高分子水凝胶综述

合集下载

水凝胶综述

水凝胶综述

水凝胶综述水凝胶是一种能够吸收水分并形成凝胶状态的材料。

它具有优异的物理、化学性质和生物相容性,因此在医疗、生物制造、水处理、环境保护等领域有着广泛的应用。

本文将对水凝胶的种类、制备方法及其应用进行综述。

一、水凝胶种类1.聚丙烯酸钠凝胶:聚丙烯酸钠(sodium polyacrylate,SPA)是一种高分子聚合物,具有吸水性强的特点。

它能够在形成凝胶状态后固定并保持高水分量,具有吸收多达500倍重量的水分能力。

因此,SPA凝胶在卫生巾、纸尿裤等日用品中广泛应用。

2.壳聚糖凝胶:壳聚糖是一种具有天然多糖的生物高分子材料。

它具有天然亲水性、生物可降解性和低毒性等特点。

壳聚糖凝胶在生物制造、医学等领域有着广泛的应用前景,如软骨组织工程中的载体材料、生物医用凝胶等。

3.聚乙烯醇凝胶:聚乙烯醇(PVA)是一种合成聚合物,它具有高度的水溶性和可塑性。

PVA凝胶可以通过交联反应形成,具有优异的力学性质和生物相容性,因此在组织工程、医用敷料等领域有着广泛的应用。

4.明胶凝胶:明胶是一种蛋白胶体物质,由动物皮、骨、软组织等经加热水解、提取等工艺处理而成。

明胶凝胶具有良好的生物相容性、生物降解性和生物吸附性等特点,因此在医学、生物制造等领域有着广泛的应用。

二、水凝胶制备方法1.离子交联法:离子交联法是水凝胶制备的常用方法之一。

具体的制备过程是将水凝胶原料在水溶液中溶解,然后通过加入离子交联剂使其中交联反应发生,形成水凝胶。

三、水凝胶应用1.医疗领域:水凝胶在医疗领域广泛应用,如生物医用凝胶、组织工程载体材料、敷料等。

其中,聚丙烯酸钠凝胶广泛用于生产卫生巾、纸尿裤等日用品。

2.环境保护领域:水凝胶在环境保护领域也有着广泛应用,如污水处理、海藻收集、水土保持等。

其中,壳聚糖凝胶可作为海藻收集材料,聚乙烯醇凝胶可作为土壤水分保持材料。

3.其他领域:水凝胶在其他领域也有着一些应用,如食品工业中的增稠剂、涂料工业中的质感调节剂等。

高强度水凝胶综述

高强度水凝胶综述

高强度水凝胶综述
高强度水凝胶是一种具有较高吸水性和保水性的材料,广泛应用于农业、园林、建筑等领域。

本文将对高强度水凝胶的制备方法、性能表征以及应用进行综述。

制备方法:
高强度水凝胶的制备方法主要有化学交联法、物理交联法和复合交联法三种。

其中,化学交联法是目前最为常用的制备方法,将单体与交联剂在一定条件下进行反应,形成高分子网络结构。

物理交联法则是通过高分子间的物理吸附作用形成网络结构,常见的物理交联剂有温度、pH值和离子等。

复合交联法则是将化学交联法和物理交联
法结合起来,以达到更好的性能。

性能表征:
高强度水凝胶的性能表征主要从吸水性、保水性、渗透性、稳定性、可溶性等方面进行考察。

其中,吸水性和保水性是衡量高强度水凝胶性能的重要指标,吸水性指材料在一定时间内吸收水的重量与材料原始重量的比值,保水性指材料在一定时间内释放水的能力。

应用:
高强度水凝胶广泛应用于农业领域,可以增加土壤水分保持能力、提高作物产量。

在园林绿化中,高强度水凝胶可以减少浇水次数,节省水资源。

在建筑领域,高强度水凝胶可以用于防水材料、减震材料等。

结论:
高强度水凝胶是一种具有广泛应用前景的材料,其制备方法、性能表征和应用领域已经得到逐步深入的研究。

未来,还需要进一步探索其性能优化和环境友好型的发展方向。

高分子水凝胶材料的合成及应用研究

高分子水凝胶材料的合成及应用研究

高分子水凝胶材料的合成及应用研究随着科技的发展,高分子水凝胶材料已成为一种重要的功能材料。

高分子水凝胶材料具有优异的吸水性、温度敏感性、生物相容性及化学稳定性等特性,因此在药物传递、细胞培养、组织工程等领域中得到广泛应用。

本文将对高分子水凝胶材料的合成方法、结构特点及应用研究进行综述。

一、高分子水凝胶材料的合成方法1、溶液聚合法溶液聚合法是合成高分子水凝胶材料最为简单、常用的方法之一。

该方法将水溶性单体与交联剂混合后,采用高分子化学反应,在较好的溶剂中进行聚合反应得到凝胶材料。

较常见的单体有丙烯酸、2-羟乙基甲基丙烯酸(HEMA)等;典型的交联剂包括乙二醇二丙烯酸酯(EGDMA)、乙二醇二甲基丙烯酸酯(EGDMA)等。

2、辐射交联法辐射交联法利用辐射的能量在高分子预聚物中引起链断裂并形成新的交联键,最终制备出高度交联的高分子水凝胶材料。

该方法具有导入药物方便、反应速度快等优点,不需要添加其他交联剂或催化剂。

然而,辐射所产生的电离辐射对人体危害大,使用时需要注意安全。

3、逆相乳液法逆相乳液法是高分子水凝胶材料的一种新型、高效合成方法。

该方法将水性单体(如HEMA等)与聚乙二醇单甲醚(PEGMA)以逆相乳液形式混合,利用较弱的化学反应即可形成高分子水凝胶材料。

该方法制备的高分子水凝胶材料具有较高的机械强度、水凝胶比重适中、生物相容性较好等特点。

二、高分子水凝胶材料的结构特点高分子水凝胶材料的结构特点决定了其具有优异的吸水性、温度敏感性等特性。

高分子水凝胶材料的基本结构可以分为三部分:单体、交联剂以及交联点。

1、单体结构单体结构可以影响高分子水凝胶材料的吸水性能,通常采用含功能性羧酸、酰胺、醇等的单体进行聚合,如丙烯酸、2-羟乙基甲基丙烯酸等。

2、交联剂交联剂是形成高分子水凝胶材料结构中的枢纽。

当交联剂的用量适当时,可以使水分子在高分子链之间形成空隙,从而提高高分子水凝胶材料的吸水性。

但当交联剂的用量过多时,则会破坏高分子水凝胶材料的结构,使其吸水性降低。

高分子水凝胶

高分子水凝胶

高分子水凝胶凝胶是指溶胀的三维网状结构高分子。

即聚合物分子间相互连结,形成空间网状结构,而在网状结构的孔隙中又填充了液体介质。

药用的凝胶大部分是水凝胶(hydrogel),它们通过制剂的形式进入体内后吸收体液自发形成。

水凝胶是指一种在水中能显著溶胀、保持大量水分的亲水性凝胶,为三维网络结构,多数水凝胶网络中可容纳高分子本身重量的数倍至数百倍的水,它不同于疏水性的高分子网络如聚乳酸和聚乙醇酸(只有有限的吸水能力,吸水量不到10%)。

水凝胶中的水有两种存在状态。

靠近网络的水与网络有很强的作用力,这种水在极低温度下又有冻结的和不冻结之分,而离网络比较远的水与普通水性质相似称为自由水。

影响水凝胶形成的主要因素有浓度、温度和电解质。

每种高分子溶液都有一个形成凝胶的最小浓度,小于这个浓度则不能形成凝胶,大于这个浓度可加速凝胶。

对温度来说,温度低,有利于凝胶,分子形状愈不对称,可胶凝的浓度越小,但也有些高分子材料加热后胶凝,低温变成溶液。

电解质对胶凝的影响有促进作用也有阻止作用,其中阴离子起主要作用。

水凝胶从来源分类,可分为天然水凝胶和合成水凝胶;从性质来分类,可分为电中性水凝胶和离子型水凝胶,离子型水凝胶又可分为阴离子型、阳离子型和两性电解质型水凝胶。

根据水凝胶对外界刺激应答情况不同,水凝胶又可分为两类:①传统的水凝胶,这类水凝胶对环境的变化,如PH或温度变化不敏感;②环境敏感水凝胶,这类水凝胶对温度或PH 等环境因素的变化所给予的刺激有非常明确和显著的应答。

不同结构、不同化合物的水凝胶具有不同的物理化学性质如溶胀性、触变性、环境敏感性和黏附性等:(一)溶胀性:水凝胶在水中可显著溶胀。

溶胀性是指凝胶吸收液体后自身体积明显增大的现象,这是弹性凝胶的重要特性,凝胶的溶胀可分为两个阶段:第一阶段是溶剂分子钻入凝胶中与大分子相互作用形成溶剂化层,此过程很快,伴有放热效应和体积收缩现象(指凝胶体积的增加比吸收的液体体积小);第二阶段是液体分子的继续渗透,这时凝胶体积大大增加。

高分子水凝胶

高分子水凝胶

v2 , s
v2 , s
10
2
G"
10
1
G'
PNIPA in water 10
0
24
26
28
30
32
o
34
36
38
40
T/ C
Winter’s Criterion
Winter & Chambon
G’ G” n
G’ : storage modulus G” : loss modulus : angular frequency n: relaxation exponent
Other IPNs
From poly(acrylamide), PAAm, and PAAc which form hydrogen bonds at low temperature
PAAc O H HN PAAm O H O
n
n
Katono, H.; Maruyama, A.; Sanui, K.; Ogata, N.; Okano, T.; Sakurai, Y. J. Controlled 15 Release, 1991, 16, 215
Ion cooperation
Coil-helix transition
Phase separation
Complex
Reversible, time-dependent
钙离子与海藻酸的交联模型
Ca2+ selectively chelated by G units
more Ca2+ required


合成水凝胶:生物相容性较差,但合成聚合物水凝胶的

水凝胶总结(共3篇)

水凝胶总结(共3篇)

水凝胶总结第1篇摘要本研究的目的是通过体外污染测试,调查在配戴 8小时后,睫毛膏是否会沉积在聚合硅氧烷水凝胶隐形眼镜(CL)上,并比较两种硅氧烷水凝胶对睫毛膏的亲和力。

硅氧烷水凝胶隐形眼镜是 Filcon V 月抛型 OPEN30 和Delefilcon A 日抛型 DAILIES TOTAL1。

所研究的化妆品是一种蓝色睫毛膏。

对新的CL、体外暴露于睫毛膏的 CL 和睫毛膏使用者佩戴 8 小时的 CL(在氯化钠溶液中冲洗CL 后)进行了扫描电子显微镜(SEM)和能量色散 X射线光谱(EDX)分析。

用光学显微镜采集并处理了新睫毛夹和体外处理睫毛夹的图像。

通过对睫毛膏进行电离辐射 X分析,可以确定其元素组成的特征,其中包括铝(Al),铝既不属于泪液成分,也不属于睫毛膏成分,因此是睫毛膏沉积在聚合硅氧烷水凝胶上的标志。

通过 SEM/EDX 在两种材料的所有磨损的 CL上都观察到了含铝的吸附沉积物,这些沉积物对睫毛膏成分有特殊的亲和力,比对泪液成分的亲和力更明显。

通过处理体外测试后光学显微镜拍摄的图像,发现 Delefilcon A 中睫毛膏沉积物的含量是 Filcon V CL 的两倍多。

摘要xxx光谱是一种成熟的样品分子表征技术,对于复杂的化妆品无需进行大量的分析前处理。

为了说明xxx光谱的潜力,本研究调查了xxx光谱与偏最xxx乘回归(PLSR)相结合的定量性能,用于分析掺入水凝胶中的藻酸盐纳米封装胡椒基酯类(ANC-PE)。

共制备和分析了 96 个 ANC-PE 样品,其 PE 浓度范围为 w/w/w。

尽管样品的配方很复杂,但仍能检测到聚乙烯的光谱特征,并利用其对浓度进行量化。

采用留空交叉验证方法,将样品分为训练集(n = 64)和测试集(PLSR模型之前未知的样品,n =32)。

经评估,交叉验证的均方根误差(RMSECV)和预测的均方根误差(RMSEP)分别为(w/w PE)和(w/wPE)。

高分子水凝胶综述

高分子水凝胶综述

高分子水凝胶综述摘要在这篇综述中,笔者以高分子水凝胶为探究的领域,围绕其产生、发展、应用等诸方面,浅层次地加以论述。

论文大体的探讨方式是这样:首先以高分子水凝胶的出现为基点,考察其定义的由来以及与吸水树脂之间的关系;然后以高分子水凝胶潜在应用价值的属性为导向线,对其进行分类,讨论相应的制备方法和水凝胶性能各类表征方法;接着突出强调环境敏感性水凝胶的制备及响应原理;而水凝胶实际应用及缺陷则作为最后系统概括。

关键词:高分子水凝胶应用性能制备产生、定义与比较高分子水凝胶的合成可以追溯到20世纪50年代后期,Wichterle和Lim合成了第一个医用甲基丙烯酸羟乙酯(HEMA)水凝胶[1]。

对于高分子水凝胶的定义,各个文献报道的都很接近,即由带有化学或物理交联的亲水性高分子链形成的三维固体网络[2],在水环境下高分子水凝胶能够发生吸水溶胀,甚至有的吸水能超过其自重好多倍(图1)图1凝胶吸水溶胀前与溶胀后的比较(左侧为吸水溶胀后,右侧为吸水溶胀前)同时,笔者发现,高分子水凝胶与吸水树脂之间的关联需要被加以认知。

吸水树脂本身就是一种新型功能高分子材料,具有亲水基团,能吸收大量水分而又能保持水分不外流。

当水分子通过扩散作用及毛细作用进入到树脂中时,形成的树脂即称为高分子水凝胶。

也就是说,吸水树脂是高分子水凝胶的前身,且当树脂经吸水后才成为水凝胶。

此外,对于高分子水凝胶的吸水并且保水的机理也需要加以阐述。

从化学结构上来分析,凝胶是分子中含有亲水性基团和疏水性基团的交联型高分子。

在凝胶的交联网格里,必然存在很多疏水性基团朝外,亲水性基团朝里的结构,在这样的结构下,亲水性基团与水分子以氢键等方式进行结合,疏水性基团在外头形成的屏障可以有效地间隔不同的内亲水网格,起到容纳水分子容器的作用(图2)。

OOH R O H R OO H R O OH RO OH R O OHR OOH R OHH图2 凝胶保持水分子示意图图2中,右下侧的疏水性基团是朝内的,这表明凝胶亲水性网格结构内部也是含有非亲水性基团的;而水分子与亲水链上的氧之间形成了氢键。

PVA水凝胶的制备及研究综述

PVA水凝胶的制备及研究综述

PVA水凝胶的制备及研究综述PVA(Polyvinyl alcohol)水凝胶是一种高分子材料,具有良好的生物相容性和生物降解性,因此被广泛应用于医药领域。

本文将对PVA水凝胶的制备方法及其在生物医学研究中的应用进行综述。

首先,PVA水凝胶的制备方法有多种途径。

常见的方法包括化学交联法、物理交联法和生物酶法。

化学交联法通过添加交联剂将PVA分子间的羟基反应形成三维网络结构,增加水凝胶的稳定性和机械强度。

物理交联法通过改变PVA的温度或PH值使其融化或凝胶化,形成具有特定结构和性能的水凝胶。

生物酶法则是利用酶的特异性催化作用将PVA分子间的化学键断裂或形成,从而实现水凝胶的形成。

这些方法的选择取决于所需要的PVA水凝胶的特性和应用场景。

PVA水凝胶在生物医学研究中有着广泛的应用。

首先,PVA水凝胶可用于组织工程领域,用于制备人工组织和器官。

PVA水凝胶具有良好的生物相容性和生物降解性,可以提供支撑和保护细胞的基质环境,促进细胞黏附和增殖,促进组织再生和修复。

其次,PVA水凝胶可以作为药物缓释系统,用于控制药物的释放速率和降低药物的毒副作用。

PVA水凝胶可以容纳各种药物,并通过改变水凝胶的孔隙结构和渗透性,调控药物的释放行为。

另外,PVA水凝胶还可用于细胞培养和输送,并具有较好的可控性和可调性。

PVA水凝胶可以调节其物理和化学性质,以满足不同细胞种类和生长条件对细胞的要求。

虽然PVA水凝胶在生物医学领域的应用潜力巨大,但仍存在一些挑战和问题。

首先,PVA水凝胶的力学性能和稳定性还需要进一步提高,以适应复杂的生物环境。

其次,PVA水凝胶的生物降解性需要合理调控,以保证其在体内的稳定性和有效性。

最后,PVA水凝胶的制备方法还有待进一步改进和优化,以提高制备效率和降低成本。

综上所述,PVA水凝胶是一种具有广泛应用前景的生物医学材料。

通过不同的制备方法,可以得到具有不同性能和结构的PVA水凝胶。

在生物医学研究中,PVA水凝胶可用于组织工程、药物缓释、细胞培养等多个领域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高分子水凝胶综述摘要在这篇综述中,笔者以高分子水凝胶为探究的领域,围绕其产生、发展、应用等诸方面,浅层次地加以论述。

论文大体的探讨方式是这样:首先以高分子水凝胶的出现为基点,考察其定义的由来以及与吸水树脂之间的关系;然后以高分子水凝胶潜在应用价值的属性为导向线,对其进行分类,讨论相应的制备方法和水凝胶性能各类表征方法;接着突出强调环境敏感性水凝胶的制备及响应原理;而水凝胶实际应用及缺陷则作为最后系统概括。

关键词:高分子水凝胶应用性能制备产生、定义与比较高分子水凝胶的合成可以追溯到20世纪50年代后期,Wichterle和Lim合成了第一个医用甲基丙烯酸羟乙酯(HEMA)水凝胶[1]。

对于高分子水凝胶的定义,各个文献报道的都很接近,即由带有化学或物理交联的亲水性高分子链形成的三维固体网络[2],在水环境下高分子水凝胶能够发生吸水溶胀,甚至有的吸水能超过其自重好多倍(图1)图1凝胶吸水溶胀前与溶胀后的比较(左侧为吸水溶胀后,右侧为吸水溶胀前)同时,笔者发现,高分子水凝胶与吸水树脂之间的关联需要被加以认知。

吸水树脂本身就是一种新型功能高分子材料,具有亲水基团,能吸收大量水分而又能保持水分不外流。

当水分子通过扩散作用及毛细作用进入到树脂中时,形成的树脂即称为高分子水凝胶。

也就是说,吸水树脂是高分子水凝胶的前身,且当树脂经吸水后才成为水凝胶。

此外,对于高分子水凝胶的吸水并且保水的机理也需要加以阐述。

从化学结构上来分析,凝胶是分子中含有亲水性基团和疏水性基团的交联型高分子。

在凝胶的交联网格里,必然存在很多疏水性基团朝外,亲水性基团朝里的结构,在这样的结构下,亲水性基团与水分子以氢键等方式进行结合,疏水性基团在外头形成的屏障可以有效地间隔不同的内亲水网格,起到容纳水分子容器的作用(图2)。

OOH R O H R OO H R O OH RO OH R O OHR OOH R OHH图2 凝胶保持水分子示意图图2中,右下侧的疏水性基团是朝内的,这表明凝胶亲水性网格结构内部也是含有非亲水性基团的;而水分子与亲水链上的氧之间形成了氢键。

此外,还能说明一个问题:理论上能够和亲水性基团之间发生水合而吸附在高分子聚合物周围的水分子,其厚度最多不过2~3层,第一层水分子是由亲水性基团与水分子形成的配位键或氢键的水合水,第二层或第三层则是水分子和水合水形成的氢键结合层,作用力随层数的增加而不断减弱。

而凝胶之所以能够吸收更多的水分,原因就在于其交联网格结构。

这样的结构是包裹式的,以立体三维式取代了平面式,而且链上亲水性基团的复杂交错,给容纳水分提供了优良的环境。

属性、制备与性能表征高分子水凝胶的性质一、溶胀度高分子水凝胶的亲水性三维网络结构使其在水存在的条件下,能够很容易地发生吸水膨胀。

不同种类的水凝胶会产生不同程度的膨胀,即使是由同种单体在同样配比的条件下合成的水凝胶,由于环境影响因素和制备方法的差异性,也会产生不同程度膨胀。

学术上,用溶胀度(Swelling Capacity )从量上来描述水凝胶的膨胀程度。

定义上来看,溶胀度为一定温度下单位重量或体积的凝胶所能吸收的液体的最大量。

溶胀度有两种表示公式:211m m m Q m -= 和 00V V Q V -= 其中,m Q 为质量溶胀度,Q 为体积溶胀度,1m 、2m 分别为干凝胶(吸水膨胀前)和最大吸水溶胀凝胶(充分吸水膨胀后)的质量,kg ;0V 、V 分别为干溶胶和最大吸水溶胀凝胶的体积,dm 3。

由于水凝胶的高吸水能力,溶胀度往往成为探究水凝胶的首要属性。

二、含水率溶胀度是用于衡量水凝胶的最大膨胀能力,而在一般情况下,水凝胶能够吸收一些环境中的水分,即成为非干性水凝胶。

当需要将水凝胶用于下一步实验操作之前,我们往往需要了解水凝胶中的一些杂质成分的含量,而含水率就可用来衡量水凝胶中水分的多少。

此外,水凝胶在吸水量达到其最大量之前,我们往往还会比较水凝胶在不同膨胀程度下,其吸水量与时间的关系,这也要用到测定含水率的方法。

水凝胶的含水率定义为:h g c hW W w W -= 其中,c w 为水凝胶含水率,h W 和g W 分别为水凝胶的重量和干凝胶的重量,kg 。

三、溶胀-收缩行为(凝胶状态方程)吸水溶胀是水凝胶的一个重要特征,在溶胀过程中,一方面水溶剂力图渗入高聚物内使其体积膨胀,另一方面由于交联聚合物体积膨胀,导致网络分子链向三维空间伸展,分子网络受到应力产生弹性收缩能而使分子网络收缩。

当这两种相反的倾向相互抗衡时,达到了溶胀平衡,可见凝胶的体积之所以溶胀或收缩是由于凝胶内部的溶液与其周围的溶液之间存在着渗透压π。

根据Flory 凝胶溶胀理论,渗透压π定义为:()()21/300001ln 12v gel sol RT x RT RT N N V πΦ⎡⎤ΦΦ⎡⎤⎛⎫=--Φ+Φ+-Φ-+-⎢⎥ ⎪⎢⎥ΦΦ⎝⎭⎣⎦⎢⎥⎣⎦其中,0V 是溶剂的摩尔体积;R 和T 分别是气体常数和热力学温度;x 是Flory 相互作用常数;0Φ、Φ分别是溶胀前及溶胀平衡时凝胶中的高分子体积分数;gel N 、sol N 分别是凝胶和溶液中离子的总浓度;v 是干凝胶中有效高分子链密度。

上式成为水凝胶的状态方程,它表达了T π-Φ-的关系。

可见,水凝胶的溶胀特征与溶质、溶剂的性质、温度、压力及凝胶的交联度有关,渗透压由大分子链-水相互作用、大分子网络的橡胶弹性及聚合物水凝胶内、外离子浓度差构成[3]。

四、力学属性当在一个材料上施加一个外力作用,形变产生的大小依赖于材料的尺寸。

在一个同等大小的外力拉伸之下,一个短而粗的棒子将会比一个长而细的棒子伸展得更少。

这种尺寸的影响可以通过引进应变(而不是形变)和应力(而不是施加的外力)来加以消除。

一个所给材料不管其尺寸大小如何,只要施加一定的应力(σ),就会总是产生相同的应变(ε)。

应力和应变定义为:在简单的张力下0/F A σ=0/L L ε=∆其中L ∆为长度的改变大小,0L 为起始(未形变前)的长度,F 为所施加的外力大小,0A 是起始横断面积[2]。

水凝胶力学性能的研究可以对照橡胶的粘弹性理论。

通过研究水凝胶的动态力学试验结果,可以从其应力-应变曲线上获得我们想要得知的材料力学属性,如抗拉强度、断裂伸长率等。

为什么要重点强调出水凝胶的力学属性呢?笔者认为有以下两点原因:第一,力学属性是所有材料于应用前必须要了解的通用属性,对于水凝胶,更是如此。

由于通常“柔软”的外在性质,大大限制了其在一些力学情况下的应用。

一些水凝胶在吸水的过程中甚至会发生破裂;第二,一些功能化水凝胶被用于人体组织材料的开发,这就对其器官组织的支撑能力和适应性提出了更严格的要求。

五、透光率一些水凝胶材料被应用于角膜接触镜的研究(下面会有具体的介绍)。

在这种情况下,对于水凝胶的透明度的衡量尤其重要,这里引用透光率属性。

因人工角膜接触镜的厚度一般为0.5mm 左右,所以根据水凝胶膜的实际厚度d 校正为0.5mm 厚的水凝胶的透光率a T 所用公式为:()0.5100100a T T d-=- 其中T 为实际测量到的透光率[4]。

六、结晶度水凝胶结晶度直接关联着其各类其他属性,尤其是与力学属性和透明性息息相关。

结晶度c X 的计算公式为:c H X HΘ∆=∆ 其中,H Θ∆、H ∆分别为理论上水凝胶完全结晶的吸热焓和实际结晶熔融峰的吸热焓[4]。

需要指出的是,这里完全结晶的水凝胶必须为纯的高分子水凝胶(单一单体合成),如PV A 水凝胶。

对于通过几种单体交联合成的高分子水凝胶,我们很难在结晶度的研讨方面去加以定量。

高分子水凝胶的制备一、分类水凝胶常用的分类方法有三种:1)根据水凝胶对外界环境刺激的响应情况,可分为传统水凝胶(对外界环境刺激没有反应或者反应相当小)和环境敏感性水凝胶两大类,其中环境敏感性水凝胶又可依据外界刺激的性质不同而分类,这其中包括pH 敏感性水凝胶、温度敏感性水凝胶、电场敏感性水凝胶和光敏感性水凝胶四个主要大类。

2)根据水凝胶网络键合方式,可分为物理凝胶和化学凝胶以及包含物理化学共同作用力的凝胶,其中对于高分子凝胶而言,前两者各自单独存在的可能性几乎为零,而在物理作用力和化学作用力的共同作用下形成的水凝胶才是主体,也是我们研究的重点。

3)根据合成材料的不同,分为合成高分子水凝胶、天然高分子水凝胶以及天然-合成高分子水凝胶三个主体[1]。

表1 水凝胶的分类二、制备聚合物成为高分子水凝胶必须具备两个条件:高分子主链或侧链上带有大量的亲水基团和适当的交联网络结构。

制备高分子水凝胶的起始原料可以是单体(水溶性或者油溶性单体)、聚合物(天然或者合成聚合物),或者是单体和聚合物的混合体。

高分子水凝胶的制备方法主要有单体的交联聚合、聚合物交联聚合、接枝共聚等。

其中单体交联聚合是目前主要制备高分子水凝胶材料的方法之一。

单体交联聚合是低分子量的单体通过自由基等聚合方式,在交联剂的存在下合成水凝胶。

如聚甲基丙烯酸羟乙酯水凝胶即可由此法合成。

Wichterle和Lim 第一个报道了在交联剂双甲基丙烯酸乙二醇酯存在下,经自由基聚合制备此类凝胶的方法。

水凝胶的特性如溶胀性可以通过交联剂的量调节,而且可通过引入甲基丙烯酸(pH敏感水凝胶)或N-异丙基丙烯酰胺(温敏水凝胶)合成环境敏感水凝胶[1]。

聚合物交联聚合是从聚合物而非单体出发来制备的水凝胶,有物理交联和化学交联两种。

物理交联通过物理作用力如静电引力、离子相互作用、氢键、链的缠绕等形成。

化学交联是在聚合物水溶液中添加交联剂,如在PV A水溶液中加入戊二醛可发生醇醛缩合反应从而使PV A交联成网络聚合物水凝胶[3]。

接枝共聚是指将水凝胶接枝到具有一定强度的载体上。

在载体的表面产生自由基是最为有效的制备接枝水凝胶的技术,单体可以共价地连接到载体上。

通常在载体表面产生自由基的方法有电离辐射、紫外线照射、等离子体激化原子或化学催化游离基等,其中电离辐射技术是最常采用的产生载体表面自由基的一种技术[3]。

高分子水凝胶的性能表征对于其力学性能,通过电子拉力机在一定的拉伸速率和拉伸环境下测量其抗拉强度和断裂伸长率,而其中的强度是我们研究水凝胶的重点对象,很多报道都对如何提高水凝胶的强度提出了建议和想法。

总的来说,通常提高水凝胶的强度有方法是增加交联剂的浓度,但是过高的交联剂浓度会造成水凝胶吸水能力的减弱,这是由于网格线的复杂交错而导致容纳水分子的空间被压缩。

因而必须对吸水能力和抗拉强度做综合的权衡以选出一个最佳的交联剂单体浓度配比。

对于其热力学性能的表征,差示扫描量热分析和热重分析可取为探究方法。

从差示扫描量热法获得的差示扫描量热曲线中,这些在本质上反映水凝胶在升温中的吸热和放热的现象,可以提供其结构信息,尤其是结晶现象。

相关文档
最新文档