基于STM32的数控电流源设计
STM32实现4-20mA压控恒流源电路

STM32实现4-20mA压控恒流源电路为工业场合开发的设备通常情况下都会具有4-20mA输出接口,在以往没有DAC模块的单片机系统,需要外加一主片DAC实现模拟量的控制,或者采用PWM来摸拟DA,但也带来温漂和长期稳定性问题。
在以STM32为中心的设备中,使用它自带的DAC即可非常方便的实现4-20mA的输出接口,具有精度高、稳定性好、漂移小以及编程方便等特点。
在STM32单片机系统中,100脚以下没有外接出VREF引脚,但这样使得DAC的参考端和VCC共用,带来较大误码差,为解决这一问题,可以使用廉价的TL431来解决供电问题,TL431典型温漂为30ppm,所以在一般应用中已非常足够。
选用两只低温漂电阻,调整输出使TL431的输出电压在3V-3.6V之间,它的并联稳压电流可达到30mA,正好能满足一般STM32核心的功耗需求。
利用TL431解决了供电问题,余下的就是4-20mA的转换电路,如下图:上图即为非常精确的转换电路,OPA333是一颗非常优异的单电源轨至轨运算放大器,其工作电压为2.7-5.5V,其失调电压仅为10uV,实测最低输出为30uV,最高输出可达VCC-30uV。
电路组成压控恒流源,其关键在于OPA333这颗芯片的优异性能,使得以上电路获得了极高的精度和稳定性。
DACOUT来自于STM32的DAC1或者DAC2输出,由C25进行数字噪场滤波之后进入运算,进行1:1缓冲,后经过Q2进行电流放大,在R7上形成检测电压,C17进行去抖动处理。
4-20mA信号由AN_OUT+/AN_OUT-之间输出。
上图中,负载中的电流在R7上形成压降,经运放反馈后得到Vdacout=Vr7=I*R7,所以:I=Vdacout/R7,当Vdacout在400mV到2000mV之间变化时,可得到4-20mA的输出。
改变R7的大小,便可改变DACOUT的需求范围。
电路中,R2的基射极之间将有0.7V左右的偏压,所以Vb[MAX]=2V+0.7V=2.7V,这正好在OPA333的输出范围之内。
基于单片机的数控恒流源电路的设计

基于单片机的数控恒流源电路的设计方式,一种是根据工业应用的需求,通过A/D 采样获取控制信号,根据在汇编程序中多次的数据实测,将固定的表格设计好,把控制数据通过查表给D/A 输出,使恒流源单元所产生的对应稳定电流得到控制。
利用手动输入的方式,对用户输入的理想电流值进行判断,然后根据查表,由D/A 来实现控制数据的输出,以此获得相应大小的电流,该功能还可以让电流的初值用户进行预设。
以上两种控制方法是不能同时起作用的,通过程序可以实现自动采样和键盘这两种不同控制方式进行自动切换。
在同时使用LED 交互显示时,为A/D 采样控制时,输出电流的大小要实时显示;为键盘控制时,用户的输入状况则要显示。
参照输入电压和恒流源输出电流的关系来制表,而且可以将一些非线性问题在指标过程与予以修正。
在制表的过程中由于还需要分写考虑到A/D的应用情况和键盘输入初值有差别所造成的情况。
以键盘初值为例来考虑:若10ma 是用户输入的电流,1v 为其所对应的控制电压,(00110010)2=(50)10 为间接对应的8 位二进制数,那么(00110010)2 则为软件表中所对应的值。
A/D 采样控制与键盘方式基本一致,只是多了一个对采样值的判断。
5 软件程序的设计首先对包括:8297 工作状态的初始化;自动采样控制标志位和标识键盘手动操作的初始化;中断初始化;一些用到的寄存器的初始化,整个系统进行初始化。
规定F0=1 时为A/D 采样控制,F0=0 时为键盘控制,初始写初始设定状态,此处为键盘的状态,LED 数码管显示为P,也是表示键盘状态,启动D/A 进行转换。
并等待键盘按下,开始循环等待。
当中还加入了一些如:。
基于stm32的数控电流源设计

摘要电源技术尤其是数控电源技术是一门实践性很强的工程技术,服务于各个行业。
随着计算机和通讯技术发展而带来的现代信息技术革命,给电源技术提供了广阔的发展前景,同时也给电源技术提出了更高的要求。
现在市场上数控电流源的存在输出精度不高,功率密度比较低,带负载能力不强,体积大,价格较高,操作繁琐,工作状态不稳定等弊端,因此数控电源的主要发展方向是针对上述缺点不断改善。
数字化智能电源模块是针对传统智能电源模块的不足提出的,数字化能够减少生产过程中的不确定因素和人为参与的环节数,有效地解决电源模块中诸如可靠性、智能化和产品一致性等工程问题,极大地提高生产效率和产品的可维护性。
所以,高精度的数控直流电流源有很大的发展空间。
在本设计中将采用STM32单片机为系统的主控制器,能够实现多功能、宽范围、可调节等诸多功能,为更好的实现恒流提供条件,完成数控电流源的设计。
STM32片内集成的A/D转换器、D/A转换器和PWM发生模块降低了系统复杂程度,使系统简单,可靠,低价。
关键字:电源技术;数控电流源;STM32;数字化ABSTRACTPower technology, especially CNC power technology is one engineering technology with strong practice, it services for every field. Modern information technology revolution, that brought with the development of computer and communications technology, provides a broad development prospects, but also makes a higher demands in power supply technology. At the present time CNC current source on the market exists some shortcomings, such as output precision is not high, the power density is relatively low, capacity with a load is not strong, bulky, expensive, complicated operations, instability working state and so on. So the major develop direction of CNC power is specialized for these shortcomings, and to reform them. Digital intelligent power modules is made against the lacking of traditional intelligent power modules, digitize can reduce uncertainty and human participating quantity of links in the production process, and resolve some engineering problems effectively, such as reliability, intelligence, product consistency problem and so on, and greatly improve production efficiency and maintainability of the product. Therefore, high-accuracy CNC DC current source has a lot of space to develop. In this design,STM32 MCU will be used as the main controller of the whole system, it can achieve the multi-function, wide range ,adjustable, and many other functions, providing better conditions for achieving constant current and completing the design of CNC current source. It integrates A/D converter, D/A converter and PWM module in STM32 chip, thus reducing complexity of the system, keep the system simple, reliable and low price.Key words:Power technology; Numerical control current source; STM32; digital目录摘要 (Ⅰ)Abstract (Ⅱ)第1章 (1)1.1 数控电流源项目的目的和意义 (1)1.2 数控电流源在国内外的发展概况 (2)1.3 基于STM32的数控电流源的设计的内容 (4)第2 章 (5)2.1 数控电流源的核心技术原理 (5)2.2 方案的总体设计 (6)2.2.1 数控电流源的主控芯片的选择 (6)2.2.2 基于STM32的数控电流源系统结构 (8)2.2.3 恒流源模块电路的方案讨论 (9)2.3 本章小结 (9)第3章基于STM32数控电流源的硬件电路设计 (10)3.1 恒流源模块电路的设计方案 (10)3.1.1 以LM350A为恒流源模块的核心元件的恒流源电路 (10)3.1.2 数控宽范围调整、大电流输出恒流源电路 (14)3.2 数控部分 (16)3.3 供电电源 (18)3.3.1 三端稳压器 (18)3.3.2 供电电源电路 (19)3.4 本章小结 (20)第4 章 (21)4.1 主程序设计 (21)4.2 负载电流取样子程序设计 (22)4.3 键盘中断程序设计 (23)4.4 LCD1062显示程序设计 (24)4.5 本章小结 (24)结束语 (25)参考文献 (26)致谢 (28)附录 (29)附录A (29)附录B (31)第1章引言1.1 数控电流源项目的目的和意义电源技术尤其是数控电源技术是一门实践性很强的工程技术,服务于各个行业。
基于单片机的数控恒流源设计-----硬件设计(DOC)

典型的串联型稳压电路见下图2所示。是由调整环节,比较放大环节,基准 环节和取样环节所组成的电压负反馈闭环系统。
取样环节:由R1、R2和R组成的分压电路。它将输出电压U0的变化取回 一部分UF(称取样电压)送刀比较放大器的基极。
构成的电路来驱动。74LS164是高速硅门CMOS器件,与低功耗肖特基型TTL (LSTTL)器件的引脚兼容。74LS164是8位边沿触发式移位寄存器,串行输入 数据,然后并行输出。数据通过两个输入端(DSA或DSB)之一串行输入;任一 输入端可以用作高电平使能端,控制另一输入端的数据输入。显示电路如下:
采用模/数转换芯片MC14433和电压跟随器实现数据采集模块。为了能够更好 地实现电路隔离,电压跟随器用运算放大器来构成, 使得其输入阻抗高,几乎不 从信号源吸收电流,输出阻抗低,可视为电压源。MC14433S片的最大输出电压
有199.9mV和1.999V两档,本系统设计选择1.999V档位
2.5辅助电路由以下几部分组成:电源模块,MCI微
控制器、键盘、显示模块、D/A转换模块、恒流源模块、数据采集模块,以下就 各电路模块给出设计方案。
2.1MCU控制方案
采用单片机作为控制模块核心。单片机最小系统简单,容易制作PCB算术
功能强,软件编程灵活、 可以通过ISP方式将程序快速下载到芯片, 方便的实现 程序的更新,自由度大,较好的发挥C语言的灵活性,可用编程实现各种算法和 逻辑控制,同时其具有功耗低、体积小、技术成熟和成本低等优点。
最小系统的核心为STC89C52为了方便单片机引脚的使用,我们将单片机的引
基于STM32的数控可调直流电源设计

第37卷第4期2023年7月兰州文理学院学报(自然科学版)J o u r n a l o fL a n z h o uU n i v e r s i t y ofA r t s a n dS c i e n c e (N a t u r a l S c i e n c e s )V o l .37N o .4J u l .2023收稿日期:2023G03G10基金项目:淮南师范学院自然科学研究重点项目(2022X J Z D 026);教育部产学合作协同育人项目(220906517261925)作者简介:戴文俊(1987G),男,安徽长丰人,讲师,硕士,研究方向为电力电子与电气传动控制.E Gm a i l :a w j k a o ya n @163.c o m.㊀㊀文章编号:2095G6991(2023)04G0074G05基于S TM 32的数控可调直流电源设计戴文俊,胡艳丽,阚绪月(淮南师范学院机械与电气工程学院,安徽淮南232038)摘要:为了提高电源的输出电压精度和减小负载调整率,采用S TM 32单片机作为控制核心设计数控可调电源.硬件包括主电路㊁驱动电路㊁控制电路㊁检测电路㊁辅助电源电路㊁液晶显示电路和保护电路.单片机通过检测电路采集输出电压和电流信号,采用模糊自适应P I D 和P WM 算法控制输出电压达到期望值并趋于稳定.实验测试结果显示:本数控电源空载输出电压精度达99.4%,负载输出电压精度为98%,且具有输出电压双向可调㊁步进幅度可设置㊁实时显示和保护等功能.关键词:S TM 32;可调直流电源;模糊自适应P I D ;数控中图分类号:T N 86;T P 368.1㊀㊀㊀文献标志码:AD e s i g no fN u m e r i c a l C o n t r o lA d j u s t a b l eD CP o w e r S u p p l y Ba s e do nS T M 32D A IW e n Gj u n ,HUY a n Gl i ,K A N X u Gyu e (S c h o o l o fM e c h a n i c a l a n dE l e c t r i c a l E n g i n e e r i n g ,H u a i n a nN o r m a lU n i v e r s i t y,H u a i n a n232038,A n h u i ,C h i n a )A b s t r a c t :I no r d e r t o i m p r o v e t h e o u t p u t v o l t a g e a c c u r a c y o f t h e p o w e r s u p p l y an d r e d u c e t h e l o a d a d j u s t m e n t r a t e ,S T M 32s i n g l e c h i p m i c r o c o m p u t e r i s u s e da s t h e c o n t r o l c o r e t od e s i gn t h eN Ca d j u s t a b l e p o w e r s u p p l y.T h eh a r d w a r e i n c l u d e sm a i nc i r c u i t ,d r i v ec i r c u i t ,c o n t r o l c i r c u i t ,d e t e c t i o n c i r c u i t ,a u x i l i a r yp o w e r c i r c u i t ,l i q u i dc r y s t a l d i s p l a y c i r c u i t a n d p r o t e c t i o n c i r c u i t .T h e s i n g l e c h i p m i c r o c o m p u t e r c o l l e c t s t h e o u t p u t v o l t a g e a n d c u r r e n t s i g n a l t h r o u gh t h e d e t e c t i o n c i r c u i t ,a n du s e s f u z z y a d a p t i v eP I Da n dP WMa l g o r i t h m s t o c o n t r o l t h eo u t p u t v o l t a g e t o r e a c h t h e e x p e c t e d v a l u e a n d t e n d s t o b e s t a b l e .T h e e x pe r i m e n t a l r e s u l t s s h o wt h a t t h e p r e c i s i o nof n o Gl o a d o u t p u t v o l t ag e i s 99.4%,th e p r e ci s i o n o f l o a d o u t p u t v o l t a ge i s 98%.I t h a s t h ef u n c t i o n s o f b i d i r e c t i o n a l a d j u s t a b l e o u t p u t v o l t ag e ,a d j u s t a b l e s t e p a m p l i t u d e ,r e a l Gt i m e d i s p l a y an d p r o t e c t i o n .K e y w o r d s :S T M 32;a d j u s t a b l eD C p o w e r s u p p l y ;f u z z y a d a p t i v eP I D ;n u m e r i c a l c o n t r o l ㊀㊀电源是各种电子设备必不可少的组成部分,其性能的优劣直接关系到整个设备的安全性与可靠性指标.随着科技的发展,各种先进设备已经普及到生产㊁生活和科研等各个领域,也对电源的精度和性能有了更高的要求,因此,许多设备逐渐采用高精度的数控电源,比如在电力通信领域,通信电源是各种电力数据采集㊁远程控制等终端设备的能源保障[1G2];U P S 电源在轨道交通领域的作用是保障列车运行的信号系统安全㊁稳定和可持续工作[3G4].数控直流电源的设计与开发主要集中在控制芯片㊁电源变换原理等方面.在控制芯片方面,大部分采用基于冯诺依曼结构的8051系列单片机.文献[5G6]采用A T M E L 公司的51系列单片机,文献[7G8]采用中国宏晶科技公司的51系列单片机,文献[9]采用意法半导体公司S T M8单片机,文献[10]采用A T M E L公司的A V R单片机.上述控制芯片均为8位元的单片机,属于入门级控制芯片,在数据处理方面,精度有限.所以一些A R M芯片和数字信号处理器被应用到数控电源的设计中.文献[11]所设计的便携式数控直流电源采用基于A R M C o r t e x内核的S T M32控制器,其在电源设计中可以采用更优的控制技术,发挥更高的性能.在电源变换原理方面,主要分为D/A转换芯片和电力电子变换电路两大类[5G6,8,10G11].经D/A转换芯片转换成模拟量,再通过集成运算放大器构成调理电路产生直流电压,采用独立按键调整单片机数字量值从而调节电压的输出值.这种变换方法一般是对于电压固定的直流电源进行变换,产生可调的电压值,且输出范围比较小,功率取决于提供的直流电源,控制方式一般采用开环控制,不能做到动态调整,精度较低.文献[9,12G13]采用的是基于电力电子开关器件构成的变换电路,一般采用A CGD CGD C变换方式,将输入的工频50H z的220V的交流电源进行整流(A CGD C变换),在经过变换电路(D CGD C)实现电压调节.这种电源变换需要根据实时检测的输出实际电压与设定值的误差调节控制变换电路开关器件导通和关段的控制脉冲.这种方法称为脉宽调制技术(P WM),属于闭环控制,精度较高,可实现大功率输出.根据以上文献综述,本文基于高性能单片机S T M32和电力电子器件实现数控可调电源的硬件电路设计;基于模糊自适应P I D控制算法和P WM技术实现动态调节和减小输出电压误差,提高精度.1㊀电源电路硬件设计1.1㊀电源电路结构本电源将电压值220V㊁频率50H z的输入交流电通过变压器转换为同频率的26V交流电,再通过整流桥和滤波电容器获得36V直流电(A CGD C).经直流调压电路按照设定值控制输出(D CGD C),采用O L E D液晶显示屏,实时显示电压设定值㊁输出值和电流值.电源硬件结构如图1所示.图1中,检测电路采用串联分压的方式采集电压,采用1Ω电阻作为采样电阻,检测电流转换为电压信号,利用单片机的A D转换功能,实现检测输出电压和电流的功能.工作电源电路通过三端稳压芯片78L05将12V的输入电源经过渡为5V输出,再经AM S1117低压降稳压器转为3.3V给单片机供电,同时12V的输入电源也为直流调压电路的开关管控提供驱动电压.图1㊀电源硬件结构1.2㊀驱动电路设计驱动电路的原理如图2所示.当S T M32单片机控制电路产生的P WM信号的3.3V高电平进入驱动电路时,驱动电路输出15V的电压给N M O S的栅极,使N M O S导通;当S T M32单片机控制电路产生的P WM信号的0V低电平进入驱动电路时,驱动电路输出-7V的电压给N M O S的栅极,使N M O S关断.P WM1和P WM2分别接S T M32单片机的P A7和P C6端口.1.3㊀直流调压电路设计直流调压电路采用半桥电路,如图3所示.整流电路输出的36V直流电压接入主电路中,通过驱动芯片I R2101S输出信号控制型号为I R F640的NMO S管的导通与关断.当I R F640栅极为高电平时导通,低电平时关断.同时设计了输出电压L C滤波电路,保证输出电压无杂波影响.1.4㊀故障保护电路设计保护电路如图4所示,主要针对欠压㊁过压及57第4期戴文俊等:基于S TM32的数控可调直流电源设计图2㊀驱动电路原理图3㊀直流调压电路原理图4㊀故障保护电路结构过流等故障现象对主电路进行保护.当发生故障时,故障保护电路会产生一个低电平,S T M 32对应的外部中断引脚的高电平被拉低,触发中断信号,S TM 32将进入中断保护程序.在中断保护程序中,P WM 信号的输出被关闭,P WM 输出设置变为高阻态并保持低电平,I G B T 功率器件将处于关闭状态,保护三极管处于断开状态,主电路将会一直被及时有效保护.硬件自动完成整个故障保护触发过程,能快速准确地应对和处理各种故障状态.根据原理图绘制P C B ,通过制板焊接完成数控电源如图5所示.图5㊀数控直流电源实物2㊀控制策略将设定电压值与检测到的实际电压值之间的偏差及偏差的变化值输入到模糊自适应P I D 控制器获取P WM 信号的占空比值,然后动态调节P WM 信号控制D C GD C 变换电路开关的通断,实现电压调节.控制策略结构如图6所示.图6㊀控制策略结构㊀㊀模糊自适应P I D 控制算法的表达式可表示为[14]:ut ()=k p 0+Δk p ()et()+k i 0+Δk i ()ʏt0et ()d t +k d 0+Δk d ()d et()d t,(1)式中,k p 0,k i 0和k d 0为PI D 控制算法的初始参数;67㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀兰州文理学院学报(自然科学版)㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第37卷Δk p ,Δk i 为和Δk d 为去模糊化后输出的P I D 在线实时调整参数.基于上述算法,本电源的软件控制流程如图7所示.图7㊀数控直流源控制程序流程3㊀测试结果与分析3.1㊀空载输出电压测试将数字万用表接在输出端口两侧,测量电路实际输出电压,观察电路输出电压大小与预期值是否符合.共进行了3次空载试验.各试验的电压范围为5V~30V ,设定电压调整步长为1V.详细的测试数据如表1所列.测试1的11V 设定值㊁测试2的20V 设定值和测试3的26V 和30V 设定值的测试结果如图8所示.图8㊀空载实验部分测试结果表1㊀空载输出电压试验结果(单位:V )设定电压测试1输出电压绝对误差测试2输出电压绝对误差测试3输出电压绝对误差55.050.055.020.025.010.0166.020.026.020.026.030.0377.030.037.040.047.030.0388.040.048.050.058.040.0499.030.039.030.039.060.061010.010.0110.030.0310.040.041111.030.0311.040.0411.040.041212.040.0412.060.0612.050.051313.060.0613.050.0513.030.031414.050.0514.060.0614.050.051515.070.0715.060.0615.070.071616.060.0616.080.0816.060.061717.080.0817.070.0717.080.081818.070.0718.090.0918.090.091919.10.119.090.0919.10.12020.090.0920.090.0920.080.082121.10.121.10.121.10.12222.10.122.050.0522.060.062323.120.1223.090.0923.080.082424.120.1224.110.1124.10.12525.130.1325.120.1225.110.112626.120.1226.130.1326.130.132727.140.1427.130.1327.120.122828.10.128.170.1728.190.192929.160.1629.140.1429.160.163030.130.1330.150.1530.170.17㊀㊀表1所列的测试数据中,实际输出电压值与期望值之间的绝对误差最小值为0.01V ,最大值为0.17V.根据表中的数据计算每个输出电压的平均绝对误差和平均相对误差,绘制两类误差曲线,如图9和图10所示,并对误差曲线进行线性回归统计.图9㊀空载输出电压绝对误差曲线77第4期戴文俊等:基于S TM 32的数控可调直流电源设计图10㊀空载输出电压相对误差曲线㊀㊀图9的误差曲线显示,电压的绝对误差随输出电压值的增加而增大.根据图10所示的相对误差曲线,该电源的相对误差在0.3%~0.6%之间,精度较高.3.2㊀负载输出电压测试将直流电动机作为负载连接到输出端口,用数字万用表与直流电动机并联测量输出的实际电压值,观察电源的输出电压是否与负载的期望值一致.测试数据采集结果如表2所列.设定电压为5V 和8V 来测量电压和电流,测试结果如图11所示.根据表2所示的负载测试数据,当负载输出电压在5V~10V 之间时,绝对误差为0.05V~0.15V ,相对误差小于2%.表1中的空载试验数据显示,当空载输出电压在5V~10V 之间时,绝对误差为0.01V~0.14V.对比表明,负载电压误差大于空载电压误差,这是由于电路中负载电流增加造成的电压降,属于一种正常现象.负载下输出电压的相对误差小于2%,说明负载调整率较小,精度较高.表2㊀负载输出电压试验结果设定电压/V 输出电压/V测量电流/m A绝对误差/V相对误差54.95151.50.051.00%65.93317.60.071.17%76.87251.60.131.86%88.02227.20.020.25%99.05208.30.050.56%109.85200.50.151.50%图11㊀负载试验部分测试结果4㊀结论本文采用S T M 32单片机为主控芯片,设计了包括主电路㊁驱动电路㊁控制电路㊁检测电路㊁辅助电源电路㊁液晶显示电路和保护电路的数控电源硬件电路.单片机通过检测电路采集输出电压和电流信号构成闭环控制,采用模糊自适应P I D 和P WM 算法的调节控制提高了输出电压的精度,且具有输出电压双向可调㊁步进幅度可设置㊁实时显示和保护等功能,可以为各种工作电压的精密直流电器提供工作电源.参考文献:[1]陈丽娟.变电站通信电源综合监控系统的设计[J ].光源与照明,2022(11):134G136.[2]周荣娴.电力通信机房中智能通信电源实施与应用[J ].电子技术与软件工程,2022(21):99G102.[3]王颖,李新,冯前进,等.城市轨道交通信号U P S 电源系统优化配置方案[J ].铁路通信信号工程技术,2022,19(8):62G67.[4]黄俊.地铁车站U P S 电源整合方式和容量确定[J ].智能城市,2022,8(11):49G51.[5]吴彤,孙广辉.基于A T 89S 52的数控直流电源设计[J ].电子测试,2021(13):37G39.[6]胡城瑜.探析单片机的数控直流稳压电源设计与实现[J ].电子测试2017(3):13G14.[7]钟成,池尚霏.基于单片机的数控直流稳压电源的设计与实现[J ].现代信息科技,2019,03(3):38G40.[8]胡维庆,颜建军,刘哲纬.数控式直流电源设计[J ].价值工程,2015,24(15):70G72.[9]程习敏,刘华.数控直流电源设计[J ].技术创新与应用,2018(27):40G41.[10]张丽.精密数控直流电源的设计[J ].电子世界,2016(21):63G64.[11]张红宾,李晓晨,赵二刚,等.基于S TM 32的便携式数控直流电源设计[J ].实验室科学,2019,22(3):53G56.[12]王瑜.数控可调不间断直流电源设计[D ].芜湖:安徽工程大学,2017.[13]岑祺.基于多功能双向直流变换的零碳模块化电源[J ].电信快报,2023(1):24G29.[14]戴文俊,范鹏飞,凌有铸,等.模糊自适应P I D 控制器在无刷直流电机控制系统中的应用研究[J ].安徽工程大学学报,2012,27(1):64G67.[责任编辑:李㊀岚]87㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀兰州文理学院学报(自然科学版)㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第37卷。
基于STM32的高精度程控电流源设计

第40卷第6期2017年12月电子器件Chinese Journal of Electron DevicesVol.40No.6Dec.2017收稿日期:2016-09-27修改日期:2016-12-11Design of Programmable High-Precision CurrentSource Based on STM32WEN Hui 1,JIANG Yanying 2*(1.National Demonstration Center for Experimental Electronic Circuit Education (Guilin University of Electronic Technology ),Guilin Guangxi 541000;2.Institute of Information Techology of GUET ,Guilin Guangxi 541000)Abstract :In order to solve the weakness of high ripple and low precision on switching current power ,a programmablehigh-precision current source based on STM32was designed by linear current regulator.In the aspect of hardware ,the STM32microcontroller was used as control unit.The current can be controlled by system through setting the reference volt by DAC883016bit DAC.The chip of INA286and LTC240024bit ADC was used in current detection.In the aspect of software ,the parameter input interface and current interface were designed.The SCPI parser was designed so that the system can be controlled by standard instructions.The results show that it is characterized by low ripple and high accuracy.Key words :linear current regulator ;programmable current source ;current detection ;high-precision ;SCPI parserEEACC :8320doi :10.3969/j.issn.1005-9490.2017.06.035基于STM32的高精度程控电流源设计文辉1,蒋艳英2*(1.桂林电子科技大学电子电路国家级实验教学示范中心,广西桂林541000;2.桂林电子科技大学信息科技学院,广西桂林541000)摘要:针对传统开关型电流源纹波大,精度低的缺点,采用线性稳流结构设计出一种基于STM32的高精度程控电流源。
stm32直接控制mos的极高效率的电源设计电源充电器

stm32直接控制mos的极高效率的电源设计电源充电器鉴于目前大家常用的开关电源工作效率都不太高的现状,我和@2545889167深感痛心,并且决定打造一款极高效率的双向DC-DC 电源,它使用stm32f334作为主控,直接产生高频pwm控制mos管的通断,并配合同步整流,达到极高的工作效率。
先来两张电源总体的图片。
至于工作效率,来一张降压的图展示一下。
输入30.17V,电流0.706A,输出20.76V,电流1.0036A,于是可得降压效率为97.8%,效率还OK吧。
再来一张升压的图片输入16.70V ,电流1.858A,输出30.78V,电流 0.9962A,效率98.82%。
这两张是我们这个电源极高工作效率的一个缩影。
一般来说,对于16~36V的输入,工作电流1~2A,降压效率都在95%以上,升压效率略高,在96%左右。
1L先简单解释这个电源的原理,2L将详细介绍。
这个电源采用双向半桥拓扑结构,结构极其简单,仅由两个mos管,一个电感,一个mos驱动芯片组成。
mos驱动芯片型号为ucc27211,TI家的,mos 驱动电流最大4A,典型应用电路为这款芯片内置自举二极管,因此,外部元件极其少。
事实上,我们电源的实际电路就如上图所示,只是变压器的地方是一个电感而已。
实际电路图在2L有介绍。
这个电路的核心为pwm的产生和mos管的选择。
因此,我们选择了意法半导体专门为工业应用设计的334型号来作为主控,产生高频pwm。
mos 管方面,应当选择导通电阻小的mos管,这个电源设计中,我们选择了irf3205,8mOhm的导通电阻,使得我们电源的热损耗极其小。
1L 的简介到此为止,详细介绍请移步2L。
这个电源呢,算是上一个DC-DC玩耍的入门贴“分享最近折腾几片DC-DC芯片的经验,QC3.0快充原理(TPS61088 SX1308 PT4103)|/read.php?tid=2134373”的进阶版本。
基于STM32处理器的数控电源设计

基于ARM处理器的数控电源设计摘要:电源是现代完成产品设计的最基本工具之一。
在现代科学研究和工业生产中, 制作低纹波、高精度的稳定直源有非常重要的意义。
本文详细论述了基于ARM处理器的数控电源设计的设计过程,详细介绍了每个模块的工作原理。
本设计基于ARMv7-M体系结构STM32F130VCT6单片机作为主控制系统,配合12位AD、DA、EEPOM、RTC时钟、设计相应的模拟数字硬件电路。
关键词:数控电源,ARM,12位AD,12位DADigital power supply design based on ARM processorAbstract: Power is the most basic of modern product design to complete one of the tools. In modern scientific research and industrial production, theproduction of low ripple, high accuracy and stability are very importantdirect source of meaning. This paper describes the ARMprocessor-based design of digital control power supply design, detailthe working principle of each module. The design is based onARMv7-M architecture STM32F130VCT6 MCU as the master controlsystem, with 12-bit AD, DA, EEPOM, RTC clock, the appropriatedesign of analog and digital hardware circuit.Key words:digital prower ,arm , 12bitAD, 12bitDA1前言低纹波、高精度稳定直源就是一种非常重要的特种电源,在现代科学研究和工业生产中得到了越来越广泛的应用,同时对电源控制数字化和智能化, 实时处理大量信息, 实现电压、电流、频率、相位、波形等参数的精确控制和高效率处理来获得高性能的电源是电源设计技术的重要趋势。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
摘要电源技术尤其是数控电源技术是一门实践性很强的工程技术,服务于各个行业。
随着计算机和通讯技术发展而带来的现代信息技术革命,给电源技术提供了广阔的发展前景,同时也给电源技术提出了更高的要求。
现在市场上数控电流源的存在输出精度不高,功率密度比较低,带负载能力不强,体积大,价格较高,操作繁琐,工作状态不稳定等弊端,因此数控电源的主要发展方向是针对上述缺点不断改善。
数字化智能电源模块是针对传统智能电源模块的不足提出的,数字化能够减少生产过程中的不确定因素和人为参与的环节数,有效地解决电源模块中诸如可靠性、智能化和产品一致性等工程问题,极大地提高生产效率和产品的可维护性。
所以,高精度的数控直流电流源有很大的发展空间。
在本设计中将采用STM32单片机为系统的主控制器,能够实现多功能、宽范围、可调节等诸多功能,为更好的实现恒流提供条件,完成数控电流源的设计。
STM32片内集成的A/D转换器、D/A转换器和PWM发生模块降低了系统复杂程度,使系统简单,可靠,低价。
关键字:电源技术;数控电流源;STM32;数字化ABSTRACTPower technology, especially CNC power technology is one engineering technology with strong practice, it services for every field. Modern information technology revolution, that brought with the development of computer and communications technology, provides a broad development prospects, but also makes a higher demands in power supply technology. At the present time CNC current source on the market exists some shortcomings, such as output precision is not high, the power density is relatively low, capacity with a load is not strong, bulky, expensive, complicated operations, instability working state and so on. So the major develop direction of CNC power is specialized for these shortcomings, and to reform them. Digital intelligent power modules is made against the lacking of traditional intelligent power modules, digitize can reduce uncertainty and human participating quantity of links in the production process, and resolve some engineering problems effectively, such as reliability, intelligence, product consistency problem and so on, and greatly improve production efficiency and maintainability of the product. Therefore, high-accuracy CNC DC current source has a lot of space to develop. In this design,STM32 MCU will be used as the main controller of the whole system, it can achieve the multi-function, wide range ,adjustable, and many other functions, providing better conditions for achieving constant current and completing the design of CNC current source. It integrates A/D converter, D/A converter and PWM module in STM32 chip, thus reducing complexity of the system, keep the system simple, reliable and low price.Key words:Power technology; Numerical control current source; STM32; digital目录摘要 (Ⅰ)Abstract (Ⅱ)第1章 (1)1.1 数控电流源项目的目的和意义 (1)1.2 数控电流源在国内外的发展概况 (2)1.3 基于STM32的数控电流源的设计的内容 (4)第2 章 (5)2.1 数控电流源的核心技术原理 (5)2.2 方案的总体设计 (6)2.2.1 数控电流源的主控芯片的选择 (6)2.2.2 基于STM32的数控电流源系统结构 (8)2.2.3 恒流源模块电路的方案讨论 (9)2.3 本章小结 (9)第3章基于STM32数控电流源的硬件电路设计 (10)3.1 恒流源模块电路的设计方案 (10)3.1.1 以LM350A为恒流源模块的核心元件的恒流源电路 (10)3.1.2 数控宽范围调整、大电流输出恒流源电路 (14)3.2 数控部分 (16)3.3 供电电源 (18)3.3.1 三端稳压器 (18)3.3.2 供电电源电路 (19)3.4 本章小结 (20)第4 章 (21)4.1 主程序设计 (21)4.2 负载电流取样子程序设计 (22)4.3 键盘中断程序设计 (23)4.4 LCD1062显示程序设计 (24)4.5 本章小结 (24)结束语 (25)参考文献 (26)致谢 (28)附录 (29)附录A (29)附录B (31)第1章引言1.1 数控电流源项目的目的和意义电源技术尤其是数控电源技术是一门实践性很强的工程技术,服务于各个行业。
当今电源技术融合了电气、电子、系统集成、控制理论、材料等诸多科学领域。
随着计算机和通讯技术发展而带来的现代信息技术革命,给电源技术提供了广阔的发展前景,同时也给电源技术提出了更高的要求。
随着数控电源在电子装置中的普遍使用,普通电源在工作时产生的误差,会影响整个系统的精确度,电源在使用时会造成许多不良后果。
世界各国纷纷对电源产品提出了不同的要求并制定了一系列产品精度标准,达标后才能够进入市场。
随着经济全球化的发展,满足国际标准的电源产品才能够获得通行证。
数控电源是从80年代才开始发展起来的产品,期间系统的电力电子理论开始建立。
这些理论为其后来的发展提供了良好的理论基础,在以后的时间里,数控电源技术开始长足的发展。
现在市场上数控电流源的存在输出精度不高,功率密度比较低,带负载能力不强,体积大,价格较高,操作繁琐,工作状态不稳定等弊端,因此数控电源的主要发展方向是针对上述缺点不断改善。
所以,高精度的数控直流电流源有很大的发展空间。
单片机技术及电压转换模块的出现为高精度数控电源的发展提供了有利条件。
新的变化技术和控制理论的不断发展,各种类型专用集成电路、数字信号处理器件的研制应用。
电源采用数字控制,具有以下明显优点:(1)易于采用先进的控制方法和智能控制策略,使电源模块的智能化程度更高,性能更完美。
(2)控制灵活,系统升级方便,甚至可以在线修改控制算法,而不必改动硬件线路。
(3)控制系统的可靠性提高,易于标准化,可以针对不同的系统(或不同型号的产品),采用统一的控制板,而只是对控制软件做一些调整即可。
(4)系统维护方便,一旦出现故障,可以很方便地通过RS232接口或RS485接口或USB接口进行调试,故障查询,历史记录查询,故障诊断,软件修复,甚至控制参数的在线修改、调试;也可以通过MODEM远程操作。
(5)系统的一致性好,成本低,生产制造方便。
由于控制软件不像模拟器件那样存在差异,所以,其一致性很好。
由于采用软件控制,控制板的体积将大大减小,生产成本下降。
(6)易组成高可靠性的多模块逆变电源并联运行系统。
为了得到高性能的并联运行逆变电源系统,每个并联运行的逆变电源单元模块都采用全数字化控制,易于在模块之间更好地进行均流控制和通讯或者在模块中实现复杂的均流控制算法(不需要通讯),从而实现高可靠性、高冗余度的逆变电源并联运行系统。
本课题主要研究的是基于你单片机的数控直流恒流源的设计,恒流源是能够向负载提供恒定电流的电源,因此恒流源的应用范围非常广泛,并且在许多情况下是必不可少的。
例如,在用通常的充电器对蓄电池充电时,随着蓄电池端电压的逐渐升高,充电电流就会相应减少。
为了保证恒流充电,必须随时提高充电器的输出电压,但采用恒流源充电后就可以不必调整其输出电压,从而使劳动强度降低,生产效率得到了提高。
恒流源还被广泛用于测量电路中,例如,电阻器阻值的测量和分级,电缆电阻的测量等,且电流越稳定,测量就越准确。
它既可以为各种放大电路提供偏流以稳定其静态工作点,又可以作为其有源负载,以提高放大倍数,并且在差动放大电路、脉冲产生电路中得到了广泛应用。
此外,线性扫描锯齿波的获得,有线通信远供电源、电泳、电解、电镀等化学加工装置电源,电子束加工机、离子注入机等电子光学设备中的供电电源也都必须应用恒流源。
随着电力电子技术的不断发展,数控电源在以往使用线性电源的场合中也获得日益广泛的应用。
在一些工业场合需要提供电压源和电流源,而且要求范围广、纹波低。
如果采用多台功能单一的电源设备,体积和重量都会增加很多,不经济,也不能满足工作的要求。
因此研究开发多功能、宽范围、可调节的数控电源很有意义。
1.2 数控电流源在国内外的发展概况在我国,以电力电子学为核心技术的电源产业,从二十世纪60年代中期开始形成,到了90年代以来,随着对系统更高效率和更低功耗的要求,电信与数据通信设备的技术更新推动电源行业中直流/直流转换器向更高灵活性和智能化的方向发展,电源产业进入快速发展期。