21正数与负数
正数和负数的认识和计算

正数和负数的认识和计算正数和负数是数学中的基本概念,对于我们日常生活和数学运算都起着非常重要的作用。
本文将详细介绍正数和负数的概念及其在计算中的运用。
一、正数和负数的概念1. 正数:正数是指大于零的数,即比零更大的数。
例如1、2、3等都是正数。
在数轴上,正数位于零的右侧。
2. 负数:负数是指小于零的数,即比零更小的数。
例如-1、-2、-3等都是负数。
在数轴上,负数位于零的左侧。
3. 对称性:正数和负数之间具有对称性,即正数与负数相加得到零。
例如1 + (-1) = 0。
二、正数和负数的运算规则1. 加法:正数与正数相加,结果仍然是正数。
负数与负数相加,结果仍然是负数。
正数与负数相加,结果取决于数的大小。
如果正数的绝对值大于负数的绝对值,结果为正数;如果正数的绝对值小于负数的绝对值,结果为负数。
2. 减法:正数与正数相减,结果可能是正数、零或者负数。
负数与负数相减,结果可能是正数、零或者负数。
正数与负数相减,可以将减法转化为加法,即正数与负数相加。
3. 乘法:两个正数相乘,结果仍然是正数。
两个负数相乘,结果也是正数。
正数与负数相乘,结果为负数。
4. 除法:正数除以正数,结果仍然是正数。
负数除以负数,结果仍然是正数。
正数除以负数,结果为负数。
负数除以正数,结果为负数。
三、正数和负数的应用举例1. 温度计:温度计以零度为基准,正数表示高于零度的温度,负数表示低于零度的温度。
例如,0度表示水的结冰点,正数表示温度升高,负数表示温度降低。
2. 资产负债表:在会计中,正数代表资产,负数代表负债或负债。
因此,正数和负数的加减运算可以用于计算企业的资产和负债情况。
3. 高低海拔:地理中,海拔高度可以用正数和负数来表示。
正数表示地势高于海平面,负数表示地势低于海平面。
4. 银行账户:银行账户中,存款表示正数,取款表示负数。
根据存取款的情况可以计算账户的余额。
四、正数和负数的计算技巧1. 加减法运算:计算正数和负数的加减法时,可以先将符号去掉,将数值计算后再加上符号。
2.1 正数与负数

3 “+”号读作“正”,如“+
三分
”读作“正
例1:指出下列各数中的正数、负数:
9 1 +7,-9, ,-4.5,998, 10 3 1 解: +7, ,998是正数, 3 9 -9,-4.5, 10 是负数.
,0.
0是什么数呢?
答:0既不是正数,也不是负数.它是 正数与负数的分界
练一练
P13
负分数
例3
把下列各数填入相应的集合内: 1 1 99.9 , 6, , 0, -101,+3 , 1.25 , 3 4 5 0.01 , 67 , 10% , , 2009 , 18. 13
„} „} 分数集合:{ 正数集合:{ „} „}
整数集合:{ 负数集合:{
活动三
把下列各数分别填在表示圈里 -11, 4.6, +7.3, 0, -2.7,
例2. 如果汽车向北行驶8千米记作+8千米, 那么向南行驶5千米记作什么? 解:向南行驶5千米记作-5千米. 例2. 如果运进粮食3t记作+3 t ,那么-4t表 示什么? 解: -4t表示运出粮食4t.
例题3
用正、负数表示下列具有相反意义的量: ①收入500元和支出237元; ②水位升高5.5米和下降3.6米37元记作-237元;
6,
正整数集合
正分数集合
正数集合
能力提升:
1。填空: (1)前进了-300米表示____________. (2)在食品的包装袋上,标明食品的净 质量是80±5克,这个“80±5”表示的 是____________. (3)正数集合与分数集合的公共部分是 ____________.
2.一次百米赛跑测验的达标线是18秒,下面 各数据是一些同学的成绩,超过18秒的部分 记为“+”,低于18秒的部分记为“-”。
2.1 正数与负数

正整数
整数
零 负整数
分数
正分数
负分数
例3 把下列各数填入相应的集合内:
99.9
,6
,
1 3
,0
,-101,+3
1 4
,1.25
,
0.01, 67 ,10% ,5 ,2009 ,18.
13
整数集合:{ 6,0,-101, 67 ,2009,18 …}
分数集合:{
99.9
,
1 3
,+3
1 4
“+”读作“正”,如“+ 2 ”读作“正三分
3
之二”,正号通常省略不写;“-”读作“负”, 如“-117.3”读作“负一百一十七点三”.
例1 指出下列各数中的正数、负数:
+7,-9,
1,-4.5,998,3
9 10
,0.
解: +7, 1,998 3
是正数,
-9, -4.5,- 9 10
是负数.
0℃以上的温度用正数表示, 0℃以下的温 度用负数表示.日常生活中,许多具有相反意 义的量都可以用正数、负数来表示.
5
负数集合:{ 7.25, 3 , 1 …}.
42
2.填空:
(1)如果买入200 kg大米记为+200 kg,那么卖
出120 kg大米可记作___-__1_20_k_g__;
(2)如果-50元表示支出50元,那么+40元表示
____收__入__4_0_元_;
(3)太平洋最深处的马里亚纳海沟低于海平面
,1.25
,0.01,10%
,5 13
…}
正数集合:{
6
,+3
1 4
,0.01,
初一上册数学《正数和负数》教案(精选10篇)

初一上册数学《正数和负数》教案(精选10篇)初一上册数学《正数和负数》教案 1一、内容和内容解析1、内容正数和负数的意义。
2、内容解析引入负数,将数的范围扩充到有理数,是解决实际问题的需要,也是为了解决数学内部的运算、解方程等问题的需要。
本课内容是本章后续的有理数的相关概念及运算的基础。
通过实例引入正数与负数,既能让学生感受负数与现实生活的紧密联系,体会引入负数的必要性,又有助于学生了解正数和负数的意义,从而学会用正数、负数去刻画现实中具有相反意义的量。
在刻画现实问题时,通常将“上升”“增加”“盈利”等确定为正,相应地将“下降”“减少”“亏欠”等确定为负。
基于以上分析,确定本节课的教学重点为:感受引入负数的必要性;能用正数和负数表示具有相反意义的量。
二、目标和目标解析1、教学目标(1)体会引入负数的必要性;(2)了解负数的意义,会用正数、负数表示具有相反意义的量。
2、目标解析(1)学生能自己举出含有相反意义的量的生活实例,说明引入负数的必要性;(2)学生能借助具体例子,用实际意义(如“增加”与“减少”,“收入”与“支出”等)说明负数的含义。
在含有相反意义的量的问题情境中,学生能用正数和负数来表示相应的量。
三、教学问题诊断分析学生在小学已经学习了整数、分数(包括小数),即正有理数及0的知识,对负数的意义也有初步的了解,还会用负数表示日常生活中的一些量,但他们对负数意义的了解非常有限。
在一些比较复杂的实际问题中,需要针对问题的具体特点规定正、负,特别是要用正数与负数描述向指定方向变化的现象(如“负增长”)中的量,大多数学生都会有困难。
这既与学生的生活经验不足有关,同时也因为这样的表示与日常习惯不一致。
突破这一难点,需要多举日常生活、生产中的实例,让学生通过例子来理解正数与负数的意义,学会用正数、负数表示具有相反意义的量。
本节课的教学难点为:用正数、负数表示指定方向变化的量。
四、教学过程设计1、创设情境,引入新知教师展示教科书图1。
苏科版七年级数学上《2.1正数与负数》同步测试含答案解析

2.1 正数与负数一.选择题(共 10 小题)1.如果向北走 6 步记作+6,那么向南走 8 步记作( )A .+8 步B .﹣8 步C .+14 步D .﹣2 步2.《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数 若其意义相反,则分别叫做正数与负数,若气温为零上 10℃记作+10℃,则﹣3℃ 表示气温为()A .零上 3℃B .零下 3℃C .零上 7℃D .零下 7℃3.大米包装袋上(10±0.1)kg 的标识表示此袋大米重( )A .(9.9~10.1)kgB .10.1kgC .9.9kgD .10kg4.纽约、悉尼与北京时差如下表(正数表示同一时刻比北京时间早的时数,负 数表示同一时刻比北京时间晚的时数):当北京 6 月 15 日 23 时,悉尼、纽约的时间分别是( )A .6 月 16 日 1 时;6 月 15 日 10 时B .6 月 16 日 1 时;6 月 14 日 10 时C .6 月 15 日 21 时;6 月 15 日 10 时D .6 月 15 日 21 时;6 月 16 日 12 时城市 时差/时悉尼 +2纽约 ﹣135.一种面粉的质量标识为“25±0.25 千克”,则下列面粉中合格的是()A.24.70 千克B.25.30 千克C.24.80 千克D.25.51 千克6.在﹣2 、+ 、﹣3、2、0、4、5、﹣1 中,负数有()A.1 个B.2 个C.3 个D.4 个7.某种速冻水饺的储藏温度是﹣18±2℃,四个冷藏室的温度如下,则不适合储藏此种水饺的是()A.﹣17℃B.﹣22℃C.﹣18℃D.﹣19℃8.有四包真空包装的火腿肠,每包以标准质量450g 为基准,超过的克数记作正数,不足的克数记作负数.下面的数据是记录结果,其中与标准质量最接近的是()A.+2 B.﹣3 C.+4 D.﹣19.如图是加工零件的尺寸要求,现有下列直径尺寸的产品(单位:mm),其中不合格的是()A.Ö45.02 B.Ö44.9 C.Ö44.98 D.Ö45.0110.如果“盈利5%”记作+5%,那么﹣3%表示()A.亏损3% B.亏损8% C.盈利2% D.少赚3%二.填空题(共10 小题)11.如果向东走3 米记为+3 米,那么向西走6 米记作.12.某种零件,标明要求是ö:20±0.02 mm(ö表示直径,单位:毫米),经检查,一个零件的直径是19.9 mm,该零件(填“合格”或“不合格”).13.如果把长江的水位比警戒水位高0.2 米,记作+0.2 米,那么比警戒水位低0.15 米,记作米.14.每袋大米以50kg 为标准,其中超过标准的千克数记为正数,不足的千克数记为负数,则图中第3 袋大米的实际重量是kg.15.如果+20%表示增加20%,那么减少6%记作.16.阅览室某一书架上原有图书20 本,规定每天归还图书为正,借出图书为负,经过两天借阅情况如下:(﹣3,+1),(﹣1,+2),则该书架上现有图书本.17.仔细思考下列各对量:①胜两局与负三局;②气温升高3℃与气温为﹣3℃;③盈利3 万元与支出3 万元;④甲、乙两支球队组织了两场篮球比赛,甲、乙两队的比分分别为65:60 与60:65.其中具有相反意义的量有.18.若收入10 万元记做“+10 万元”,则支出1000 元记做“元”.19.检查5 个篮球的质量,把超过标准质量的克数记作整数,不足的克数记作负数,检查结果如表:篮球的编号与标准质量的差(g)1+42+73﹣34﹣85+9(1)最接近标准质量的是号篮球;(2)质量最大的篮球比质量最小的篮球重g.20.中国人最先使用负数,魏晋时期的数学家刘徽在“正负术”的注文中指出,可将算筹(小棍形状的记数工具)正放表示正数,斜放表示负数.如图,根据刘徽的这种表示法,观察图①,可推算图②中所得的数值为.三.解答题(共6 小题)21.在一次食品安检中,抽查某企业10 袋奶粉,每袋取出100 克,检测每100 克奶粉蛋白质含量与规定每100 克含量(蛋白质)比较,不足为负,超过为正,记录如下:(注:规定每100g 奶粉蛋白质含量为15g)﹣3,﹣4,﹣5,+1,+3,+2,0,﹣1.5,+1,+2.5(1)求平均每100 克奶粉含蛋白质为多少?(2)每100 克奶粉含蛋白质不少于14 克为合格,求合格率为多少?22.足球训练中,为了训练球员快速抢断转身,教练设计了折返跑训练.教练在东西方向的足球场上画了一条直线插上不同的折返旗帜,如果约定向西为正,向东为负,练习一组的行驶记录如下(单位:米):+40,﹣30,+50,﹣25,+25,﹣30,+15,﹣28,+16,﹣18.(1)球员最后到达的地方在出发点的哪个方向?距出发点多远?(2)球员训练过程中,最远处离出发点多远?(3)球员在一组练习过程中,跑了多少米?23.某巡警骑摩托车在一条南北大道上来回巡逻,一天早晨,他从岗亭出发,中午停留在A 处,规定向北方向为正,当天上午连续行驶情况记录如下(单位:千米):+5,﹣4,+3,﹣7,+4,﹣8,+2,﹣1.(1)A 处在岗亭何方?距离岗亭多远?(2)若摩托车每行驶1 千米耗油0.5 升,这一天上午共耗油多少升?24.某公司6 天内货品进出仓库的吨数如下:(“+”表示进库,“﹣”表示出库)+31,﹣32,﹣16,+35,﹣38,﹣20.(1)经过这6 天,仓库里的货品是(填增多了还是减少了).(2)经过这6 天,仓库管理员结算发现仓库里还有货品460 吨,那么6 天前仓库里有货品多少吨?(3)如果进出的装卸费都是每吨5 元,那么这6 天要付多少元装卸费?25.某校对七年级男生进行俯卧撑测试,以能做7 个为标准,超过的次数用正数表示,不足的次数用负数表示,其中8 名男生的成绩如下表:第一次 ﹣3 第二次 +8 第三次 ﹣9 第四次 +10 第五次 +4 第六次﹣6 第七次﹣2(1)这 8 名男生的达标率是百分之几?(2)这 8 名男生共做了多少个俯卧撑?26.某检修小组从 A 地出发,在东西方向的马路上检修线路,如果规定向东行 驶为正,向西行驶为负,一天中七次行驶记录如下(单位:km ):(1)求收工时检修小组距 A 地多远;(2)在第 次记录时时检修小组距 A 地最远;(3)若每千米耗油 0.1L ,每升汽油需 6.0 元,问检修小组工作一天需汽油费多 少元?﹣1 ﹣2 ﹣3 2 0 3 1 0参考答案与试题解析一.选择题(共10 小题)1.(2017•天门)如果向北走6 步记作+6,那么向南走8 步记作()A.+8 步B.﹣8 步C.+14 步D.﹣2 步【分析】“正”和“负”是表示互为相反意义的量,向北走记作正数,那么向北的反方向,向南走应记为负数.【解答】解:∵向北走6 步记作+6,∴向南走8 步记作﹣8,故选B.【点评】本题考查了正数和负数的定义.解本题的根据是掌握正数和负数是互为相反意义的量.2.(2017•成都)《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,若气温为零上10℃记作+10℃,则﹣3℃表示气温为()A.零上3℃B.零下3℃C.零上7℃D.零下7℃【分析】此题主要用正负数来表示具有意义相反的两种量:若零上记为正,则零下就记为负,直接得出结论即可.【解答】解:若气温为零上10℃记作+10℃,则﹣3℃表示气温为零下3℃.故选:B.【点评】此题主要考查正负数的意义,正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负.3.(2017•六盘水)大米包装袋上(10±0.1)kg 的标识表示此袋大米重()A.(9.9~10.1)kgB.10.1kg C.9.9kg D.10kg【分析】根据大米包装袋上的质量标识为“10±0.1”千克,可以求得合格的波动范围,从而可以解答本题.【解答】解:∵大米包装袋上的质量标识为“10±0.1”千克,∴大米质量的范围是:9.9~10.1 千克,故选:A .【点评】本题考查正数和负数,解题的关键是明确题意,明确正数和负数在题目 中的实际意义.4.(2017•聊城)纽约、悉尼与北京时差如下表(正数表示同一时刻比北京时间 早的时数,负数表示同一时刻比北京时间晚的时数):当北京 6 月 15 日 23 时,悉尼、纽约的时间分别是( )A .6 月 16 日 1 时;6 月 15 日 10 时B .6 月 16 日 1 时;6 月 14 日 10 时C .6 月 15 日 21 时;6 月 15 日 10 时D .6 月 15 日 21 时;6 月 16 日 12 时【分析】由统计表得出:悉尼时间比北京时间早 2 小时,悉尼比北京的时间要早 2 个小时,也就是 6 月 16 日 1 时.纽约比北京时间要晚 13 个小时,也就是 6 月 15 日 10 时.【解答】解:悉尼的时间是:6 月 15 日 23 时+2 小时=6 月 16 日 1 时, 纽约时间是:6 月 15 日 23 时﹣13 小时=6 月 15 日 10 时.城市时差/时 悉尼 +2 纽约 ﹣13故选:A.【点评】本题考查了正数和负数.解决本题的关键是根据图表得出正确信息,再结合题意计算.5.一种面粉的质量标识为“25±0.25 千克”,则下列面粉中合格的是()A.24.70 千克B.25.30 千克C.24.80 千克D.25.51 千克【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:“25±0.25 千克”表示合格范围在25 上下0.25 的范围内的是合格品,即24.75 到25.25 之间的合格,故只有24.80 千克合格.故选:C.【点评】此题考查正负数在实际生活中的应用,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.6.在﹣2 、+ 、﹣3、2、0、4、5、﹣1 中,负数有()A.1 个B.2 个C.3 个D.4 个【分析】根据负数的定义逐一判断即可.【解答】解:在﹣2 、+、﹣3、2、0、4、5、﹣1 中,负数有在﹣2、﹣3、﹣1 共3 共个.故选:C.【点评】本题考查了负数的定义:小于0 的数是负数.7.某种速冻水饺的储藏温度是﹣18±2℃,四个冷藏室的温度如下,则不适合储藏此种水饺的是()A.﹣17℃B.﹣22℃C.﹣18℃D.﹣19℃【分析】根据有理数的加减运算,可得温度范围,根据温度范围,可得答案.【解答】解:﹣18﹣2=﹣20℃,﹣18+2=﹣16℃,温度范围:﹣20℃至﹣16℃,A、﹣20℃<﹣17℃<﹣16℃,故A 不符合题意;B、﹣22℃<﹣20℃,故B 不符合题意;C、﹣20℃<﹣18℃<﹣16℃,故C 不符合题意;D、﹣20℃<﹣19℃<﹣16℃,故D 不符合题意;故选:B.【点评】本题考查了正数和负数,有理数的加法运算是解题关键,先算出适合温度的范围,再选出不适合的温度.8.有四包真空包装的火腿肠,每包以标准质量450g 为基准,超过的克数记作正数,不足的克数记作负数.下面的数据是记录结果,其中与标准质量最接近的是()A.+2 B.﹣3 C.+4 D.﹣1【分析】根据正负数的意义,绝对值最小的即为最接近标准的.【解答】解:|2|=2,|﹣3|=3,|+4|=4,|﹣1|=1,∵1<2<3<4,∴从轻重的角度来看,最接近标准的是记录为﹣1.故选:D.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.9.(2016•金华)如图是加工零件的尺寸要求,现有下列直径尺寸的产品(单位:mm),其中不合格的是()A.Ö45.02 B.Ö44.9 C.Ö44.98 D.Ö45.01【分析】依据正负数的意义求得零件直径的合格范围,然后找出不符要求的选项即可.【解答】解:∵45+0.03=45.03,45﹣0.04=44.96,∴零件的直径的合格范围是:44.96≤零件的直径≤45.03.∵44.9 不在该范围之内,∴不合格的是B.故选:B.【点评】本题主要考查的是正数和负数的意义,根据正负数的意义求得零件直径的合格范围是解题的关键.10.(2016•宜昌)如果“盈利5%”记作+5%,那么﹣3%表示()A.亏损3% B.亏损8% C.盈利2% D.少赚3%【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解答】解:∵“盈利5%”记作+5%,∴﹣3%表示表示亏损3%.故选:A.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.二.填空题(共10 小题)11.如果向东走3 米记为+3 米,那么向西走6 米记作﹣6 米.【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解答】解:根据题意,向西走6 米记作﹣6 米.故答案为:﹣6 米.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示12.某种零件,标明要求是ö:20±0.02 mm(ö表示直径,单位:毫米),经检查,一个零件的直径是19.9 mm,该零件不合格(填“合格”或“不合格”).【分析】ö20±0.02 mm,知零件直径最大是20+0.02=20.02,最小是20﹣0.02=19.98,合格范围在19.98 和20.02 之间.【解答】解:零件合格范围在19.98 和20.02 之间.19.9<19.98,所以不合格.故答案为:不合格.【点评】本题考查数学在实际生活中的应用.13.如果把长江的水位比警戒水位高0.2 米,记作+0.2 米,那么比警戒水位低0.15 米,记作﹣0.15 米.【分析】由已知长江的水位比警戒水位高0.2 米,记作+0.2 米,根据正负数的意义可得出.【解答】解:已知长江的水位比警戒水位高0.2 米,记作+0.2 米,则比警戒水位低0.15 米,记作﹣0.15 米.故答案为:﹣0.15 米.【点评】此题考查了学生对正负数意义的理解与掌握.关键是高记“+”,则低记“﹣”.14.每袋大米以50kg 为标准,其中超过标准的千克数记为正数,不足的千克数记为负数,则图中第3 袋大米的实际重量是49.3kg.【分析】根据有理数的加法,可得答案.【解答】解:50+(﹣0.7)=49.3kg,故答案为:49.3kg.【点评】本题考查了正数和负数,利用有理数的加法运算是解题关键.15.(2016 秋•渝北区期末)如果+20%表示增加20%,那么减少6%记作﹣6% .【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.“正”和“负”相对,所以如果+20%表示增加20%,那么﹣6%表示减少6%.【解答】解:根据正数和负数的定义可知,﹣6%表示减少6%,故答案为:﹣6%【点评】此题考查正数和负数问题,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.16.阅览室某一书架上原有图书20 本,规定每天归还图书为正,借出图书为负,经过两天借阅情况如下:(﹣3,+1),(﹣1,+2),则该书架上现有图书19 本.【分析】(﹣3,+1)表示借出3 本归还1 本,求出20 与借出归还的和就是该书架上现有图书的本数,【解答】解:20﹣3+1﹣1+2=19(本)故答案为:19【点评】本题考查了有理数的加减混合运算,弄懂记录(﹣3,+1)等是关键.17.仔细思考下列各对量:①胜两局与负三局;②气温升高3℃与气温为﹣3℃;③盈利3 万元与支出3 万元;④甲、乙两支球队组织了两场篮球比赛,甲、乙两队的比分分别为65:60 与60:65.其中具有相反意义的量有①②.【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.“正”和“负”相对.【解答】解:①胜两局与负三局,符合题意;②气温升高3℃与气温为﹣3℃,符合题意;③盈利3 万元与支出3 万元,不合题意;④甲、乙两支球队组织了两场篮球比赛,甲、乙两队的比分分别为65:60 与60:65,不合题意.故答案为:①②.【点评】此题主要考查了正数与负数,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.18.若收入10 万元记做“+10 万元”,则支出1000 元记做“ ﹣1000元”.【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解答】解:根据题意得:支出1000 元记作:﹣1000 元;故答案为:﹣1000;【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.19.检查5 个篮球的质量,把超过标准质量的克数记作整数,不足的克数记作负数,检查结果如表:篮球的编号与标准质量的差(g)1+42+73﹣34﹣85+9(1)最接近标准质量的是 3 号篮球;(2)质量最大的篮球比质量最小的篮球重17 g.【分析】(1)根据超过标准质量的克数记作整数,不足的克数记作负数,绝对值最小的最接近标准,可得最接近标准质量的球;(2)根据质量最大的篮球减去质量最小的篮球,可得(2)的结果.【解答】解:(1)∵|4|=4,|7|=7,|﹣3|=3,|﹣8|=8,|9|=9,3<4<7<8<9,∴3 号球质量接近标准质量,故答案为:3;(2)质量最大的排球比质量最小的排球重:9﹣(﹣8)=17(克),故答案为:17.【点评】本题考查了绝对值、有理数的减法在实际中的应用.解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.20.(2017•江西)中国人最先使用负数,魏晋时期的数学家刘徽在“正负术”的注文中指出,可将算筹(小棍形状的记数工具)正放表示正数,斜放表示负数.如图,根据刘徽的这种表示法,观察图①,可推算图②中所得的数值为﹣3 .【分析】根据有理数的加法,可得答案.【解答】解:图②中表示(+2)+(﹣5)=﹣3,故答案为:﹣3.【点评】本题考查了有理数的运算,利用有理数的加法运算是解题关键.三.解答题(共6 小题)21.在一次食品安检中,抽查某企业10 袋奶粉,每袋取出100 克,检测每100 克奶粉蛋白质含量与规定每100 克含量(蛋白质)比较,不足为负,超过为正,记录如下:(注:规定每100g 奶粉蛋白质含量为15g)﹣3,﹣4,﹣5,+1,+3,+2,0,﹣1.5,+1,+2.5(1)求平均每100 克奶粉含蛋白质为多少?(2)每100 克奶粉含蛋白质不少于14 克为合格,求合格率为多少?【分析】(1)平均每100 克奶粉含蛋白质为:标准克数+其余数的平均数,把相关数值代入即可求解;(2)找到合格的奶粉的数目,除以总数目即为所求的合格率.【解答】解:(1)+15=14.6(g);(2)其中﹣3,﹣4,﹣5,﹣1.5 为不合格,那么合格的有6 个,合格率为=60%.【点评】用到的等量关系为:平均数=标准+和标准相比其余数的平均数;合格率等于合格数目与总数目之比.22.足球训练中,为了训练球员快速抢断转身,教练设计了折返跑训练.教练在东西方向的足球场上画了一条直线插上不同的折返旗帜,如果约定向西为正,向东为负,练习一组的行驶记录如下(单位:米):+40,﹣30,+50,﹣25,+25,﹣30,+15,﹣28,+16,﹣18.(1)球员最后到达的地方在出发点的哪个方向?距出发点多远?(2)球员训练过程中,最远处离出发点多远?(3)球员在一组练习过程中,跑了多少米?【分析】(1)根据加法法则,将正数与正数相加,负数与负数相加,进而得出计算得结果;(2)求出每一段到出发点的距离,即可判断出结果;(3)利用绝对值的性质以及有理数加法法则求出即可.【解答】解:(1)(+40)+(﹣30)+(+50)+(﹣25)+(+25)+(﹣30)+(+15)+(﹣28)+(+16)+(﹣18)=+15(米);答:球员最后到达的地方在出发点的正西方向,距出发点15m;(2)第一段,40m,第二段,40﹣30=10m,第三段,10+50=60m,第四段,60﹣25=35m,第五段,35+25=60m,第六段,60﹣30=30m,第七段,30+15=45m,第八段,45﹣28=17m,第九段,17+16=33m,第十段,33﹣18=15m,∴在最远处离出发点60m;(3)∵|+40|+|﹣30|+|+50|+|﹣25|+|+25|+|﹣30|+|+15|+|﹣28|+|+16|+| ﹣18|=277(米),答:球员在一组练习过程中,跑了277 米.【点评】本题考查了有理数的加减混合运算以及绝对值的性质,关键是熟练利用加法的运算法则进行运算.23.某巡警骑摩托车在一条南北大道上来回巡逻,一天早晨,他从岗亭出发,中午停留在A 处,规定向北方向为正,当天上午连续行驶情况记录如下(单位:千米):+5,﹣4,+3,﹣7,+4,﹣8,+2,﹣1.(1)A 处在岗亭何方?距离岗亭多远?(2)若摩托车每行驶1 千米耗油0.5 升,这一天上午共耗油多少升?【分析】(1)将题目中的数据相加,即可解答本题;(2)取题目中的各个数据的绝对值,将它们相加再乘以0.5 即可解答本题.【解答】解:(1)由题意可得,5+(﹣4)+3+(﹣7)+4+(﹣8)+2+(﹣1)=﹣6,答:A 处在岗亭南方,距离岗亭6 千米;(2)由题意可得,0.5×(5+4+3+7+4+8+2+1)=0.5×34=17,答:这一天上午共耗油17 升.【点评】本题考查正数和负数,解答本题的关键是明确正数和负数在题目中的实际意义.24.某公司6 天内货品进出仓库的吨数如下:(“+”表示进库,“﹣”表示出库)+31,﹣32,﹣16,+35,﹣38,﹣20.(1)经过这6 天,仓库里的货品是减少(填增多了还是减少了).(2)经过这6 天,仓库管理员结算发现仓库里还有货品460 吨,那么6 天前仓库里有货品多少吨?(3)如果进出的装卸费都是每吨5 元,那么这6 天要付多少元装卸费?【分析】(1)将所有数据相加即可作出判断,若为正,则说明增多了,若为负,则说明减少了;(2)结合(1)的答案即可作出判断;(3)计算出所有数据的绝对值之和,然后根据进出的装卸费都是每吨5 元,可得出这6 天要付的装卸费.【解答】解:(1))+31﹣32﹣16+35﹣38﹣20=﹣40(吨),∵﹣40<0,∴仓库里的货品是减少了.故答案为:减少了.(2)+31﹣32﹣16+35﹣38﹣20=﹣40,即经过这6 天仓库里的货品减少了40 吨,所以6 天前仓库里有货品460+40=500 吨.(3)31+32+16+35+38+20=172(吨),172×5=860(元).答:这6 天要付860 元装卸费.【点评】本题考查了正数和负数的知识,解题关键是理解“正”和“负”的相对性, 确定具有相反意义的.25.某校对七年级男生进行俯卧撑测试,以能做 7 个为标准,超过的次数用正 数表示,不足的次数用负数表示,其中 8 名男生的成绩如下表:(1)这 8 名男生的达标率是百分之几?(2)这 8 名男生共做了多少个俯卧撑?【分析】(1)达标的人数除以总数就是达标的百分数.(2)要求学生共做的俯卧撑的个数,需理解所给出数据的意义,根据题意知, 正数为超过的次数,负数为不足的次数.【解答】解:(1)这 8 名男生的达标的百分数是 ×100%=62.5%;(2)这 8 名男生做俯卧撑的总个数是:(2﹣1+0+3﹣2﹣3+1+0)+8×7=56 个.【点评】本题考查了正数和负数的知识,属于基础题,解决本题的关键理解已知 中正数、负数的含义.﹣1 ﹣2 ﹣3 2 0 3 1 0第一次﹣3 第二次+8第三次﹣9第四次+10第五次+4第六次﹣6第七次﹣226.某检修小组从A 地出发,在东西方向的马路上检修线路,如果规定向东行驶为正,向西行驶为负,一天中七次行驶记录如下(单位:km):(1)求收工时检修小组距A 地多远;(2)在第五次记录时时检修小组距A 地最远;(3)若每千米耗油0.1L,每升汽油需6.0 元,问检修小组工作一天需汽油费多少元?【分析】(1)七次行驶的和即收工时检修小组距离A 地的距离;(2)计算每一次记录检修小组离开A 的距离,比较后得出检修小组距A 地最远的次数;(3)每次记录的绝对值的和,是检修小组一天的行程,根据单位行程的耗油量计算出该检修小组一天的耗油量.【解答】解:(1)﹣3+8﹣9+10+4﹣6﹣2=2(km),所以收工时距A 地2 km(2)第一次后,检修小组距A 地3km;第二次后,检修小组距A 地﹣3+8=5(km);第三次后,检修小组距A 地﹣3+8﹣9=﹣4(km)第四次后,检修小组距A 地﹣3+8﹣9+10=6(km)第五次后,检修小组距A 地﹣3+8﹣9+10+4=10(km)第六次后,检修小组距A 地﹣3+8﹣9+10+4﹣6=4(km)第七次后,检修小组距A 地﹣3+8﹣9+10+4﹣6﹣2=2(km)故答案为:五(3)(3+8+9+10+4+6+2)×0.1×6.0=42×0.1×6.0=25.2(元)答:检修小组工作一天需汽油费25.2 元【点评】本题考查了有理数的加减法在生活中的应用.耗油量=行程×单位行程耗油量.。
2022年《正数和负数教案》4篇

2022年《正数和负数教案》4篇《正数和负数教案》篇1教学内容:人教版七年级上册第一章有理数 1.1 正数和负数教学目标:在熟悉的生活情景中,能用正数和负数表示生活中具有相反意义的量、知道负数的写法和读法,会用负数表示一些日常生活中的量。
使学生经历数学化,符号化的过程,体会负数产生的必要性。
感受正、负数和生活的密切联系,享受创造性学习的乐趣.教学重点:体会负数的意义,学会用正、负数表示日常生活中具有相反意义的量。
教学难点:体会负数的意义,通过描述性定义认识正数、负数和“0”。
教学过程:一、感受相反方向的数量,经历负数产生的过程。
1、回忆小学学过那些数:自然数,分数出示信息:看数的产生过程,现实中负数学习的必要。
2、引入负数的概念3、总结正负数(1)这些数很特别,都带上了符号,它们是一种“新数”。
-9、-4.5等都叫负数; +7、+988等都叫正数。
你会读吗?请你读给大家听。
注意“-”叫负号,“+”叫正号。
(2)读给你的同伴听。
(3)把你新认识的负数再写两个,读一读。
下面让我们走进正数和负数的世界,进一步了解它们。
(板书课题)二、借助实际生活情境的直观,丰富对正负数的认识。
1、负数有什么用?用正数或负数表示下列数量。
(1向东走200米,用+200米表示;那么向西走200米元用表示。
2.说说实际问题中负数的确定(1.)表示海拔高度(2.)解释温度中正负数的含义(3)做练习三3、怎样理解具有相反意义的量三、理解01、0既不是正数也不是负数。
0是正负数的分界。
2、0只表示没有吗?1).空罐中的金币数量;2).温度中的0℃;3).海平面的高度;4).标准水位;5).身高比较的基准;6.)正数和负数的界点;3、总结0既不是正数,也不是负数;0是正数负数的分界。
0是整数,0是偶数,0是最小的自然数。
四、探究活动(出示课件):1.探究活动一:东、西为两个相反方向,如果- 4米表示一个物体向西运动4米,那么+2米表示什么?物体原地不动记为什么?若将28计为0,则可将27计为-1,试猜想若将27计为0,28应计为。
2.1.1正数与负数

它们都是具有相反意义的量.
在天气预报中,零上5℃和零下 5℃是用什么数来表示的?
在天气预报中,通常规定零上为 正,于是零下就为负. 零上5℃表示成5℃, 零下5℃表示成-5℃. 一般地,对于具有相反意义的量, 我们都可以用正数或负数来表示.
• 汽车向东行驶3千米或向西行驶3千米. 如果规定向东为正,那么向西为 3 千米,向 负.向东行驶3千米记作_____ -3 千米. 西行驶3千米记作_____ • 卖出一件衣服盈利500元或亏损200元. • 水位上升1.2米或下降0.7 米.
~
(2)某机器零件的长度设计为100mm, 加工图纸标注的尺寸为100 0.5(mm). ①这里的 0.5表示什么意思?
解:+0.5表示比设计尺寸多0.5mm, -0.5表示比设计尺寸少0.5mm.
②小王加工的零件长度为99.8mm, 请问这个零件合格吗?
解:100+0.5=100.5(mm),100-0.5=99.5(mm), 所以零件长度的合格尺寸范围为100.5mm到99.5mm.
0既不是正数也不是负数. 0是正负数的分界.
例.下列各数中,哪些是正数?哪些
是负数?
1 4 100,1.5, 5 , 0, 99, 8 , 2.25, 2 5 5 1 0.001, 56, , 7%, , 2008. 6 7
1、填一填:
(1)王叔叔本月收入2500元,记作+2500元, 支出500元记作( - 500 )元. (2)商店1月盈利1200元,2月亏损300元, 分别记作( 1200 )元和( - 300 )元,3 月没盈利也没亏损记作( 0 )元.
3.一个圆形小球的质量要求是10 0.5. (单位:克) (1)这种小球的标准质量是多少? (2)合格产品中最大质量和最小质量 分别是多少? (3)已知一个小球与标准质量的偏差 是-0.3克,则它的实际质量是多少?
2_1正数和负数

课题:2.1正数和负数【学习目标】1. 理解负数,能区分正数与负数;对整数和分数有新的理解。
2. 会用正负数表示生活中具有相反意义的量.【重点难点】重点:理解负数的意义。
难点:能应用正负数表示具有相反意义的量。
【新知导学】一、读一读:阅读欣赏课本P12—P13例2二、想一想:1. 在小学里,学过了哪几类数?。
2. 章头图中的哈尔滨-13~-7表示;课本P12图片中资料卡片中的“-117.3”表示;新闻报道中的“—0.102%”表示。
(小组合作)三、练一练:P13练一练1、2、3(小组交流)【新知归纳】(合上课本)1.(1)像8844.43、100、357、78这样的数是,它们都比0 ;像-154、-38.87、-117.3、-0.102%这样的数是,它们都比0 ; 0既不是,也不是。
(2)正、负数的读法与写法:“–”号读作“负”,如–5,读作“”;“+”号读作“正”.如“23 ”,读作“”.“–”号是省略的.“+”省略不写.(填“能够”或“不能够”)2.正整数、负整数、零统称为;正分数、负分数统称为。
(对照课本,小组批阅)补充:非负数包括和。
非正数包括和。
非负整数包括和。
非正整数包括和。
非零数包括和。
【例题教学】例1.把下列各数填入相对应的集合内:+5,-7.25,34-,0,125+,0.32,12-正数集合:{ …}负数集合:{ …}整数集合:{ …}分数集合:{ …}非负数集合:{ …}例2.(1)如果零上8℃记作+8℃,那么零下5℃记作_________。
(2)如果温度上升2℃记作+2℃,那么温度下降3℃记作________。
(3)如果盈利2万元记作+2万元,那么-3万元表示。
(4)如果顺时针旋转3圈记作+3圈,那么-5圈表示。
(5)如果运进粮食3t记作+3t,那么-4t表示。
巩固练习:P14习题1,2,3,4【课堂检测】1.判断正误:(1)一个整数不是正数就是负数.()(2)最小的数是零.()(3)不小于0的数都是正数.()2. 把下列各数填入表示集合的大括号内:-3、+48、1-2、7.5、0、-9.1、-155、227、2正数集合:{ …}负数集合:{ …}整数集合:{ …}分数集合:{ …}3. 填空:(1)如果收入2000元,可以记为+2000元,那么支出5000元,记为元。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教学课题
2.1 正数与负数
课型 新授
本课题教时数:1 本教时为第 1 教时 备课日期 9月 2 日 教学目标:
1.通过生活实例感受生活中的正数和负数; 2.会用正数、负数表示意义相反的量; 3.了解整数和分数分类.
教学重点、难点:1.理解正数与负数的意义. 2.用正数、负数表示意义相反的量. 理解负数的意义. 教学方法与手段:
教学过程: 教师活动
学生活动
设计意图
生活中的正数与负数 议一议:
在小学里,我们学过正数、负数、零.你知道右边图片中各数的意义吗?
分别说出8844.43、-154、-117.3、-0.102%的意义. 从生活中的例子出发,让学生感受到生活中存在正数和负
数.它们都可以表示生活中的
各种意义的量. 正数与负数的意义
像8848.43、100、357、78这样的数叫做正数;像-154、-38.87、-117.3、 -0.102%这样的数叫做负数.
0既不是正数也不是负数.
“+”读作“正”,如“+2
3”读作“正
三分之二”,正号通常省略不写;
“-”读作“负”,如“-117.3”读作“负一百一十七点三”.
例1 指出下列各数中的正数、负数:
+7,-9,13,-4.5,998,9
-10,0.
8848.43、100、357、78是正数. -154、-38.87、-117.3、-0.102%是负数. +7,
1
3
,998是正数, -9,-4.5,9
-10是负数. 理解正数、
负数的意义,0既不是正数也不是负数.0不再表示没有,是正数与负数的分界.
会根据正数、负数的意义找到正数与负数.
用正数、负数表示相反意义的量 0C 以上的温度用正数表示,0C 以下
的温度用负数表示.日常生活中,许多具有相反意义的量都可以用正数、负数来表示. 解:(1)向南走5km 记作5 km . (2)-4t 表示运出粮食4t . 举例说明用正数、负数表示生活通过生活中的
实例,让学生感受到用正数、负数可以。