直于b;2)试判断直线a、c的位置关系。
O EDC BA6. 简单推理: 1)例题:如图,a ⊥b ,a ⊥c . ∵a ⊥b ,a ⊥c (已知)∴0901=∠,0902=∠(垂直的定义) ∴21∠=∠ (等量代换) 2)请仿照上述例题完成下题: 如图,op 平分∠AOB. ∵op 平分∠AOB ( )∴AOB ∠=∠211,AOB ∠=∠212( ) ∴21∠=∠ ( )【巩固提升】1. 如图,O 为直线AB 上任意一点,从点O 引一射线OD ,OC 、OE 分别平分∠AOD 、∠BOD ,试猜想∠EOD+∠COD 等于多少度,请说明理由. 解:∵O 为直线AB 上任意一点( )∴∠AOB= ( ) ∵OC 、OE 分别平分∠AOD 、∠BOD ( )∴AOD DOE AOE ∠=∠=∠21BOD BOC COD ∠=∠=∠21( ) ∵∠AOB=0180(已证)∴0180=+∠+∠+∠BOD DOC DOE AOE ∴018022=∠+∠DOC DOE ( ) ∴090=∠+∠DOC DOE ( )PB OA21。
人教版七年级数学下册5.2.1平行线 导学案

aC B 5.2.1平行线 导学案一、自学范围(12页练习)二、自学目标:1、了解平行线的概念、平面内两条直线相交和平行的两种位置关系, 知道平行公理以及平行公理的推论.2.会用符号语言表示平行公理推论, 会用三角尺和直尺过已知直线外一点画这条直线的平行线.三、自学重点:平行公理也及平行公理的推论四、自学过程:1、自学12页思考,体会在平面内两条直线能存在几种位置关系?2、根据课本填空:在同一平面内,如果存在一条直线a 与直线b 不相交的位置,这时直线a 与直线b 互相 ,记作:3、举出生活中平行的例子。
4、在同一平面内,不重合的两条直线有几种位置关系?动手画一画。
5、自学13页上方的思考:(该怎样经过一点画已知直线的平行线呢)(提示:参考一下13页下面的思考)用三角尺和直尺分别过B点和C点作直线a的平行线b和c。
(1)过点B能作条(2)过点C能作条6、平行公理:经过直线外一点,有且只有条直线与这条直线平行。
7、在上面的作图中,b∥a c∥a,那b与c平行吗?推论:如果两条直线都与第三直线平行,那么这两条直线也互相平行。
(想一想为什么)五、学效测试:8、12页练习9、在同一平面内,两条不重合直线的位置关系可能是( )A.平行或相交B.垂直或相交;C.垂直或平行D.平行、垂直或相交10、下列说法正确的是( )A.经过一点有一条直线与已知直线平行B.经过一点有无数条直线与已知直线平行C.经过一点有且只有一条直线与已知直线平行D.经过直线外一点有且只有一条直线与已知直线平行11、在同一平面内有三条直线,若其中有两条且只有两条直线平行,则它们交点的个数为( )A.0个B.1个C.2个D.3个12.下列说法正确的有( )①不相交的两条直线是平行线;②在同一平面内,两条直线的位置关系有两种;③若线段AB与CD没有交点,则AB∥CD;④若a∥b,b∥c,则a与c不相交.A.1个B.2个C.3个D.4个六、巩固练习1.在同一平面内,两条直线可能的位置关系是()A.平行 B.相交C.平行或相交 D.平行、相交或垂直2.如图所示,将一张长方形纸片对折三次,则产生的折痕与折痕间的位置关系是()A.平行 B.垂直 C.平行或垂直 D.无法确定3. 已知直线l和它外面的一个点P,则过点P()A.只能画出直线l的一条平行线B.能画出直线l的一组平行线C.不能画出直线l的平行线D.能画出直线l的无数条垂线4. 下列选项:(1)一条直线的平行线只有1条;(2)对于同一平面内的三条不同直线a、b、c,若a∥b,b∥c,则直线a∥c;(3)如果两条直线都与第三条直线平行,那么这两条直线平行;(4)经过直线外一点,有且只有一条直线与这条直线平行,其中正确的有()A. 1个B.2个C. 3个D. 4个5. 在如图所示的方格纸上过点P画直线AB的平行线.答案1. C2. C3. A4. C5. 解:画图如下:。
2019-2020学年七年级数学下册 5.2.1 平行线 导学案 新人教版.doc

第9题图 第10题图 第11题图2019-2020学年七年级数学下册 5.2.1 平行线 导学案 新人教版一、教材分析:(一)学习目标:1.知道两条直线互相平行的意义.2.会利用三角尺和直尺,经过一点画平行于已知直线的直线.3.通过画图,经历得出平行公理及推论的过程.(二)学习重点和难点:1.重点:两条直线互相平行的意义,平行公理及其推论.2.难点:画平行线.二、问题导读单:阅读P12—13页回答下列问题:1.阅读实验体会P12页中“思考”问题,得出----平行线概念:在同一平面内,_____________的两条直线叫做平行线.直线a 与b 平行,记作a____b .2.同组同学生举例说明平行线的生活实例.3.画出图形总结说明:同一平面内两条直线的位置关系有___种:_________________4.实验探索P13页中”思考”问题,得出结论是:(1).经过直线外一点,_________________直线与这条直线平行(也称平行公理).(2)如果两条直线都与第三条直线平行,那么_______________________.(也称平行公理推论)即:如果b ∥a ,c ∥a ,那么b ∥c .写成推理形式:∵b ∥a ,c ∥a (已知)∴b ∥c (如果两条直线都与第三条直线平行,那这两条直线也互相平行.)三、问题训练单:5.在同一平面内,两条直线可能的位置关系是 .6.在同一平面内,三条直线的交点个数可能是 .7.下列说法正确的是( )A .经过一点有且只有一条直线与已知直线平行B .经过一点有无数条直线与已知直线平行C .经过一点有一条直线与已知直线平行D .经过直线外一点有且只有一条直线与已知直线平行8.下列命题:(1)长方形的对边所在的直线平行;(2)经过一点可作一条直线与已知直线平行;(3)在同一平面内,如果两条直线不平行,那么这两条直线相交;(4)经过一点可作一条直线与已知直线垂直.其中正确的个数是( )A .1B .2C .3D .49.如图,直线AB ,CD 被DE 所截,则∠1和 是同位角,∠1和 是内错角,∠1和 是同旁内角.如果∠5=∠1,那么∠1 ∠3.10.已知直线a 和a 外一点P ,利用三角尺和直尺,经过点P 画平行于a 的直线.11.如图,利用三角尺和直尺,过点B 画直线a 的平行线b ,过点C 画直线a 的平行线c ,直线b 与直线c 互相平行吗?为什么? P a C B aAB C2 3 4 5 1 AB C D12.如图,按下列语句画图:(1)过点A画AD∥BC;(2)过点C画CE∥AB,与AD相交于点E.13*在同一平面内,两条直线的位置关系仅有两种:相交或平行.但现实空间是立体的,试想一想在空间中,两条直线会有哪些位置关系呢?(用长方体来说明)四、问题生成单:五、谈本节课收获和体会:课题:5.2.2平行线的判定(1)月日班级:姓名:一、教材分析:(一)学习目标:1.经历判定直线平行方法1的探究过程,知道同位角相等,两直线平行.2.经历判定直线平行方法2的探究过程,知道内错角相等,两直线平行.3.经历判定直线平行方法3的探究过程,知道同旁内角互补,两直线平行.(二)学习重点和难点:1.重点:判定直线平行的三个方法及探究过程.2.难点:方法3的探究.二、问题导读单:阅读P13—15页回答下列问题:1.按P13页“思考”问题要求进行画图分析体会,可以看出:画AB的平行线____,实际上就过点P画与∠1相等的_____,而∠1和∠2是直线AB,CD被直线EF截得的___________,这说明,如果__________________,那么_____________.这样得到了判定方法1两条直线被第三条直线所截,如果____________,那么这两条直线平行.简单地说成:______________,_________________(此时多读几遍应该理解记住!!)2.如图5.2-7,说明木工用图中的角尺画平行线的道理是:_____________________________________________________________________3.按P14页“思考”问题要求进行画图分析体会,由∠2=∠3,得出a∥b(1)说理形式: 因为∠2=∠3,而∠3=∠1(___________),所以∠1=∠2,即同位角相等,从而a ∥b(根据:______________________________________________.)(2)推理形式: ∵∠2=∠3(_______)又∵ ∠3=∠1(_______________)∴_______________∴a ∥b (____________________________________________) 判定方法2两条直线被第三条直线所截,如果____________,那么这两条直线平行. 简单地说成:______________,_________________(此时多读几遍应该理解记住!!)4.判定方法3两条直线被第三条直线所截,如果__________________,那么这两条直线平行.简单地说成:______________,________________(此时多读几遍应该理解记住!!)三、问题训练单: 5.如图,如图,填空: (1)当∠ACE=∠________时,AB ∥CE ,理由是__________________________________________;(2)当∠B=∠________时, AB ∥CE ,理由是 __________________________________________.6. 已知∠2=135°,填空:(1)如果∠1=_____°,那么a ∥b ,理由是___________________________________; (2)如果∠3=_____°,那么a ∥c ,理由是 ___________________________________. 7.如图,已知∠1=80°,∠2=100°, 则_____∥_____,理由是 _______________________________________. 8.如图,填空:(1)如果∠A+∠B=180°, 那么_____∥_____;(2)如果∠A+∠D=180°,那么_____∥_____. 9.判断两直线平行的三种方法分别是:判定方法1:______________________________________________判定方法2:______________________________________________判定方法3:______________________________________________四、问题生成单:五、谈本节课收获和体会: D C B A 312d b a c b a c 12A B C D E。
初中数学人教新版七年级下册5.2.1 平行线 1导学案
初中数学人教新版七年级下册实用资料5.2.1 平行线【学习目标】1.理解平行线的意义,了解同一平面内两条直线的位置关系;2.理解并掌握平行公理及其推论的内容;3.会根据几何语句画图,会用直尺和三角板画平行线;4.了解平行线在实际生活中的应用,能举例加以说明.重点:平行线的概念与平行公理;难点:对平行公理的理解.【自主学习】问题1 同一平面内两条直线的位置关系平面内任意两条直线的位置关系除平行外,还有哪些呢?平行线:在同一平面内,_______________的两条直线叫做平行线。
直线a与b 平行,记作“a∥b”。
在同一平面内,两条直线只有两种位置关系:_______或_______。
**对平行线概念的理解:两个关键:一是“在同一个平面内”(举例说明);二是“不相交”.一个前提:对两条直线而言.问题2 平行线的画法平行线的画法是几何画图的基本技能之一,在以后的学习中,会经常遇到画平行线的问题.方法为:一“落”(三角板的一边落在已知直线上),二“靠”(用直尺紧靠三角板的另一边),三“移”(沿直尺移动三角板,直至落在已知直线上的三角板的一边经过已知点),四“画”(沿三角板过已知点的边画直线).已知:直线a,点B, 点C B、(1)过点B画直线a的平行线,能画几条?(2)过点C画直线a的平行线,它与过点B的平行线平行吗? aC归纳:(1)平行公理:经过_____一点,有且只有一条直线与这条直线_____。
(2)两条直线都与第三条直线平行(平行线是在同一平面内定义的),那么这两条直线_______.即b∥a,c∥a,那么_______。
问题3 在同一平面内,直线a与b满足下列条件,把它们的位置关系填在后面的横线上。
(1)a与b没有共同点,则a与b_______。
(2)a与b有且只有一个共同点,则a与b_______。
在同一平面内,若两条直线相交,则公共点的个数是____;若两条直线平行,则公共点的个数是____。
人教版七年级下册数学同步导学案:《 5.2.1平行线》导学案 (无答案)
《 5.2.1平行线》导学案班级小组姓名评价一、学习目标1.了解平行线的概念,掌握平面内两条直线的位置关系,知道平行公理和它的推论。
2.通过观察、画图、交流、归纳进一步发展空间想象,培养分析、概括的能力;3.自主学习,享受学习的快乐!二、自主学习1.阅读教材第11页,学习“平行线”的定义及表示法:通过自己的演示、思考、想象可知:在木条转动过程中,存在一条直线a与直线b不相交的位置,即直线a与b互相平行,用数学语言描述:同一平面内,的两条直线叫做平行线。
如图(1):直线a与直线b是平行的,记作:a b,读作:。
2.同一平面内,不重合的两条直线只有两种位置关系:_________和_________。
3.阅读教材第12页,学习“平行公理及其推论”:用直尺与三角板画图:已知:直线a、点B、点C,如图2(1)过点B画直线a的平行线,能画几条?(2)过点C画直线a的平行线,能画几条?它与过点B的平行线平行吗?通过观察与画图。
得出一个基本事实:(用数学语言表达)平行公理:经过直线外一点,一条直线与这条直线平行。
平行公理的推论:如果两条直线都和第三条直线平行,那么这两条直线也互相。
结合图(3)用符号语言描述其推论:如果b∥a、c∥a那么∥;4.平行线的画法:一“落”(三角板一边落在已知直线上);二“靠”(用直尺紧靠三角板的另一边);三“移”(沿直尺移动三角板,直到落在已知直线上的三角板的一边经过已知点);四“画”(沿三角板过已知点的边画直线)。
同学们试一试(如图4)。
5.阅读指导:(1)平行线的定义中一定要注意“在同一平面内”这个条件;(2)平行线的公理“经过直线外一点,有且只有一条直线与这条直线平行”一定要注意这一点是直线外的一点,要区别于垂线的性质;(3)平行公理的推论是证明两线平行的一种重要方法,其实质是:平行线具有平行的传递性。
一般证明三条或三条以上的直线平行,用此推论较方便。
三、合作探究1.在同一平面内的两直线的位置关系有_______和________两种。
2020年七年级数学下册《5.2.1 平行线》导学案(新版)新人教版-2.doc
重难点
二、针对本节所学习教材内容,教师提出三个或以上可操作,可测的大问题 1.探究一: 1)火车行驶的两条笔直的铁轨、人行道上的斑马线等都给我们平行 的形象.说说什么ቤተ መጻሕፍቲ ባይዱ平行线? 2)请思考:在同一平面内,两条不重合的直线有几种位置关系?动手画一画, 并尝试用几何语言来表示..
2.探究二:已知:直线 a,点 B,点 C. (1)过点 B 画直线 a 的平行线,能画几条? (2)过点 C 画直线 a 的平行线,它与过点 B 的平行线平行吗? 前置学习 (课前独 学 20 分 或 30 分 钟)
课堂学习流程 一、前置学习展示交流 5-10 分钟: (对学群学) (一)学生提出的问题:
总结反思
(二)注 意事项: (师生总结,学生整理)
二、分层训练(20 分钟) (一)双基过关 (二)能力提升 如图,在四边形 ABCD 中,AD∥BC,E 为 AB 的中点。 (1)过点 E 作直线 EF∥BC,交 CD 于点 F; (2)直线 EF 与 AD 是否平行?为什么?
C B
观察画图,写下你的发现:
a
三、跟踪练习: 1.在同一平面内,两条直线的位置关系有 。 2.三条直线 a、b、c,若 a∥c,b∥c,则 a 与 b 的位置关系是( ) A. a⊥b B.a∥b C.a⊥b或a∥b D.无法确定 3.按要求画平行线. (1)过 P 点画 AB 的平行线 EF; (2)过 P 点画 CD 的平行线 MN.
E B C
A
D
(3)试比较 DF 与 CF 的大小。
三、课堂小结(5 分钟) ◆ 总结所学,建构知识:
四、达标反馈(10-15 分钟) 必做题: 1.如图所示,点 A,B 分别在直线 l1 , l 2 上, (1)过点 A 画到 l 2 的垂线段; (2)过点 B 画直线 l 3 ∥ l1 .
人教版七年级数学下册(导学案)5.2.1平行线
第五章订交线与平行线教课备注【自学指导提示】学生在课前达成自主学习部分平行线及其判断平行线学习目标: 1.在丰富的现真相境中,进一步认识两条直线的平行关系,理解平行线的定义及表示方法,掌握平行公义及其推论,提升辨别平行线的能力.2.经过用三角尺、量角器、方格纸画平行线,累积操作活动的经验,培育着手操作能力和空间想象能力; .3.感觉数学语言的整齐美,激发学生研究知识的热忱,把学到的知识应用到生活中去,进一步提升学生的参加意识和合作精神..重点:平行公义及其推论.难点:作图:过直线外一点画一条直线与已知直线平行.自主学习一、知识链接1.你能画出两条订交的直线吗?两条直线订交有几个交点?2.在同一平面内,怎样过一点画一条直线的垂线?二、新知预习1. 在同一平面内,的两条直线叫平行线 . 直线 a 与直线b 相互平行,记作.2. 在同一平面内,不重合的两条直线的地点关系有种,分别是和.3. 平行公义:.推论:假如两条直线都与第三条直线平行,那么这两条直线也.即假如 b∥ a,c ∥ a,那么.三、自学自测1.如图,过点 C作直线 AB的平行线,以下说法正确的选项是()A. 不可以作B. 只好作一条C. 能作两条D. 能作无数条2. 判断正误:(1)没有公共点的两条直线叫作平行线;()(2)两条直线的地点关系只有两种:订交和平行;()(3)在同一平面内,两条直线的地点关系有三种:订交、垂直和平行. ()四、我的迷惑___________________________________________________________________________ ___________________________________________________________________________讲堂研究一、重点研究研究点 1:平行线的定义及表示问题 1:如图,分别将木条a、b 与木条 c 钉在一同,并把它们想象成两头能够无穷延长的三条直线 .转动 a,直线 a 从在 c 的左边与直线 b 订交逐渐变成在右边与 b 订交 .想象一下,在这个过程中,有没有直线 a 与直线 b 不订交的地点呢?教课备注配套 PPT 讲解1.情形引入(见幻灯片 3)2.研究点 1 新知讲解(见幻灯片7-9)问题 2:平行线的定义是什么?定义中哪些词语比较重要?问题 3:察看以下图形,哪些画出了你心目中的平行线?概括总结:平行线的定义包括三层意思:(1)“在同一平面内”是前提条件;(2)“不订交”就是说两条直线没有交点;(3)平行线指的是“两条直线”而不是两条射线或两条线段.问题 4:平行用符号怎么表示?两条直线平行用符号怎么表示?研究点 2:平行线的画法、平行公义及推论画一画:(1) 经过点 C 能画出几条直线?教课备注(2) 与直线 AB 平行的直线有几条?(3) 经过点 C 能画出几条直线与直线AB 平行?配套 PPT 讲解(4) 过点 D 画一条直线与直线 AB 平行,与 (3) 中3.研究点 2 新所画的直线平行吗?知讲解(见幻灯片10-14)概括总结:1. 平行公义:经过直线外一点,有且只有一条直线与已知直线平行.2. 平行公义的推论:假如两条直线都与第三条直线平行,那么这两条直线相互平行.典例精析例 1:判断:(1)两条直线不订交就平行()(2)在同一平面内,两条不一样的直线有且只有一个交点()(3)过一点有且只有一条直线与已知直线平行((4)平行于同一条直线的两条直线相互平行())例 2:如图,P是∠AOB内一点.(1)过点 P 分别画出OA , OB 的平行线;(2)量一量:画出的两条平行线所夹的角与∠O 有什么样的数目关系?二、讲堂小结平行线的定义在同一平面内,不订交的两条直线叫做平行线. 4.讲堂小结平行公义经过直线外一点,有且只有一条直线与已知直线平行.平行公义的推论假如两条直线都与第三条直线平行,那么这两条直线相互平行 .当堂检测1.以下说法正确的选项是()A.在同一平面内,不订交的两条射线是平行线;B.在同一平面内,不订交的两条线段是平行线;C.在同一平面内,两条不重合的直线的地点关系不是订交就是平行;D.不订交的两条直线是平行线2.以下说法正确的选项是()A、一条直线的平行线有且只有一条B、经过一点有且只有一条直线与已知直线平行C、经过一点有两条直线与某向来线平行D、过直线外一点有且只有一条直线与已知直线平行3.以下推理正确的选项是()A. 由于 a // d,b // c ,因此 c // dB. 由于 a // c,b // d,因此 c // dC.由于 a // b,a // c,因此 b // cD. 由于 a // b,c // d ,因此 a // c4.达成以下推理,并在括号内注明原因.( 1)如图,由于AB // DE , BC // DE (已知),因此A,B,C 三点;()( 2)如图,由于AB // CD , CD // EF (已知),因此________ // _________. ()5.【能力拓展】如图,直线 a ∥ b, b∥ c, c∥ d,那么 a ∥ d 吗?为何?教课备注配套 PPT 讲解5.当堂检测(见幻灯片15-20)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a C B
平行线
学习目标:
1、了解平行线的概念、平面内两条直线相交和平行的两种位置关系, 知道平行公理以及平行公理的推论.
2、会用符号语言表示平行公理推论, 会用三角尺和直尺过已知直线外一点画一条直线的平行线. 学习重点:平行公理也及平行公理的推论
学习过程:
1、自学12页思考,体会在平面内两条直线能存在几种位置关系?
2、根据课本填空:在同一平面内,如果存在一条直线a 与直线b 不相交的位置,这时直线a 与直线b 互相 ,记作:
3、在同一平面内,不重合的两条直线有几种位置关系?动手画一画。
4、自学13页上方的思考:(该怎样经过一点画已知直线的平行线呢)(提示:参考一下13页下面的思考)用三角尺和直尺分别过B 点和C 点作直线a 的平行线b 和c 。
(1)过点B 能作 条 (2)过点C 能作 条
5、平行公理:经过 点, 直线与这条直线平行。
6、在上面的作图中,b ∥a c ∥a,那b 与c 平行吗?
推论:如果两条直线都与第三直线平行,那么这两条直线也互相平行。
五、随堂测试:
1、完成课本第13页的练习
2、在同一平面内,两条不重合直线的位置关系可能是( )
A.平行或相交
B.垂直或相交;
C.垂直或平行
D.平行、垂直或相交
3、下列说法正确的是( )
A.经过一点有一条直线与已知直线平行
B.经过一点有无数条直线与已知直线平行
C.经过一点有且只有一条直线与已知直线平行
D.经过直线外一点有且只有一条直线与已知直线平行
4、在同一平面内有三条直线,若其中有两条且只有两条直线平行,则它们交点的个数为( ) A.0个 B.1个 C.2个 D.3个
5、下列说法正确的有( )
①不相交的两条直线是平行线;②在同一平面内,两条直线的位置关系有两种;
③若线段AB 与CD 没有交点,则AB ∥CD;④若a ∥b,b ∥c,则a 与c 不相交.
A.1个
B.2个
C.3个
D.4个
6、在同一平面内( )
A 、不相交的两条线段平行
B 、不相交的两射线给平行
C 、线段与直线不平行就相交
D 、不相交的两直线平行
7、下列说法不正确的是()
A 、已知直线的平行线有无数条
B 、过一点有无数条直线平行于已知直线
C 、过直线外一点有且只有一条直线平行于已知直线
D 、过一点有且只有一条直线垂垂直于已知直线
8、在同一平面内,直线l 与两条平行线a 、b 的位置关系是( ) A 、l 一定与a 、b 都平行 B 、l 可能与a 平行,与b 相交
C 、l 一定与a 、b 都相交
D 、l 与a ,b 都平行或都相交
9、若11∥l 2,l 2∥l 3,则l 1 l 3,这是根据 。
10、如图所示,直线AB ∥CD ,点O 在直线AB 、CD 外。
(1)用三角板和直尺过点O 画直线EF ,使EF ∥AB,
(2)你能判断EF 与CD 的位置关系吗?为什么?
11、读句画图:M 是直线AB 外一点,过点M 的直线MN 与AB 交于点N ,过点M 画直线CD ,使CD ∥AB.
D C B A O。