变频技术的发展趋势及其应用
变频器市场分析报告

变频器市场分析报告一、市场概述变频器是一种将电源频率转换为可调频率输出的电力调节装置,广泛应用于工业生产中。
随着工业自动化程度的不断提升和节能环保要求的增加,变频器市场得到了快速发展。
变频器具有调速范围广、控制精度高、节能效果显著等优点,在工业生产中得到了广泛应用,成为了推动工业现代化的重要装备。
二、市场规模根据市场研究公司的数据显示,全球变频器市场规模逐年增长。
2024年,全球变频器市场规模超过1000亿美元,预计到2025年将达到1500亿美元。
亚太地区是全球变频器市场的主要增长动力,其市场规模占据全球变频器市场的近40%份额,其中中国是亚太地区变频器市场的主要增长点。
三、市场驱动因素1.工业自动化需求增加:随着工业生产自动化程度的不断提升,对于变频器的需求也在不断增加。
变频器能够实现精确调速,提高生产效率和产品质量,因此受到工业企业的青睐。
2.节能环保政策推动:全球范围内对于节能环保的重视程度不断提高,变频器作为一种节能设备,能够有效地降低电能消耗,减少对环境的污染,因此得到了政府的支持和推广。
3.新能源发展:随着新能源产业的快速发展,特别是风力发电和太阳能发电产业的兴起,对于变频器的需求也增加。
变频器在新能源发电设备中具有重要作用,能够实现风力发电机组和太阳能光伏板的输出功率调节和稳定。
四、市场竞争格局目前,全球变频器市场存在着众多的供应商和厂商。
主要的市场竞争格局分为以下几种:1.外资企业竞争:来自欧洲、美国和日本等地的变频器制造商在技术和品质上具有较大优势,占据了市场的一部分份额。
这些外资企业通常拥有先进的研发实力和生产工艺,以高品质的产品和全面的售后服务在市场中竞争。
2.国内企业竞争:中国是全球变频器市场的主要生产和销售国家之一,拥有大量的变频器生产企业。
国内企业在价格和适应性上具有竞争优势,能够更好地满足国内市场需求。
3.本土品牌竞争:一些本土品牌逐渐走向成熟,通过不断提升产品质量和售后服务水平,逐渐赢得了市场份额。
高压变频器发展历史及发展趋势

高压变频器发展历史及发展趋势变频调速技术涉及到电力、电子、电工、信息与控制等多个学科领域。
随着电力电子技术、计算机技术和自动控制技术的发展,以变频调速为代表的近代交流调速技术有了飞速的发展。
交流变频调速传动克服了直流电机的缺点,发挥了交流电机本身固有的优点(结构简单、坚固耐用、经济可靠、动态响应好等),并且很好地解决了交流电机调速性能先天不足的问题。
交流变频调速技术以其卓越的调速性能、显著的节电效果以及在国民经济各领域的广泛适用性,而被公认为是一种最有前途的交流调速方式,代表了电气传动发展的主流方向。
变频调速技术为节能降耗、改善控制性能、提高产品的产量和质量提供了至关重要的手段。
变频调速理论已形成较为完整的科学体系,成为一门相对独立的学科。
20世纪是电力电子变频技术由诞生到发展的一个全盛时代。
最初的交流变频调速理论诞生于20世纪20年代,直到60年代,由于电力电子器件的发展,才促进了变频调速技术向实用方向发展。
70年代席卷工业发达国家的石油危机,促使他们投入大量的人力、物力、财力去研究高效率的变频器,使变频调速技术有了很大发展并得到推广应用。
80年代,变频调速已产品化,性能也不断提高,发挥了交流调速的优越性,广泛地应用于工业各部门,并且部分取代了直流调速。
进入90年代,由于新型电力电子器件如(绝缘栅双极型晶体管Insolated Gate Bipolar Transistor)、IGCT(集成门极换流型晶闸管Integrated Gate Commutated Thyristor)等的发展及性能的提高、计算机技术的发展,如由16位机发展到32位机以及DSP(数字信号处理器Digital Signal Processor)的诞生和发展(如磁场定向矢量控制、直接转矩控制)等原因,极大地提高了变频调速的技术性能,促进了变频调速技术的发展,使变频器在调速范围、驱动能力、调速精度、动态响应、输出性能、功率因数、运行效率及使用的方便性等方面大大超过了其它常规交流调速方式,其性能指标亦已超过了直流调速系统,达到取代直流调速系统的地步。
变频技术的发展趋势及其应用

变频技术的发展趋势及其应用
一、变频技术的发展趋势
1.适应条件多变的智能控制
随着工业4.0技术的发展,越来越多的智能设备需要能够根据变化环
境和条件进行实时变化,以满足用户的需求。
变频技术在这一方面起到了
重要作用,可以实时监测电机状态,可以根据实时条件调整电机的转速,
降低运行能耗,提高运行效率。
2.节能减排
随着节能减排的要求日益增加,变频技术非常适合实现节能减排的目标,因为它可以根据实时的条件调整电机的功率,从而减少电机的能耗和
排放。
加之变频技术可以降低机械金属磨损,从而提高加工质量,减少设
备维护的工作量,同时还可以降低润滑油的使用量,从而实现节能减排。
3.可靠性和稳定性
变频技术可以改善电机的可靠性和稳定性,变频器可以控制电机的转速,可以实现自动调节,避免由于过载或过电流而导致的电机烧坏。
此外,变频技术还可以减少电机运行中的噪声,提高电机的稳定性,确保电机的
长期可靠性。
二、变频技术应用
变频技术在工业领域的应用日益广泛,其可以应用到包括搅拌机、洗
衣机、空调、泵、风机等等场景中。
1.搅拌机
搅拌机是一种经常被用于制造类产品的重要设备。
变频技术的应用与发展

变频技术的应用与发展【摘要】变频技术是集自动控制、微电子、电力电子、通信等技术于一体的高科技技术。
随着科学技术的高速发展,变频器以其具有节电、节能、可靠、高效的特性应用到了工业控制的各个领域中,如变频调速在供水、空调设备、过程控制、电梯、机床等方面的应用,保证了调节精度,减轻了工人的劳动强度,提高了经济效益。
【关键词】变频技术;发展应用趋势;电梯变频技术的应用可分为两大类:一种,是用于传动调速;另一种,是用于各种静止电源。
而变频器最为典型的应用是以各种机械的节能为目的。
1 变频技术在电梯设备上的应用电梯是一种垂直运输工具,它在运行中不但具有动能,而且具有势能。
它经常处在正反转、反复启制动过程中。
对于载重大、速度高的电梯来说,提高运行效率、节约电能是重点要解决的问题。
如果均匀地改变定子供电电源的频率,则可平滑地改变交流电动机的同步转速。
在调速时,为了保持电动机的最大转矩不变,需要维持气隙磁通恒定,这就要求定子电压也随之作相应调节,通常是保持U/f=常数。
因此,要求向电动机供电的同时要兼有调压与调频两种功能,通常简称VVVF型变频器;用于电梯时常称为VVVF型电梯,简称变频电梯。
电梯动力来自电动机,一般选11kW或15kW的异步电动机。
曳引机的作用有三点:一是调速,二是驱动曳引钢丝绳,三是在电梯停车时实施制动。
为了加大载重能力,钢丝绳的一端是轿厢,另一端加装了配重装置,配重的重量随电梯载重量的大小而变化。
计算公式如下:配重的重量=(载重量/2十轿厢自重)×45%。
公式中的45%是平衡系数,一般要求平衡系数在45%~50%之间。
为满足乘客的舒适感和平层精度,要求电动机在各种负载下都有良好的调速性能和难确停车性能。
图1 电压源变频电梯电力传动系统框图1.1 系统构成主要有以下几部分:1.1.1 整流与再生部分。
这部分的功能有两个,一是,将电网三相正弦交流电压整流成直流,向逆变部分提供直流电源;二是,在减速制动时,有效地控制传动系统能量回馈给电网。
变频器的发展

变频器的发展一、概述变频器是一种电力传动装置,用于控制交流机电的转速和输出功率。
它通过改变电源频率和电压,实现调速和节能的目的。
随着工业自动化的不断发展,变频器的应用范围越来越广泛,对于提高生产效率和节能减排起到了重要作用。
本文将详细介绍变频器的发展历程、工作原理、主要应用领域和未来发展趋势。
二、发展历程1. 初期发展阶段20世纪60年代,变频器开始浮现在工业领域,主要用于控制电动机的转速。
当时的变频器体积庞大、效率低下,但已经具备了基本的调速功能。
2. 技术革新阶段20世纪80年代,随着电子技术的迅猛发展,变频器开始采用IGBT(绝缘栅双极型晶体管)作为功率开关元件,取代了传统的晶闸管。
这种技术革新使得变频器的效率大幅提高,体积也大大减小,应用范围得到了扩展。
3. 高性能化阶段进入21世纪,随着数字控制技术和通信技术的快速发展,变频器实现了高性能化。
现代变频器具备了更高的控制精度、更快的响应速度和更稳定的性能。
同时,通过网络通信技术,变频器可以与上位机实现远程监控和调试,大大提高了设备的可靠性和维护效率。
三、工作原理变频器主要由整流器、逆变器和控制电路组成。
整流器将交流电源转换为直流电源,逆变器将直流电源转换为可调频率和可调电压的交流电源,控制电路负责控制逆变器输出的频率和电压。
通过调整逆变器输出的频率和电压,可以实现机电的调速和控制。
四、主要应用领域1. 工业创造变频器广泛应用于工业创造领域,用于控制各种类型的电动机,如风机、水泵、压缩机、输送机等。
通过调整机电的转速,可以实现生产线的灵便调度和节能运行。
2. 农业领域农业领域也是变频器的重要应用领域之一。
通过控制水泵和灌溉设备的机电转速,可以实现农田的精确灌溉,提高水资源利用率,减少能源消耗。
3. 建造领域在建造领域,变频器被广泛应用于电梯、空调系统、给排水系统等设备中。
通过调整机电转速,可以实现设备的智能控制和节能运行。
五、未来发展趋势1. 高效节能随着节能环保意识的增强,未来的变频器将更加注重高效节能。
2024年变频调速电机市场发展现状

2024年变频调速电机市场发展现状概述变频调速电机是一种使用变频器来控制电动机转速的装置,由于其调速范围广、效率高、节能环保等优势,目前在工业领域得到广泛应用。
本文将就变频调速电机市场的发展现状进行分析和总结。
市场规模变频调速电机市场的规模与电力、工业生产等领域的发展密切相关。
根据调研数据显示,近年来,国内变频调速电机市场规模呈现逐年增长的趋势。
预计到2025年,中国变频调速电机市场将达到XXX亿元。
市场驱动因素1.环保节能要求:随着环境保护意识的提高,对工业设备节能减排的要求也越来越严格。
变频调速电机具有优异的节能效果,能够满足环保要求,因此受到市场的青睐。
2.自动化需求:随着工业自动化水平的提高,对电动机的精确控制要求也越来越高。
变频调速电机具有精确控制转速的能力,能够满足自动化生产线的需求,因此在自动化领域得到广泛应用。
3.新能源发展:随着新能源行业的兴起,对电动机的需求也在不断增加。
变频调速电机作为新能源设备中不可或缺的组成部分,正在逐渐渗透到新能源市场中。
市场竞争格局当前,变频调速电机市场存在着激烈的竞争。
主要厂商通过技术研发、品牌营销等手段争夺市场份额。
在国内市场中,一些知名的变频调速电机制造商已经形成了一定的规模,并且具有较强的研发实力和品牌影响力。
市场趋势1.高效节能:随着节能理念的普及,未来市场将更加注重变频调速电机的高效节能特性。
厂商将进一步提升产品的节能性能,以满足市场需求。
2.智能化:随着物联网和人工智能技术的发展,未来变频调速电机将实现智能化控制和远程监控。
这将大大提高设备的可靠性和运行效率。
3.产业升级:未来变频调速电机市场将呈现出产品结构升级、技术创新和行业整合加强等趋势。
厂商需要不断提高自身的研发和制造水平,以适应市场变化。
发展挑战1.技术壁垒:变频调速电机市场具有较高的技术门槛,需要厂商具备一定的研发实力和技术专长。
对于中小型企业而言,技术壁垒可能是一个制约发展的因素。
交流电动机变频调速技术的发展

交流电动机变频调速技术的发展随着电力电子技术和控制理论的不断发展,交流电动机变频调速技术得到了广泛应用。
本文将介绍交流电动机变频调速技术的发展背景、基本原理、应用场景、案例分析以及交流讨论,以期读者能深入了解该技术的应用和发展前景。
交流电动机变频调速技术是一种通过改变电源频率来调节交流电动机转速的技术。
其基本原理基于交流电动机的转速与电源频率成正比关系,通过改变电源频率,可以实现对电动机转速的平滑调节。
目前,常见的交流电动机变频调速方法有直接电源变换型和间接电源变换型两种。
直接电源变换型是通过改变电源的频率和幅值来直接驱动电动机,而间接电源变换型则是通过先转换成直流,再通过逆变器转换成交流来驱动电动机。
两种方法各有优缺点,直接电源变换型具有高效率和快速响应特点,但需要使用昂贵的电力电子设备;而间接电源变换型虽然需要两级转换,但其控制精度高且成本较低。
交流电动机变频调速技术被广泛应用于各种领域。
在工业生产中,该技术用于驱动各种泵、风机、压缩机等设备,实现生产过程的自动化和节能;在交通运输业中,交流电动机变频调速技术用于驱动地铁、轻轨、动车等城市轨道交通车辆,提高运行效率和乘坐舒适度;在电力系统中,该技术用于调节负荷和功率因数,提高电网运行效率和稳定性;在环保领域,交流电动机变频调速技术用于驱动环保设备,如污水泵、除尘器等,实现环保工程的自动化和节能。
随着技术的不断发展,交流电动机变频调速技术的应用前景将更加广阔。
以地铁车辆为例,交流电动机变频调速技术被广泛应用于地铁电传动系统中。
通过使用该技术,地铁车辆能够根据运行需求自动调节速度和加速度,提高运行效率和乘坐舒适度。
同时,该技术还具有对电网的友好特性,能够实现能量的高效回馈,降低能源消耗。
在应用交流电动机变频调速技术时,有一些问题需要注意。
由于该技术的应用涉及到大量的电力电子设备,因此需要充分考虑其可靠性、稳定性和耐久性。
由于不同的应用场景对电动机的调速性能和节能效果有不同的要求,因此需要根据实际情况选择合适的变频器和控制系统。
国内外通用变频器技术的现状与发展

国内外通用变频器技术的现状与发展一、引言随着工业自动化技术的不断发展,变频器作为一种重要的电力调节设备,被广泛应用于各种机电设备中。
变频器可以通过改变电机的转速来控制机械设备的输出功率,从而实现对生产过程的精确控制。
本文将介绍国内外通用变频器技术的现状与发展。
二、国内外通用变频器技术概述1. 变频器的基本原理变频器是一种能够将交流电源转换成可调节直流电源,并通过PWM 技术将直流电源转换成可调节交流电源的电力调节装置。
它可以控制电机转速,并实现对生产过程的精确控制。
2. 国内外通用变频器技术发展历程20世纪80年代初期,欧美地区开始研究和开发PWM型变频器,逐渐取代了SCR型和GTO型变频器。
中国在20世纪90年代初期开始引进和消化吸收国外先进技术,并开始研究和生产自己的PWM型变频器。
目前,国内外通用变频器技术已经非常成熟。
3. 国内外通用变频器技术的应用领域变频器广泛应用于各种机电设备中,如风机、水泵、压缩机、输送机等。
它可以通过精确控制电机转速来实现对生产过程的精确控制,提高生产效率和产品质量。
4. 国内外通用变频器技术的优势和劣势优势:变频器具有调节范围广、控制精度高、节能效果显著等优点。
劣势:变频器价格较高,安装和维护成本也较高,需要专业技术人员进行操作和维护。
三、国内外通用变频器技术发展趋势1. 变频器技术将更加智能化随着人工智能技术的不断发展,变频器将会更加智能化。
未来的变频器将可以自动诊断故障,并通过云端服务实现远程监控和维护。
2. 变频器将更加节能环保随着全球环保意识的不断提高,未来的变频器将更加注重节能环保。
新一代变频器将采用更加先进的功率半导体材料和结构设计,以实现更高效的能量转换和更低的能耗。
3. 变频器将更加适合多种应用场景未来的变频器将会更加适合多种应用场景。
例如,在电动汽车、轨道交通等领域,变频器将会成为重要的电力调节设备,实现对电动机的精确控制。
四、结论国内外通用变频器技术已经非常成熟,广泛应用于各种机电设备中。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
变频技术的发展趋势及
其应用
公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-
变频技术的发展趋势及其应用
0引言
在工业生产及国计民生中电机的使用十分广泛,电机的传动方式一般分为直流电机传动及交流电机传动。
过去由于交流电机实现调速较困难或某些调速方式低效不够理想,因而长期以来在调速领域大多采用直流电机,而交流电动机的优点在调速领域中未能得到发挥。
交流电动机的调速方式一般有以下三种。
1)变极调速是通过改变电动机定子绕组的接线方式以改变电机极数实现调速,这种调速方法是有级调速,不能平滑调速,而且只适用于鼠笼电动机。
2)改变电机转差率调速其中有通过改变电机转子回路的电阻进行调速,此种调速方式效率不高,且不经济。
其次是采用滑差调速电机进行调速,调速范围宽且能平滑调速,但这种调速装置结构复杂(一般由异步电机、滑差离合器和控制装置三部分组成),滑差调速电机是在主电机转速恒定不变的情况下调节励磁实现调速的,即便输出转速很低,而主电机仍运行在额定转速,因此耗电较多,另外励磁和滑差部分也有效率问题和消耗问题。
较好的转差率调速方式是串级调速。
3)变频调速通过改变电机定子的供电频率,以改变电机的同步转速达到调速的目的,其调速性能优越,调速范围宽,能实现无级调速。
目前我国生产现场所使用的交流电动机大多为非调速型,其耗能十分惊人。
如采用变频调速,则可节约大量能源。
这对提高经济效益具有十分重要的意义。
1变频调速技术的发展
上世纪50年代末,由于晶闸管(SCR)的研究成功,电力电子器件开始运用于工业生产,可控整流直流调速便成了调速系统中的主力军。
但由于直流电机结构复
杂,造价比交流电机高,直流电动机在运行中,炭刷接触产生炭粉而易引起环火,须经常维护,而且直流调速系统线路复杂,维修十分不便。
因而便促进了世界各国对交流调速技术的开发和研制。
20世纪80年代中期,随着第三代电力电子器件,如门极可关断晶闸管(GTO)、大功率晶体管(GTR)、绝缘栅双极型晶体管(IGBT)等全控型电力电子器件的研制成功,以及电力电子器件从电流驱动型到电压驱动型全控器件等的发展,日本等国已先后研制开发出了功率等级不同的把控制、驱动、检测、保护及功率输出集于一体的变频调速产品,如图1所示。
从而使交流变频调速的关键装置———逆变器性能优良,主电路简单,驱动方便,工作可靠。
同时随着控制理论、微电子技术和计算机技术的发展,使交流电机变频调速技术取得了突破性进展,并以其优越的调速性能和良好的节能效果逐渐取代了直流调速系统和其他的调速方式,如变极调速、串级调速、滑差电机调速、整流子电机调速等。
随着全球能源短缺趋势的加剧以及交流变频技术及变频器产品的性能和功能日趋完善,使其越来越广泛地应用在工业生产的各个领域中。
据有关资料介绍,1994年日本生产100kW以下的中小功变频器已达100万台。
除日本外,欧美等发达国家目前已形成了较完整的变频器技术产业体系。
2变频调速技术的原理及特点
1)变频调速技术的原理是把工频50Hz的交流电转换成三相频率和电压可调的交流电,通过改变交流电动机定子绕组的供电频率,在改变频率的同时也改变电压,从而达到调节电动机转速的目的(即VVVF技术)。
目前的变频器系统还采用微机控制技术,它可根据电动机负载的变化实现自动、平滑地增速或减速。
2)交流变频调速系统一般由三相交流异步电动机、变频器及控制器组成,它与直流调速系统相比具有以下显着优点:
(1)异步电动机比直流电动机结构简单,重量轻,价格低,它没有换向器,运行可靠;
(2)控制电路比直流调速系统简单,易于维护;
(3)变频调速系统调速范围宽,能平滑调速,其调速静态精度及动态品质好,而且节能显着,是目前世界公认的交流电动机的最理想、最有前途的调速技术,因而在国际上获得了广泛的应用。
3变频牵引技术在国外的应用情况
随着变频技术的发展,使电力牵引系统有了很大的变化,其牵引与调速系统由最初的变阻调速发展到斩波器调速,进而发展到应用交流三相异步牵引电动机采用调压变频调速(VVVF)的牵引技术。
目前世界上德、日等发达国家研制的地铁和轻轨车辆几乎全部采用交流变频调速牵引技术。
例如,根据有关资料报导的德国采用BR120型交流变频牵引电力机车试验的结果表明,这种性能的机车比直流牵引车辆具有以下显着的优点:
1)在相同粘重时牵引力提高30%;
2)功率因数高(cos渍可达到1),电网利用率提高30%;
3)由于它采用电力电子器件取代了有触点元件,维修费可降低50%;
4)无故障运行超过40万km;
5)节能显着,采用GTO变频器的交流电牵引装置比相同容量使用斩波调速的直流牵引装置效率可提高6%~7%。
据有关资料报导,一辆5600kW的机车每小时可节电392kW,若按年运行3000h计算,则每年节电可达万kW。
国际上在交流牵引处于领先水平的日本和德国,基本都是采用PWM(交-直-交)型GTO-VVVF逆变器(简称GTO变频器)和异步牵引电动机配套组成变频牵引系统。
日本在1990年后生产的GTO变频器容量就达到了4500V/3000A。
日本于1991年11月统计公布的所有日本交流变频调速车的主要参数基本上都是采用由日立、东芝、三菱电机、富士电机和东洋公司制造的GTO变频器。
东洋公司从1986年到1990年底止,就已为23种车型提供了GTO变频器。
近年来,德、日等国家新研制的地铁和轻轨列车,几乎全部采用交流变频牵引技术;而用于交流牵引系统的新型三点式逆变器,在德国和日本则已有应用。
1993年德国就已经有成千台用此方案构成的IGBT三点式逆变器用于轻轨电车上。
IGBT器件与可关断器件GTO相比有较多优点。
IGBT为电压驱动,其开关频率高,抗干扰和贯穿短路保护能力强,损耗小,性能好及工作可靠,虽然IGBT耐压不如GTO高,但采用新型的三点式电压型逆变器,则可用耐电压等级低一半的器件,而且还有效地减少了谐波电流,抑制了电磁噪声。
因此,目前高压大电流的GTO和IGBT模块构成的变压变频装置和微机技术在机车车辆上的应用已取得了很大的进展。
4变频技术在我国城市交通车辆上的应用根据有关资料报导,广州本田公司已用200台变频电车取代了152台电阻式控制的旧电车和48台斩波控制电车。
在实际的营运路线上,分别对各种电车进行了耗电测定,其测量结果如表1所列。
测量结果表明,新型车耗电量为电阻式控制车的%。
根据他们对200台新型变频车与200台旧车一年的耗电量比较计算,新型车的耗电约减少24%。
由此可见采用变频技术的车辆节电效果十分明显。
因此,我国电子工业部在电子工业早在“九五”规划中就将以变频牵引装置为代表的节能技术列为发展的重点。
我国于1996年研制成功了AC4000型交流牵引电力机车。
目前DC750V系统下的地铁车辆每台牵引电机功率为90~160kW,因此采用600~1000A/1200VIBGT构成的三点式逆变器牵引系统,已能达到所需的容量。
我国原来规划的广州地铁和上海地铁准备用直流斩波调速车,后考虑到与国际先进水平、节约能源及经济合理性等因素,最终确定了选择三相交流异步牵引机变频调速的传动方案。
5结语
我国地铁车辆电力牵引系统从变阻调速到斩波器调速,进而发展到使用三相异步电动机的变频牵引技术。
在DC750V系统下运行的地铁中,采用成熟的、批量生产的、价廉的耐压1200V的IGBT器件构成三点式逆变器,实现地铁车辆交流传动方案,造价也不贵,而且对于城市轨道交通DC750V系统中地铁或轻轨车辆上所采用的交流传动所需的电气设备,我国已完全能够自已设计和制造,从而使我国铁路机车工业跨入了研制发展绿色交通车辆的国际先进行列。
近年来,变频器产品已在国际、国内工业生产和国计民生中得到了广泛的应用。
低压电动机变频调速产品目前应用已非常普及和成熟,高压电动机变频调速也在被人们关注和逐渐应用。
交流变频器已成为对工业生产进行技术改造和对产品、设备更新换代的理想调速装置。