考点06 一元二次方程及其应用【无答案】

合集下载

一元二次方程及其应用知识点

一元二次方程及其应用知识点

一元二次方程及其应用1.【课前热身】①方程3(1)0x x +=的二次项系数是 ,一次项系数是 ,常数项是 . ②关于x 的一元二次方程1(3)(1)30n n xn x n +++-+=中,则一次项系数是 . ③一元二次方程2230x x --=的根是 . ④某地2005年外贸收入为2.5亿元,2007年外贸收入达到了4亿元,若平均每年的增长率为x ,则可以列出方程为 . ⑤关于x 的一元二次方程225250x x p p -+-+=的一个根为1,则实数p = .2.【考点链接】①一元二次方程:在整式方程中,只含 个未知数,并且未知数的最高次数是 的方程叫做一元二次方程.一元二次方程的一般形式是 .其中叫做二次项, 叫做一次项, 叫做常数项; 叫做二次项的系数, 叫做一次项的系数. ②常用解法:(1)直接开平方法:(2)配方法:(3)公式法:(4)因式分解法: ③易错知识辨析: (1)判断一个方程是不是一元二次方程,应把它进行整理,化成一般形式后再进行判断,注意一元二次方程一般形式中0≠a .(2)用公式法和因式分解的方法解方程时要先化成一般形式. (3)用配方法时二次项系数要化1.(4)用直接开平方的方法时要记得取正、负. 【典例精析】例①选用合适的方法解下列方程:)4(5)4(2+=+x x x x 4)1(2=+ 22)21()3(x x -=+ 31022=-x x例② 已知一元二次方程0437122=-+++-m m mx x m )(有一个根为零,求m 的值.例③ 用22长的铁丝,折成一个面积是30㎝2的矩形,求这个矩形的长和宽.又问:能否折成面积是32㎝2的矩形呢?为什么? 3.【中考演练】①方程 (5x -2) (x -7)=9 (x -7)的解是_____.②已知2是关于x 的方程23x 2-2 a =0的一个解,则2a -1的值是____.③关于y 的方程22320y py p +-=有一个根是2y =,则关于x 的方程23x p -=的解为_____.④下列方程⑴9 x 2=7 x ⑵32y =8 ⑶3y(y-1)=y(3y+1)⑷x 2-2y+6=0⑸2( x 2+1)=10 ⑹24x -x-1=0中是一元二次方程的有_____.⑤一元二次方程(4x +1)(2x -3)=5x 2+1化成一般形式ax 2+bx +c =0(a ≠0)后a,b,c 的值为_____.⑥一元二次方程2x 2-(m +1)x +1=x (x -1) 化成一般形式后二次项的系数为1,一次项的系数为-1,则m 的值为_____.⑦解方程x 2-5x -6=0 3x 2-4x -1=0 4x 2-8x +1=0 x 222-x+1=0.⑧某商店4月份销售额为50万元,第二季度的总销售额为182万元,若5、6两个月的月增长率相同,求月增长率.一元二次方程根的判别式及根与系数的关系1.【课前热身】①一元二次方程2210x x --=的根的情况为( )A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根②若方程kx 2-6x +1=0有两个不相等的实数根,则k 的取值范围是 . ③设x 1、x 2是方程3x 2+4x -5=0的两根,则=+2111x x ,.x 12+x 22= . ④关于x 的方程2x 2+(m 2-9)x +m +1=0,当m = 时,两根互为倒数;当m = 时,两根互为相反数⑤若x 1 =23-是二次方程x 2+ax +1=0的一个根,则a = ,该方程的另一个根x 2 = . 2.【考点链接】①根的判别式:关于x 方程()002≠=++a c bx ax 的根的判别式为②根与系数的关系20(0)ax bx c a ++=≠有两根分别为1x ,2x ,那么=+21x x=⋅21x x③易错知识辨析:(1)在使用根的判别式解决问题时,如果二次项系数中含有字母,要加上二次项系数不为零这个限制条件.(2)应用一元二次方程根与系数的关系时,应注意:① 根的判别式042≥-ac b ;② 二次项系数0a ≠,即只有在一元二次方程有根的前提下,才能应用根与系数的关系.2【典例精析】例① 当k 为何值时,方程2610x x k -+-=,(1)两根相等;(2)有一根为0; (3)两根为倒数.例②菱形ABCD 的一条对角线长为6,边AB 的长是方程01272=+-x x 的一个根,则菱形ABCD 的周长为 . 3.【中考演练】①设x 1,x 2是方程2x 2+4x -3=0的两个根,则(x 1+1)(x 2+1)= ____,x 12+x 22=_____,1211x x +=_____,(x 1-x 2)2=____.②当c =____时,关于x 的方程2280x x c ++=有实数根.(填一个符合要求的数即可)③已知关于x 的方程2(2)20x a x a b -++-=的判别式等于0,且12x =是方程的根,则a b +的值为 .④已知a b ,是关于x 的方程2(21)(1)0x k x k k -+++=的两个实数根,则22a b +的最小值.⑤已知α,β是关于x 的一元二次方程22(23)0x m x m +++=的两个不相等的实数根,且满足111αβ+=-,则m 的值是 .⑥一元二次方程2310x x -+=的两个根分别是12x x ,,则221212x x x x +的值是.⑦若关于x 的一元二次方程02.2=+-m x x 没有实数根,则实数m 的取值范围是.⑧设关于x 的方程kx 2-(2k +1)x +k =0的两实数根为x 1、x 2,,若,4171221=+x x x x ⑨已知关于x 的一元二次方程()2120x m x m --++=. (1)若方程有两个相等的实数根,求m 的值;(2)若方程的两实数根之积等于292m m -+⑩下列命题:① 若0a b c ++=,则240b ac -≥;② 若b a c >+,则一元二次方程20ax bx c ++=有两个不相等的实数根; ③ 若23b a c =+,则一元二次方程20ax bx c ++=有两个不相等的实数根; ④ 若240b ac ->,则二次函数的图像与坐标轴的公共点的个数是2或3. 其中正确的是( )A.只有①②③ B.只有①③④ C.只有①④ D.只有②③④.一元二次方程实际问题1.【课前热身】 2.【典例精析】 3.【中考演练】。

中考数学复习 第二单元 方程(组)与不等式(组)第06课时 一元二次方程及其应用课件

中考数学复习 第二单元 方程(组)与不等式(组)第06课时 一元二次方程及其应用课件













(续表)
应用类型
等量关系
面积问题
AB+BC+CD=a
S阴影=⑨ (a-2x)(b-2x)
S阴影=⑩(a-x)(b-x)
第八页,共三十四页。
S阴影= ⑪
-

·x












对点演练
题组一 必会题
1.若关于x的方程(fāngchéng)(m-1)x2+mx-1=0是一元二次方程,则m的取值范围是 (
耗),窗框的上部是等腰直角三角形,下部是两个全等的矩形,窗框的总面积为 3 m2
(材料的厚度忽略不计).若设等腰直角三角形的斜边长为 x m,下列方程符合题意的
A.16(1+2x)=25
B.25(1-2x)=16
)
[答案] D
[解析]一种药品原价每盒25元,两次降价的百分
率都为x,所以第一次降价后的价格用代数式表
示为25(1-x),第二次降价后的价格用代数
式表示为25(1-x)·(1-x)=25(1-x)2,根据题意可
列方程为25(1-x)2=16,故选D.
C.16(1+x)2=25
D.25(1-x)2=16
第二十六页,共三十四页。












角度( jiǎodù)2 图形面积问题
例4 [2018·安徽名校模拟] 如图6-2,某街道办事处把一块矩形空地进行绿化.已知该矩形空地

人教版中考数学考点系统复习 第二章 方程(组)与不等式(组) 第二节 一元二次方程及其应用

人教版中考数学考点系统复习 第二章 方程(组)与不等式(组) 第二节 一元二次方程及其应用
380
解:设参加交流会的茶叶制作商有 m 人.依题意得 m(m-1)=380,解得 m1=20,m2=-19(舍去). 答:参加交流会的茶叶制作商有 20 人.
4.(2022·荆州第 7 题 3 分)关于 x 的方程 x2-3kx-2=0 实数根的情况,
下列判断中正确的是
(B)
A.有两个相等实数根
B.有两个不等实数根
C.没有实数根
D.有一个实数根
5.(2020·荆州第 9 题 3 分)定义新运算“a*b”:对于任意实数 a,b,都
有 a*b=(a+b)(a-b)-1,其中等式右边是通常的加法、减法、乘法运
解:设小路宽为 x m, 由题意,得(16-2x)(9-x)=112. 整理,得 x2-17x+16=0. 解得 x1=1,x2=16>9(不合题意,舍去).∴x=1. 答:小路的宽应为 1m.
17.(数学文化)《田亩比类乘除捷法》是我国古代数学家杨辉的著作, 其中有一个数学问题:“直田积八百六十四步,只云长阔共六十步,问长 多阔几何?”意思是:一块矩形田地的面积为 864 平方步,只知道它的 长与宽共 60 步,问它的长比宽多多少步?根据题意,长比宽多__112__步.
100.8
解:设后两次采购价格的平均增长率为 x,依题意得 480(1+x)2=480+100.8,解得 x1=0.1,x2=-2.1(舍). 答:后两次采购价格的平均增长率为 10%.
解:设售价为 y 元/袋时,每周的销售额为 32 400 元.依题意可列方程
y-260
为 y100-
10
=32 400,解得 y1=360,y2=900.
第二节 一元二次方程及 其应用
【考情分析】湖北近 3 年主要考查:1.选择合适的方法解一元二次方程, 常在压轴题中涉及考查;2.用一元二次方程根的判别式判断方程根的情 况或者根据根的情况求字母系数的取值范围,根与系数的关系的应用; 3.一元二次方程的应用主要以选择题的形式考查列方程,常在解答题中 与不等式、函数的实际应用结合考查,难度较大,分值一般 3-10 分.

一元二次方程及其应用

一元二次方程及其应用

一元二次方程及其应用
一元二次方程是只含有一个未知数,并且未知数的最高次数为2的整式方程。

一元二次方程的一般形式是 $ax^2 + bx + c = 0$,其中 $a \neq 0$。

一元二次方程的解法包括直接开平方法、配方法、公式法和因式分解法。

一元二次方程的应用非常广泛,包括解决实际问题、数学建模、物理问题等。

例如,在解决几何问题时,常常需要用到一元二次方程来求解面积、周长等。

在解决代数问题时,一元二次方程也是非常重要的工具,例如求解线性方程组的解、求解不等式等。

在解决物理问题时,一元二次方程也经常被用来描述物理现象,例如求解物体的运动轨迹、求解电路中的电流等。

总之,一元二次方程是数学中非常重要的概念之一,它不仅在数学中有广泛的应用,而且在其他领域中也具有非常重要的意义。

全国中考真题分类汇编 一元二次方程及其应用

全国中考真题分类汇编 一元二次方程及其应用

精品基础教育教学资料,仅供参考,需要可下载使用!一元二次方程及其应用考点一、 一元二次方程的解法 (10分) 1、直接开平方法利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。

直接开平方法适用于解形如b a x =+2)(的一元二次方程。

根据平方根的定义可知,a x +是b 的平方根,当0≥b 时,b a x ±=+,b a x ±-=,当b<0时,方程没有实数根。

2、配方法配方法是一种重要的数学方法,它不仅在解一元二次方程上有所应用,而且在数学的其他领域也有着广泛的应用。

配方法的理论根据是完全平方公式222)(2b a b ab a +=+±,把公式中的a 看做未知数x ,并用x 代替,则有222)(2b x b bx x ±=+±。

3、公式法公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。

一元二次方程)0(02≠=++a c bx ax 的求根公式:)04(2422≥--±-=ac b aac b b x4、因式分解法因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。

考点二、一元二次方程根的判别式 (3分)根的判别式一元二次方程)0(02≠=++a c bx ax 中,ac b 42-叫做一元二次方程)0(02≠=++a c bx ax 的根的判别式,通常用“∆”来表示,即ac b 42-=∆考点三、一元二次方程根与系数的关系 (3分)如果方程)0(02≠=++a c bx ax 的两个实数根是21x x ,,那么ab x x -=+21,acx x =21。

也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商。

考点四、分式方程 (8分)1、分式方程分母里含有未知数的方程叫做分式方程。

中考数学复习考点知识专题讲义第6讲 一元二次方程及其应用

中考数学复习考点知识专题讲义第6讲 一元二次方程及其应用

2.列一元二次方程解决实际问题的一般步骤: 同列一元一次方程解决实际问题的步骤一样:审、设、列、解、验、答. 关键是:审、设、列、解. 注意:检验时既要检验所求结果是否为所列方程的解,还要检验是否为原问题的解.
命题点一 一元二次方程的概念及解法(8 年 4 考)
1.(2019·山西 8 题)一元二次方程 x2-4x-1=0 配方后可化为( D )
aa((11++x)nx=)nb=b 或 aa((11--x)nx=)nb=b
[a 为原来的量,x 为平均增长(降低)率,b 为增长(降低)后的量,n 为
增长(降低)的次数]
利率问题 销售利润问题
本息和=本金+利息 利息= 本本金×金年×利年率×利年率数×年数
利润=售价-成本 利润
利润率=成本×100%
2.(2019·百校联考四)一元二次方程 y2-y=34配方后可化为( B )
B.(40-2x)(30-x)=15×30×40 D.(40-2x)(30-x)=45×30×40
【跟踪训练】 5.改善小区环境,争创文明家园.如图所示,某社区决定在一块长(AD)10 m,宽 (AB)4 m 的矩形场地 ABCD 上修建两条同样宽的小路,其中一条与 AB 平行,另一条与 AD 平行,其余部分种草.要使草坪部分的总面积为 27 m2,则小路的宽应为多少?
2.一元二次方程根与系数的关系(选学内容):
若关于 x 的一元二次方程 ax2+bx+c=0(a≠0)的两个实数根为 x1,x2,则 x1+x2=
--ba
,x1·x2=
c a
.
考点三 一元二次方程的实际应用 1.实际问题常见类型
类型
数量间的等量关系 增长数量 增长率=基础数量×100%

一元二次方程的实际应用

一元二次方程的实际应用

一元二次方程的实际应用一、定义及公式1.一元二次方程:形如 ax^2 + bx + c = 0 的方程,其中 a、b、c 是常数,a ≠ 0,x 是未知数。

2.求根公式:x = (-b ± √(b^2 - 4ac)) / (2a)二、一元二次方程的解法1.因式分解法:将一元二次方程转化为两个一次因式的乘积等于零的形式,然后求解。

2.配方法:将一元二次方程转化为完全平方的形式,然后求解。

3.求根公式法:直接应用求根公式求解。

三、实际应用场景1.面积问题:已知直角三角形的两条直角边长分别为 a 和 b,求斜边长c。

根据勾股定理,有 a^2 + b^2 = c^2,将 c^2 移到等式左边,得到 a^2 + b^2 - c^2 = 0,这是一个一元二次方程。

2.投资问题:已知投资金额、利率和时间,求最终收益。

设投资金额为 P,利率为 r,时间为 t,则收益为 S = P(1 + r)^t。

如果已知 S、P 和 r,求 t;或者已知 S、P 和 t,求 r。

这些问题都可以转化为一元二次方程。

3.物体运动问题:已知物体运动的初速度、加速度和时间,求物体在某时刻的速度和位移。

根据运动学公式,有 v = v0 + at 和 s = v0t + 1/2at^2,其中 v 是某时刻的速度,s 是某时刻的位移。

如果已知 v0、a 和 t,求v 和 s;或者已知 v0、a 和 s,求 t。

这些问题也可以转化为一元二次方程。

四、解题步骤1.分析实际问题,找出未知数和已知数。

2.根据实际问题建立一元二次方程。

3.选择合适的解法求解一元二次方程。

4.将求得的解代入实际问题中,验证答案的正确性。

五、注意事项1.在解决实际问题时,要确保方程的建立是正确的,避免出现误解或错误。

2.在选择解法时,要根据方程的特点和实际问题的需求来决定,有时需要尝试多种解法。

3.在求解过程中,要注意计算的准确性,避免出现计算错误。

一元二次方程的实际应用非常广泛,涉及到多个领域。

一元二次方程经典考题(无答案)

一元二次方程经典考题(无答案)

考点一:一元二次方程的定义1、下列方程中是关于x 的一元二次方程的是( ) A. ()()12132+=+x x B.02112=-+x xC. 02=++c bx axD. 1222+=+x x x 2、若方程013)2(||=+++mx xm m 是关于x 的一元二次方程,则( )A .2±=mB .m=2C .2-≠mD .2±≠m3、关于x 的一元二次方程(a -1)x 2+x+a 2-l=0的一个根是0。

则a 的值为( )A 、 1B 、-lC 、 1 或-1D 、124、若方程()112=•+-x m x m 是关于x 的一元二次方程,则m 的取值范围是5、关于的方程是一元二次方程的条件是( )A 、≠1B 、≠-2C 、≠1且≠-2D 、≠1或≠-2 考点二:一元二次方程的解1、关于x 的一元二次方程()04222=-++-a x x a 的一个根为0,则a 的值为 。

2、已知方程0102=-+kx x 的一根是2,则k 为 ,另一根是 。

3、已知a 是0132=+-x x 的根,则=-a a 622 。

4、若方程ax 2+bx+c=0(a ≠0)中,a,b,c 满足a+b+c=0和a-b+c=0,则方程的根是_______。

5、方程()()02=-+-+-a c x c b x b a 的一个根为( )A 1-B 1C c b -D a -6、已知一元二次方程x 2+3x+m=0的一个根为-1,则另一个根为7、已知x=1是一元二次方程x 2+bx+5=0的一个解,则b 的值为 ,方程的另一个根为 . 8、已知322-+y y 的值为2,则1242++y y 的值为9、已知关于x 的一元二次方程()002≠=++a c bx ax 的系数满足b c a =+,则此方程必有一根为考点三:一元二次方程的求解方法1、如果二次三项式16)122++-x m x (是一个完全平方式,那么m 的值是_______________. 2、试说明代数式2243x x -++有最大还是最小值,当x 为多少时取得最值.3、已知x 、y 为实数,求代数式22247x y x y -+++的最小值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

考点06 一元二次方程及其应用首先一元二次方程及其解法是初中数学计算的基础,很多几何问题都需要有一元二次方程的解题基础,其次,正是因为一元二次方程在后续几何问题中也有占比,所以中考数学中单独考察的问题占比并不大,其中,一元二次方程的各考点均有可能出成小题考察,而解答题则多出有关于一元二次方程的解法、一元二次方程的应用题等问题,复习过程中要多注意各基础考点的巩固,特别是解法中公式法的公式,不要和后续二次函数顶点坐标的众坐标公式记混了。

一、一元二次方程及其解法二、一元二次方程根的判别式三、一元二次方程根与系数的关系四、一元二次方程的简单应用考向一:一元二次方程及其解法1. 一元二次方程的一般形式:)0(02≠=++a c bx ax判断一元二次方程的特征:是整式方程③次未知数的最高次数是②只含有一个未知数①.2..2. 一元二次方程的解法:【易错警示】 ➢ 判断方程是不是一元二次方程需要化简后再根据特征判断;➢ 一元二次方程的解,要么无解,有解必有2个,所以最后的方程的解一定要写明x1、x2;➢ 一元二次方程公式法也称万能公式,但是利用万能公式时一定要先写清楚其a 、b 、c 以及b 2-4ac 的值,之后再带入计算;1.一元二次方程3(x 2﹣3)=5x 的二次项系数、一次项系数和常数项分别是( )A .3,﹣5;9B .3,﹣5,﹣9C .3,5,9D .3,5,﹣92.若m 是一元二次方程x 2+2x ﹣1=0的一个实数根,则2019﹣m 2﹣2m 的值是 .3.根据表格中的信息,估计一元二次方程ax 2+bx +c =0(a 、b 、c 为常数,a ≠0)的一个解x 的范围为( )x0.4 0.5 0.6 0.7 0.8 ax 2+bx +c﹣0.44 ﹣0.25 ﹣0.04 0.19 0.44 A .0.4<x <0.5 B .0.5<x <0.6C .0.6<x <0.7D .0.7<x <0.8 4.如图是一个简单的数值运算程序,则输入x 的值为( )A .±2B .±3C .3或﹣1D .2或﹣15.用配方法解一元二次方程x 2﹣4x ﹣5=0,变形后的结果正确的是( )A .(x ﹣4)2=﹣5B .(x ﹣4)2=5C .(x ﹣2)2=9D .(x ﹣2)2=﹣96.方程2x 2﹣10x =3的解是 .7.解下列方程:(1)x 2+4x ﹣1=0;(2)2x 2﹣7x +3=0;一元二次方程3) 利用直接开方法求解方程公式法 适用所有一元二次方程 (1) 将方程写成一般式02=++c bx ax ; (2) 分别写出a 、b 、c 的表达式,带入求出根的判别式acb 42-的值 (3) 将数据带入公式)(042422≥--±-=ac b aac b b x ,得到方程的两个解x 1、x 2(3)9(x+1)2=(2x﹣5)2;(4)(x+2)2﹣10(x+2)+25=0.考向二:一元二次方程根的判别式对于一元二次方程的一般形式:)0(02≠=++a c bx ax ,(1) 042>ac b - 方程有两个不相等的实数根(2) 042=-ac b 方程有两个相等的实数根(3) 042<ac b - 方程没有实数根【易错警示】1.一元二次方程x 2﹣3x +1=0的根的情况( )A .有两个相等的实数根B .有两个不相等的实数根C .只有一个实数根D .没有实数根 2.已知关于x 的一元二次方程(k ﹣1)x 2﹣4x ﹣1=0有两个不等的实数根,则k 的取值范围是( )A .k ≥﹣4B .k >﹣3C .k >﹣3且k ≠1D .k ≥﹣3且k ≠13.若关于x 的方程x 2+2x ﹣m +9=0有实数根,则实数m 的取值范围是( )A .m ≤8B .m ≥8C .m >8D .m <84.关于x 的一元二次方程kx 2+2x +1=0有两个不相等的实数根,则k 可取最大整数是 .5.已知,关于x 的一元二次方程x 2+(k +3)x ﹣2=0,请完成下面的问题.(1)若此方程有一个根是1,请求出另一个跟及k 的值.(2)求证:此方程一定有两个不相等的实数根.考向三:一元二次方程根与系数的关系若一元二次方程)0(02≠=++a c bx ax 的两个根为21x x 、,则有a b x x -21=+,ac x x =•211.关于x 的一元二次方程x 2+px +4=0的一个解为x 1=2,则另一个解x 2为( )A .1B .﹣1C .﹣2D .22.设a,b是方程x2+x﹣2022=0的两个不相等的实数根,则a2+2a+b的值为()A.0B.1C.2022D.20213.设一元二次方程x2﹣3x﹣5=0的两根为x1、x2,则的值为()A.B.﹣C.3D.﹣54.等腰三角形的三边长分别为a,b,1,且关于x的一元二次方程x2﹣4x+n+2=0的两个根是a和b,则n 的值为()A.1B.1或2C.2D.1且25.已知α,β是方程x2+2020x+1=0的两个根,则(α2+2022α+1)(β2+2022β+1)的值为()A.2020B.2022C.2D.46.已知关于x的方程x2﹣(m+1)x+2(m﹣1)=0.(1)求证:无论m取何值时,方程总有实数根;(2)如果方程有两个实数根x1,x2当(x1﹣x2)2=4时,求出m的值.考向四:一元二次方程的实际应用列方程解应用题的一般步骤:1.某展览馆计划将长60m,宽40m的矩形场馆重新布置,展览馆的中间是面积为1500m2的一个矩形展览区,四周留有等宽的通道(如图所示),求通道的宽.设通道的宽为xm,根据题意列方程正确的是()A.(60﹣2x)(40﹣2x)=1500B.(60﹣2x)(40﹣x)=1500C.(60﹣x)(40﹣2x)=1500D.(60﹣x)(40﹣x)=15002.某种品牌的手机经过四、五月份连续两次降价,每部售价由3200元降到了2500元,设平均每月降低的百分率为x,根据题意列出的方程是()A.2500(1+x)2=3200B.2500(1﹣x)2=3200C.3200(1﹣x)2=2500D.3200(1+x)2=32003.一个小组有若干人,新年互送贺卡一张,共送贺卡72张,共有人.4.如图,在长为20m,宽为12m的矩形地面上修筑同样宽的道路(图中阴影部分),余下的部分种上草坪,已知草坪的面积为矩形面积的,若设道路的宽为xm,则所列方程为.5.如图,用长为22米的篱笆,一面利用墙(墙的最大可用长度为14米),围成中间隔有一道篱笆的长方形花圃,为了方便出入,在建造篱笆花圃时,在BC上用其他材料做了宽为1米的两扇小门.(1)设花圃的宽AB长为x米,请你用含x的代数式表示BC的长为米;(2)若此时花圃的面积刚好为45m2,求此时AB的长度.1.(2022•雅安)若关于x的一元二次方程x2+6x+c=0配方后得到方程(x+3)2=2c,则c的值为()A.﹣3B.0C.3D.92.(2022•临沂)方程x2﹣2x﹣24=0的根是()A.x1=6,x2=4B.x1=6,x2=﹣4C.x1=﹣6,x2=4D.x1=﹣6,x2=﹣43.(2022•天津)方程x2+4x+3=0的两个根为()A.x1=1,x2=3B.x1=﹣1,x2=3C.x1=1,x2=﹣3D.x1=﹣1,x2=﹣34.(2022•淮安)若关于x的一元二次方程x2﹣2x﹣k=0没有实数根,则k的值可以是()A.﹣2B.﹣1C.0D.15.(2022•巴中)对于实数a,b定义新运算:a※b=ab2﹣b,若关于x的方程1※x=k有两个不相等的实数根,则k的取值范围()A.k>﹣B.k<﹣C.k>﹣且k≠0D.k≥﹣且k≠06.(2022•兰州)关于x的一元二次方程kx2+2x﹣1=0有两个相等的实数根,则k=()A.﹣2B.﹣1C.0D.17.(2022•河南)一元二次方程x2+x﹣1=0的根的情况是()A.有两个不相等的实数根B.没有实数根C.有两个相等的实数根D.只有一个实数根8.(2022•益阳)若x=﹣1是方程x2+x+m=0的一个根,则此方程的另一个根是()A.﹣1B.0C.1D.29.(2022•黔东南州)已知关于x的一元二次方程x2﹣2x﹣a=0的两根分别记为x1,x2,若x1=﹣1,则a ﹣x12﹣x22的值为()A.7B.﹣7C.6D.﹣610.(2022•黑龙江)2022年北京冬奥会女子冰壶比赛有若干支队伍参加了单循环比赛,单循环比赛共进行了45场,共有多少支队伍参加比赛?()A.8B.10C.7D.911.(2022•河池)某厂家今年一月份的口罩产量是30万个,三月份的口罩产量是50万个,若设该厂家一月份到三月份的口罩产量的月平均增长率为x.则所列方程为()A.30(1+x)2=50B.30(1﹣x)2=50C.30(1+x2)=50D.30(1﹣x2)=5012.(2022•泰安)我国古代著作《四元玉鉴》记载“买椽多少”问题:“六贯二百一十钱,遣人去买几株椽.每株脚钱三文足,无钱准与一株椽.”其大意为:现请人代买一批椽,这批椽的价钱为6210文.如果每株椽的运费是3文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?设这批椽的数量为x株,则符合题意的方程是()A.3(x﹣1)x=6210B.3(x﹣1)=6210C.(3x﹣1)x=6210D.3x=621013.(2022•资阳)若a是一元二次方程x2+2x﹣3=0的一个根,则2a2+4a的值是.14.(2020•扬州)方程(x+1)2=9的根是.15.(2020•雅安)若(x2+y2)2﹣5(x2+y2)﹣6=0,则x2+y2=.16.(2022•荆州)一元二次方程x2﹣4x+3=0配方为(x﹣2)2=k,则k的值是.17.(2022•衢州)将一个容积为360cm3的包装盒剪开铺平,纸样如图所示.利用容积列出图中x(cm)满足的一元二次方程:(不必化简).18.(2022•徐州)若一元二次方程x2+x﹣c=0没有实数根,则c的取值范围是.19.(2022•湖北)若一元二次方程x2﹣4x+3=0的两个根是x1,x2,则x1•x2的值是.20.(2022•上海)某公司5月份的营业额为25万,7月份的营业额为36万,已知5、6月的增长率相同,则增长率为.21.(2018•兰州)解方程:3x2﹣2x﹣2=0.22.(2022•凉山州)解方程:x2﹣2x﹣3=0.23.(2022•十堰)已知关于x的一元二次方程x2﹣2x﹣3m2=0.(1)求证:方程总有两个不相等的实数根;(2)若方程的两个实数根分别为α,β,且α+2β=5,求m的值.1.(2022•贵港)若x=﹣2是一元二次方程x2+2x+m=0的一个根,则方程的另一个根及m的值分别是()A.0,﹣2B.0,0C.﹣2,﹣2D.﹣2,02.(2022•包头)若x1,x2是方程x2﹣2x﹣3=0的两个实数根,则x1•x22的值为()A.3或﹣9B.﹣3或9C.3或﹣6D.﹣3或63.(2022•怀化)下列一元二次方程有实数解的是()A.2x2﹣x+1=0B.x2﹣2x+2=0C.x2+3x﹣2=0D.x2+2=04.(2022•东营)一元二次方程x2+4x﹣8=0的解是()A.x1=2+2,x2=2﹣2B.x1=2+2,x2=2﹣2C.x1=﹣2+2,x2=﹣2﹣2D.x1=﹣2+2,x2=﹣2﹣25.(2022•温州)若关于x的方程x2+6x+c=0有两个相等的实数根,则c的值是()A.36B.﹣36C.9D.﹣96.(2022•甘肃)用配方法解方程x2﹣2x=2时,配方后正确的是()A.(x+1)2=3B.(x+1)2=6C.(x﹣1)2=3D.(x﹣1)2=67.(2022•重庆)小区新增了一家快递店,第一天揽件200件,第三天揽件242件,设该快递店揽件日平均增长率为x,根据题意,下面所列方程正确的是()A.200(1+x)2=242B.200(1﹣x)2=242C.200(1+2x)=242D.200(1﹣2x)=2428.(2022•大连)若关于x的一元二次方程x2+6x+c=0有两个相等的实数根,则c的值是()A.36B.9C.6D.﹣99.(2022•宜宾)已知m、n是一元二次方程x2+2x﹣5=0的两个根,则m2+mn+2m的值为()A.0B.﹣10C.3D.1010.(2022•西宁)关于x的一元二次方程2x2+x﹣k=0没有实数根,则k的取值范围是()A.k<﹣B.k≤﹣C.k>﹣D.k≥﹣11.(2022•内蒙古)对于实数a,b定义运算“⊗”为a⊗b=b2﹣ab,例如3⊗2=22﹣3×2=﹣2,则关于x的方程(k﹣3)⊗x=k﹣1的根的情况,下列说法正确的是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.无法确定12.(2022•遂宁)已知m为方程x2+3x﹣2022=0的根,那么m3+2m2﹣2025m+2022的值为()A.﹣2022B.0C.2022D.404413.(2022•聊城)用配方法解一元二次方程3x2+6x﹣1=0时,将它化为(x+a)2=b的形式,则a+b的值为()A.B.C.2D.14.(2022•眉山)设x1,x2是方程x2+2x﹣3=0的两个实数根,则x12+x22的值为.15.(2022•杭州)某网络学习平台2019年的新注册用户数为100万,2021年的新注册用户数为169万,设新注册用户数的年平均增长率为x(x>0),则x=(用百分数表示).16.(2022•东营)关于x的一元二次方程(k﹣1)x2﹣2x+1=0有两个不相等的实数根,则k的取值范围是.17.(2022•连云港)若关于x的一元二次方程mx2+nx﹣1=0(m≠0)的一个根是x=1,则m+n的值是.18.(2022•青海)如图,小明同学用一张长11cm,宽7cm的矩形纸板制作一个底面积为21cm2的无盖长方体纸盒,他将纸板的四个角各剪去一个同样大小的正方形,将四周向上折叠即可(损耗不计).设剪去的正方形边长为xcm,则可列出关于x的方程为.19.(2022•内江)已知x1、x2是关于x的方程x2﹣2x+k﹣1=0的两实数根,且+=x12+2x2﹣1,则k的值为.20.(2022•齐齐哈尔)解方程:(2x+3)2=(3x+2)2.21.(2022•广州)已知T=(a+3b)2+(2a+3b)(2a﹣3b)+a2.(1)化简T;(2)若关于x的方程x2+2ax﹣ab+1=0有两个相等的实数根,求T的值.22.(2022•贵阳)(1)a,b两个实数在数轴上的对应点如图所示.用“<”或“>”填空:a b,ab0;(2)在初中阶段我们已经学习了一元二次方程的三种解法;它们分别是配方法、公式法和因式分解法,请从下列一元二次方程中任选两个,并解这两个方程.①x2+2x﹣1=0;②x2﹣3x=0;③x2﹣4x=4;④x2﹣4=0.23.(2022•德州)如图,某小区矩形绿地的长宽分别为35m,15m.现计划对其进行扩充,将绿地的长、宽增加相同的长度后,得到一个新的矩形绿地.(1)若扩充后的矩形绿地面积为800m,求新的矩形绿地的长与宽;(2)扩充后,实地测量发现新的矩形绿地的长宽之比为5:3.求新的矩形绿地面积.24.(2022•毕节市)2022北京冬奥会期间,某网店直接从工厂购进A、B两款冰墩墩钥匙扣,进货价和销售价如下表:(注:利润=销售价﹣进货价)类别价格A款钥匙扣B款钥匙扣进货价(元/件)3025销售价(元/件)4537(1)网店第一次用850元购进A、B两款钥匙扣共30件,求两款钥匙扣分别购进的件数;(2)第一次购进的冰墩墩钥匙扣售完后,该网店计划再次购进A、B两款冰墩墩钥匙扣共80件(进货价和销售价都不变),且进货总价不高于2200元.应如何设计进货方案,才能获得最大销售利润,最大销售利润是多少?(3)冬奥会临近结束时,网店打算把B款钥匙扣调价销售,如果按照原价销售,平均每天可售4件.经调查发现,每降价1元,平均每天可多售2件,将销售价定为每件多少元时,才能使B款钥匙扣平均每天销售利润为90元?25.(2022•黄石)阅读材料,解答问题:材料1为了解方程(x2)2﹣13x2+36=0,如果我们把x2看作一个整体,然后设y=x2,则原方程可化为y2﹣13y+36=0,经过运算,原方程的解为x1,2=±2,x3,4=±3.我们把以上这种解决问题的方法通常叫做换元法.材料2已知实数m,n满足m2﹣m﹣1=0,n2﹣n﹣1=0,且m≠n,显然m,n是方程x2﹣x﹣1=0的两个不相等的实数根,由韦达定理可知m+n=1,mn=﹣1.根据上述材料,解决以下问题:(1)直接应用:方程x4﹣5x2+6=0的解为;(2)间接应用:已知实数a,b满足:2a4﹣7a2+1=0,2b4﹣7b2+1=0且a≠b,求a4+b4的值;(3)拓展应用:已知实数m,n满足:+=7,n2﹣n=7且n>0,求+n2的值.1.(2022•顺城区模拟)下列方程是一元二次方程的是()A.3x2﹣=0B.2x+3y=0C.2x2+3=2(x2+3x)D.y2﹣3y=42.(2022•汉阳区校级模拟)将一元二次方程2x2+7=9x化成一般式后,二次项系数和一次项系数分别为()A.2,9B.2,7C.2,﹣9D.2x2,﹣9x3.(2022•南岸区校级模拟)若m是关于x的一元二次方程x2﹣x﹣1=0的根,则3﹣2m2+2m的值是()A.2B.1C.4D.54.(2022•启东市二模)若关于x的一元二次方程ax2+2bx﹣2=0的一个根是x=2022,则一元二次方程(x+2)2+bx+2b=1必有一根为()A.2020B.2021C.2022D.20235.(2022•永康市模拟)已知a是方程2x2﹣3x﹣5=0的一个解,则﹣4a2+6a的值为()A.10B.﹣10C.2D.﹣406.(2022•黄冈模拟)已知a,b是一元二次方程x2﹣3x﹣m2﹣1=0的两个根,则a2+3b+ab的值等于()A.8B.9C.10D.与m的值有关7.(2022•东阿县三模)观察下列表格,估计一元二次方程x2+3x﹣5=0的正数解在()x﹣101234x2+3x﹣5﹣7﹣5﹣151323A.﹣1和0之间B.0和1之间C.1和2之间D.2和3之间8.(2022•白云区一模)方程(x+1)2=9的解为()A.x=2,x=﹣4B.x=﹣2,x=4C.x=4,x=2D.x=﹣2,x=﹣4 9.(2022•义乌市模拟)用配方法解方程x2﹣8x+1=0时,配方结果正确的是()A.(x﹣4)2=5B.(x﹣4)2=16C.(x﹣4)2=7D.(x﹣4)2=15 10.(2022•镇海区校级二模)已知(a2+b2)2﹣8(a2+b2)﹣48=0,则a2+b2的值为()A.12B.4C.﹣4D.12或﹣411.(2022•瓯海区模拟)如图是小明在解方程x2﹣2x﹣1=0时的过程,他在解答过程中开始出错的步骤是()A.第①步B.第②步C.第③步D.第④步12.(2022•城关区一模)已知一元二次方程x2﹣5x+6=0的两个根是菱形的一条边和一条对角线的长,则这个菱形的面积是()A.3B.C.4D.或413.(2022•铁岭模拟)关于x的一元二次方程ax2+2x﹣a=0根的情况是()A.两个不相等的实数根B.两个相等的实数根C.没有实数根D.无法确定14.(2022•大理州二模)若关于x的一元二次方程(k﹣2)x2﹣2x+1=0有两个不相等的实数根,且k为非负整数,则符合条件的k的个数为()A.3B.2C.1D.015.(2022•仁怀市模拟)已知a,b是方程x2+x﹣3=0的两个实数根,则a2﹣b+2020的值是()A.2024B.2022C.2021D.202016.(2022•仁怀市模拟)若α和β是关于x的方程x2+bx﹣1=0的两根,且αβ﹣2α﹣2β=﹣11,则b的值是()A.﹣3B.3C.﹣5D.517.(2022•西华县三模)《九章算术》勾股章有一个问题,其意思是:现有一竖立着的木柱,在木柱上端系有绳索,绳索从木柱上端顺木柱下垂后,堆在地面的部分尚有3尺,牵着绳索退行,在离木柱根部8尺处时绳索用尽,请问:绳索有多长?若设绳索长x尺,根据题意,可列方程为()A.82+x2=x2B.82+(x﹣3)2=x2C.82+x2=(x﹣3)2D.x2+(x﹣3)2=8218.(2022•肥东县校级模拟)春节期间,阜阳市商务局组织举办了“皖美消费,乐享阜阳”﹣2022年跨年迎新购物季”列促销活动,某超市对一款原价位a元的商品降价x%销售一段时间后,为了加大促销力度,再次降价x%,此时售价共降低了b元,则()A.b=a(1﹣2x%)B.b=a﹣a(1﹣x%)2C.b=a(1﹣x%)2D.b=a﹣a(1﹣2x%)19.(2022•泉港区模拟)小张的书法作品荣获学校书法比赛一等奖.作品尺寸如图所示:书法作品长5尺,宽3尺;将书法作品贴在一张矩形装裱纸的正中央,书法作品四周外露装裱纸的宽度相同;矩形装裱纸的面积为书法作品面积的2倍.设书法作品四周外露装裱纸的宽度为x尺,下面所列方程正确的是()A.(5+2x)(3+2x)=2×5×3B.(5+x)(3+x)=2×5×3C.2(5+2x)(3+2x)=5×3D.(5+2x)(3+2x)=5×320.(2022•竞秀区二模)某市积极响应国家的号召“房子是用来住的,不是用来炒的”,在宏观调控下,商品房成交价由今年1月份的每平方米10000元下降到3月份的每平方米8100元,且今年房价在2月份、3月份、4月份的下降率保持一致,则4月份的房价单价为每平方米()A.7300元B.7290元C.7280元D.7270元21.(2022•金水区校级模拟)已知关于x的方程2x2﹣k=0有两个不相等的实数根,请写出一个符合条件的k值.22.(2022•潍坊二模)已知关于x的一元二次方程mx2﹣6mx+9m﹣1=0有x1,x2两个实数根.(1)求m的取值范围;(2)若x1=1,求x2.23.(2022•玉州区二模)关于x的一元二次方程x2﹣(k﹣3)x﹣2k+2=0.(1)求证:方程总有两个实数根;(2)若方程的两根分为x1、x2,且,求k的值.24.(2022•璧山区模拟)五一期间,璧山区丁家街道天天农家乐的草莓和枇杷相继成熟,为了吸引更多游客走进乡村,体验采摘乐趣,天天农家乐推出采摘草莓和采摘枇杷两种方式:采摘1公斤草莓的费用比采摘1公斤枇杷的费用多15元,采摘2公斤草莓和1公斤枇杷的费用共90元.(1)求采摘1公斤草莓和1公斤枇杷的费用分别是多少元?(2)根据去年采摘情况表明,平均每天采摘草莓30公斤,采摘枇杷20公斤.天天农家乐决定今年采摘枇杷的价格保持不变,采摘草莓的价格下调,采摘草莓的费用每降价3元,采摘草莓的数量会增加2公斤.天天农家乐要想平均每天的收益为1386元,请问采摘草莓每公斤应降价多少元?。

相关文档
最新文档