电流源设计方案
设计直流稳压电流源

设计一个直流稳压电源要求1.输出直流电压V0=12V±2V (即10V~14V连续可调,误差≤0.1V)2.输出直流电流I L=200mA3.电网电压220V±10%,50HZ4.环境温度5︒C~35︒C内容摘要直流稳压电源的设计首先要定量的分析稳压原理,电源变压器是将交流电网变为所需要的电压值,在通过整流电路将交流电压变为直流电压,由于此脉动的直流电压含有较大的波动,必须通过滤波电路滤除,从而得到平滑的直流电压。
但这样的电压还随着电网电压波动、负载和温度的变化而变化。
Abstract:a voltage stability of DC Power circuit consist of power transformer, rectifier, filter and circuit Regulators four components. Power transformer is 220 v AC system voltage to the required voltage, Then rectifier circuit to fluctuating AC voltage into DC voltage, But this also with the voltage gridvoltage fluctuations l Thus rectifier, filter circuit need circuit Regulators to maintain stability.关键词电源变压器,整流滤波,稳压电路,串联,直流。
方案论证(1). 根据设计的要求提出以下两种方案:方案一:串联式的直流稳压电路方案二:三端集成稳压电路两种方案直流稳压电源的功能方框图如下:(2).方案比较论证根据所学的关于稳压电源的知识,两方案经比较,第一方案简单易懂,易于实现,且成本低,与我们所学的知识紧密联系能很好的运用,维修比较简单在大多数情况下实用,故选择方案一。
数控直流电流源的设计

数控直流电流源的设计1.设计思路本设计以ATmega16L为核心,通过A/D、D/A转换、V/I转换及独特的算法实现高精度的,电流输出范围为20mA~2000mA的数控直流电流源。
该电流源具有电流可预置,1mA步进,同时显示给定值和实测值等功能。
2.方案设计2.1控制器模块方案利用ATmega16L单片机将电流步进值或设定值通过换算由D/A转换,驱动压控恒流源电路实现电流输出。
输出电流经处理电路,作A/D转换反馈到单片机系统,通过补偿算法调整电流的输出,以此提高输出的精度和稳定性。
D/A转换器选用12位优质D/A转换芯片 TLC5618,直接输出电压值,且其输出电压能达到参考电压的两倍,A/D转换器选用高精度16位模数转换芯片AD7705。
2.2显示器模块方案采用19264D汉字图形点阵液晶显示模块同时显示电流给定值和实测值。
使用LCD显示。
LCD具有轻薄短小,可视面积大,方便的显示汉字数字,分辨率高,抗干扰能力强,功耗小,且设计简单等特点。
2.3键盘模块方案采用标准4X4键盘,此类键盘采用矩阵式行列扫描方式,优点是当按键较多时可降低占用单片机的I/O口数目,而且可以做到直接输入电流值而不必步进。
2.4压控电流源模块方案精密压控电流源是本数控电流源的关键之所在,针对设计要求和使用需求、结合设计思路,精密电流源模块必须具备以下指标:纹波小于2mA,误差小于0.1%,具有低的输出失调。
基于稳定性要求和以上考虑,电流源电路选择了经典的压控电流源电路,它负责与后级扩流模块连接,用电压控制后者,而使用电流反馈,这样可以保证有足够高的精度。
该部分采用了高性能、低温漂、低失调的运算放大器OP77和精密元件组成,保证性能指标的良好发挥。
2.5扩流模块方案为了克服传统扩流电路在高精度、高稳定性要求下的缺陷,追求一种精度高、稳定性好、对前级影响小的扩流电路,受到S类功率放大器的启发,本设计率先把S类放大器优秀的电压跟随器原理引入电流源电路之中。
基于运算放大器的压控电流源设计

基于运算放大器的压控电流源设计
为了设计一个基于运算放大器的压控电流源,我们可以采用以下步骤:
1.确定所需的电流范围和电压范围。
例如,假设我们需要设计一个电
流范围为0到100mA、电压范围为0到5V的压控电流源。
2.选取适当的运算放大器。
在本例中,我们可以选择一个带有高电压
增益、高带宽和稳定性的运算放大器。
例如,我们可以选择LM358或
OPA548等运算放大器。
3.计算所需的电阻值。
为了产生所需的电流范围,我们需要选择适当
的电阻值。
例如,对于0到100mA的范围,我们可以选择1欧姆的电阻。
4.计算所需的反馈电阻值。
为了实现电流控制,我们需要使用反馈电阻。
反馈电阻的值可以使用欧姆定律计算。
例如,如果我们需要在2V电
压下获得50mA的电流,反馈电阻为40欧姆(2V/40欧姆=50mA)。
5.连接运算放大器。
根据电路图,连接运算放大器,包括强制电流源
输入和反馈电阻。
确保连接正确,并确保电压和电流范围符合要求。
6.测试和校准。
测试电路以确保它满足所需的电压和电流范围。
校准
电路以确保它的准确性和稳定性。
注意:在设计和测试此类电路时需要遵守相关安全标准和规定,以确
保安全性和可靠性。
一种高精度的电流源设计

第九届ICEMI国际电子测量与仪器会议ICEMI'2009一种高精度电流源的设计于鹏王彦超夏少军哈尔滨工业大学92号西大直街哈尔滨,150001,中国电子邮箱:摘要——电流源是电气测量和控制系统的关键部件之一。
然而,由温度漂移和其它干扰引入的噪声,使其成为系统误差的重要来源。
为了制定一个精度高、稳定性好的电流源,本文提出一种基于Howland的电压电流转换(V/I)电路。
电流源所使用的DSP RS-232接口是完全可编程的。
此外,还有一个采样电路,利用抽样结果,使校准进一步减少电流源输出误差。
实验结果表明,在140欧姆的恒定负载下,电流输出范围为-50mA至50mA,误差小于3 μA,并且具有较低的温度漂移和较小波形失真度。
这为设计一种精确度高、输出电流变化范围稳定的电流源提供了一种有效的方法。
关键词——电流源;Howland;校准一、引言随着科技的进步,精密的电流源在自动测试、测量以及各种应用中起着日益重要的作用。
然而,要满足高精确的目标,然而,要满足高精度的目标,并且保持输出稳定,这一点随温度的升高而变得越来越困难。
在所有的应用中,目前大部分测量领域中使用的精度高和输出稳定的电流源,都是电压控制型电流源(VCCS)。
由于超精密运算放大器的运用,使得VCCS的电流输出精度高,且稳定。
但是,电流源输出范围往往有限,而且由温度和非线性引入的误差也是一个很大的难题。
图1显示的一个电路,它也被称为Howland模型,采用电阻匹配实现反馈回路,从而使负载两端电流输出稳定[3]。
它采用了超精密运算放大器OP177生成精确和稳定的电流输出。
尽管OP177在精确度性能方面远胜其它任何运算放大器,但其输出范围只局限于-22mA〜32mA[4]。
图1——Howland电流源为了更好地解决这一难题,精度高、宽范围和输出稳定的电流源的设计便自然而然的被提出来。
由D / A模数转换器产生一个电压,然后将电压转换为电流。
如何设计一个简单的电流源电路

如何设计一个简单的电流源电路在电子电路设计中,电流源是一个常见的电路元件,用于稳定地提供恒定的电流输出。
通过设计一个简单的电流源电路,我们可以实现电路中对电流的精确控制和稳定输出。
本文将介绍如何设计一个简单的电流源电路,并提供详细的步骤和示例。
一、电流源的基本原理在电子电路中,电流源是一种主动元件,它可以提供恒定的电流输出,不受外部电路阻抗的影响。
电流源主要基于负反馈原理工作,通过自动调整输出电流,保持输入电流与输出电流之间的恒定比例关系。
常见的电流源电路包括电流镜、负反馈电路和放大器等。
二、设计步骤1.确定所需的电流输出值首先,确定所需的电流输出值。
这个值可以根据具体的应用需求来确定,例如驱动LED需要的电流、激励传感器等。
2.选择合适的电流源电路类型根据所需的电流输出值和应用需求,选择合适的电流源电路类型。
常见的电流源电路有简单的恒流二极管电路、恒流镜电路、差分放大器电流源等。
3.计算电路参数根据所选电流源电路,计算电路所需的元器件参数。
主要包括电阻值、跨导值、电压值等。
其中,电流源电路的关键参数是跨导值,它决定了输出电流的稳定度和精度。
4.选择合适的元器件根据计算得到的电路参数,选择合适的元器件。
常见的元器件包括二极管、电阻、晶体管等。
在选择元器件时,要考虑元器件的工作电流范围、温度特性和可靠性等因素。
5.进行电路仿真和优化使用电路仿真软件(如SPICE)对设计的电路进行仿真和优化。
通过仿真可以验证电路的性能和稳定度,并做出相应的调整和优化。
6.制作和测试电路根据设计的电路图,进行电路的制作和组装。
在测试过程中,应测量电流源电路的输出电流,并与设计值进行对比,验证电路的实际性能。
三、示例电路设计假设我们需要设计一个输出电流为1mA的电流源电路。
以下是一个简单的恒流二极管电路设计示例:电路图:```R1Vin ---/\/\/\/-----|>|-- VoutR2```电路参数计算:假设二极管的压降为0.7V,根据欧姆定律,可得:R1 = (Vin - Vout) / Iout = (Vin - Vout) / 0.001AR2 = Vout / Iout = Vout / 0.001A选择元器件:选择合适的二极管和电阻来满足电路设计要求。
压控恒流源电路设计

3、电流源模块的选择方案方案一:由晶体管构成镜像恒流源一缺点在于,集电极最大输出电流约为几百毫安,而题目要求输出电流为200~2000mA,因此由晶体管构成的恒流源不适合采用。
方案二:由运算放大器构成恒流电路运算放大器构成的恒流电路摆脱了晶体管恒流电路受限于工艺参数的缺点。
但是只由运放构成的恒流电路,输出电流同样只能达到几十毫安,远远不能满足设计要求,因此必须加上扩流电路。
采用运算放大器加上扩流管构成恒流电路,既能利用运算放大器准确的特性,输出又能达到要求。
该电路的缺点之一在于电流的测量精度受到两个晶体管的匹配程度影响,其中涉及到比较复杂的工艺参数。
方案三:由运算放大器加上扩流管构成恒流电路采用高精度运算放大器OP07,更能增加其准确的性能;采用达林顿管TP127 进行扩流,具有很大的扩流能力,两者结合,可以实现比较精确的恒流电路。
鉴于上面分析,本设计采用方案三。
(3)恒流源电路的设计恒流源电路如图8.15 所示。
其中,运算放大器U3 是一个反相加法器,一路输入为控制信号V1,另一路输入为运放U1 的输出反馈,R8 是U3 的反馈电阻。
用达林顿管TIP122 和TIP127 组成推挽式电路,两管轮流导通。
U2 是电压跟随器,输入阻抗高,基本没有分流,因此流经R2 的电流全部流入负载RL。
U1 是反相放大器,取R14=R11 时,放大倍数为-1,即构成反相器。
针对运算放大器输出电流小的不足,该电路加了扩流电路。
采图8.15 恒流源部分电路若U3 的输入电压为Vin,根据叠加原理,有由U2 的电压跟随特性和U1 的反相特性,有代入得到即流经R7 的电流完全由输入控制电压Vin 决定由于U2 的输入端不取电流,流经负载RL 的电流完全由输入控制电压Vin 决定,实现了压控直流电流源的功能。
由于R7 中流过的电流就是恒流源的输出电流,按照题目要求,输出的直流电流需要达到2A,这里采用康锰铜电阻丝作为电阻R7。
电流源设计方案

电流源设计方案1. 引言电流源作为电子电路中的一种基本元件,在各个领域都有广泛的应用。
它可以实现稳定的电流输出,为其他电路提供所需的电流驱动。
本文将介绍一种基于操作放大器的电流源设计方案,包括电路原理、设计步骤和相关注意事项。
2. 电路原理2.1 操作放大器操作放大器(Operational Amplifier,简称Op-Amp)是一种常见的电子器件,具有高增益、高输入阻抗、低输出阻抗等特点。
它的输入阻抗远大于信号源的输出阻抗,因此可以作为理想放大器使用。
2.2 基本电流源原理基本电流源由操作放大器和电阻组成,如图1所示。
操作放大器的负输入端与输出端相连,通过电阻R1和R2构成反馈电阻网络。
当反馈电阻比例为R2/R1时,可以将负输入端电压维持在零电平,使操作放大器处于负反馈状态。
这种电路可以实现稳定的电流输出。
R2+------^^^-------+| |R1 |V_in ----------vvv--------+ || |R3 || |GND ---------------------vvv-------v| |+----------------+图1:基本电流源电路结构当输入电压V_in为零时,根据欧姆定律可知,电阻R3上的电流I_out等于R2与R3串联电阻上的电压V_R23除以R2的阻值,即I_out = V_R23 / R2。
通过调整R1、R2和R3的阻值,可以实现所需的电流输出。
3. 设计步骤3.1 确定输出电流要求首先需要确定所需的输出电流,例如200mA。
这将是后续设计中的重要参数。
3.2 选择操作放大器根据所需的输出电流和其他性能要求(如输入阻抗、输出阻抗等),选择合适的操作放大器。
常用的操作放大器有LM741、OPA541等。
3.3 计算电阻阻值通过计算可以确定R3的阻值。
根据I_out = V_R23 / R2和R2/R1 =V_R23 / V_in 的关系,可以计算出R2和R3的阻值。
带隙基准电流源设计

带隙基准电流源设计随着集成电路技术的发展,带隙基准电流源在模拟电路设计中扮演着至关重要的角色。
带隙基准电流源是一种能够提供稳定、准确的电流输出的电路,通常用于模拟电路中的参考电流源或者偏置电流源。
本文将介绍带隙基准电流源的设计原理和实现方法。
带隙基准电流源的设计原理基于半导体材料的能带结构。
在半导体材料中,导带和价带之间存在一个禁带,称为带隙。
当半导体材料的温度变化时,导带和价带的能级随之改变,从而影响电子的激发和传导。
带隙基准电流源利用这种特性,通过合理设计电路,使得输出电流与温度变化无关。
带隙基准电流源的设计过程可以分为以下几个步骤:1. 选择合适的半导体材料:带隙基准电流源的核心是带隙电压参考源,因此需要选择具有稳定带隙电压温度系数的半导体材料。
常用的材料包括硅和砷化镓等。
2. 设计基准电流源电路:基准电流源电路通常由参考电流源和输出电流稳定电路组成。
参考电流源可以通过电流源镜像电路或者电流源比例电路实现。
输出电流稳定电路用于提供稳定的输出电流,并对温度变化进行补偿。
3. 进行电路参数计算:根据设计要求和选定的材料,进行电路参数的计算。
主要包括电流源的电流范围、输出电流的稳定度、带隙电压的选择等。
4. 电路仿真和优化:通过电路仿真软件对设计的电路进行仿真,检查电路的性能是否满足设计要求。
根据仿真结果进行优化,调整电路参数,提高电路性能。
5. 原型电路的制作与测试:根据设计方案制作电路原型,并通过实验进行测试。
测试结果与仿真结果进行对比,验证电路的性能和稳定性。
带隙基准电流源的设计需要兼顾多个方面的因素,包括温度稳定性、功耗、尺寸等。
在实际应用中,还需要考虑电源噪声、温度漂移、工艺变化等因素对电路性能的影响。
因此,设计带隙基准电流源需要综合考虑这些因素,并进行合理的权衡。
带隙基准电流源是模拟电路设计中的重要组成部分,能够提供稳定、准确的电流输出。
通过合理的设计和优化,可以实现高性能的带隙基准电流源。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电流源设计方案
电流源是一种产生稳定电流的电子设备,常用于电路测试、电流控制等应用中。
下面是一个电流源的设计方案,包括原理、电路图和材料选择等内容。
首先我们来了解电流源的工作原理。
电流源的基本原理是通过控制电压源输出的电压来控制电路中的电流。
具体实现电流控制的方法有很多种,其中一种常用的方法是采用电压表和可调电阻组成的反馈电路。
电流源的输出电流与反馈电路中的电压成正比,通过调节可调电阻的阻值,可以实现对输出电流的控制。
接下来我们绘制一个简单的电流源电路图。
该电路图包含一个电压源、一个可调电阻和一个用于测量电流的电流表。
电压源的输出电压通过反馈电路控制电流的大小,可调电阻用于实现电流的调节,电流表用于测量电路中的电流。
在进行材料选择时,需要考虑电流源的输出电流范围和精度等要求。
电路中的电压源可以选择常用的电池或者直流稳压电源,可调电阻可以选用电位器或者变阻器,电流表可以选择合适的电流测量范围的数字电流表或者模拟电流表。
在实际搭建电流源电路时,需要注意以下几点:
1. 保证电路中的接线良好,避免接触不良或者短路等现象。
可以使用实验面包板或者焊接电路板来确保电路的稳定性和可靠性。
2. 调节可调电阻时,需要慢慢地转动旋钮,以防止电路中的电流突然增大或者减小,造成设备损坏。
3. 在进行电流测量时,需要保证电流表的测量范围适合所测电流的大小,避免超出电流表的测量范围导致测量不准确。
最后,需要注意安全问题。
在使用电流源时,应遵循相关的安全操作规范,避免触摸电路中的带电部分,确保设备和操作人员的安全。
综上所述,一个基本的电流源设计方案包括电路图的设计、材料的选择和安全操作等方面。
通过合理的设计和搭建,可以实现电流的稳定输出和精确控制,满足电路测试和电流控制等应用的需求。