七年级上应用一元一次方程

合集下载

七年级数学上册应用一元一次方程

七年级数学上册应用一元一次方程

应用一元一次方程1、相遇问题(1)A,B两地相距448km,一列慢车从A地出发,速度为60km/h,一列快车从B 地出发,速度为80km/h,两车相向而行,慢车先行28min,快车开出后多长时间两车相遇?(2)甲、乙两人分别从相距1500km的A,B两地出发,相向而行,3min后相遇,已知乙的速度是5km/s,求甲的速度。

(3)一列客车车长200米,一列货车车长280米,在平行的轨道上相向行驶,从两车头相遇到两车车尾完全离开经过16秒,已知客车与货车的速度之比是3:2,问两车每秒各行驶多少米?2、追及问题(1)甲步行由上午6时从A地出发,于下午5时到达B地,乙骑自行车由上午10时从A地出发,于下午3时到达B地,问乙出发多长时间追上甲?(2)甲、乙两人在400米长的环形跑道上跑步,甲分钟跑240米,乙每分钟跑200米,二人同时同地同向出发,几分钟后二人相遇?若背向跑,几分钟后相遇?3、航行问题及其他行程问题(1)一轮船在甲、乙两码头间往返航行,已知船在静水中的速度为7km/h,水流速度为2km/h,往返一次共用28h,求甲、乙两码头之间的距离。

(2)一艘船从甲码头到乙码头顺流而行,用了2h,又从乙码头返回甲码头逆流而行,用了2.5h,船在静水中的平均速度为27km/h,求水流的速度.(3)从甲地到乙地,长途汽车原来需要8小时,开通高速公路后,路程缩短了40千米,平均车速增加了30千米/时,需要4.5小时即可达到,求长途汽车原来行驶的速度.4、工程问题(1)一项工程,甲单独做要10天完成,乙单独做要15天完成,两人合做4天后,剩下的部分由乙单独做,还需要几天完成?(2)某工作,甲单独干需用15小时完成,乙单独干需用12小时完成,若甲先干1小时、乙又单独干4小时,剩下的工作两人合作,问:再用几小时可全部完成任务?5、利润问题元旦前夕,某商场从厂家购进了甲、乙两种商品,甲种商品的每件进价比乙种商品的每件进价少20元.若购进甲种商品7件,乙种商品2件,需要760元.(1)求甲、乙两种商品的每件进价分别是多少元?(2)该商场从厂家购进了甲、乙两种商品共50件,所用资金恰好为4400元.在销售时,甲种商品的每件售价为100元,要使得这50件商品所获利润率为20%,每件乙商品的售价为多少元?某店以一共500元进价购得甲、乙两件商品,然后将甲、乙两件商品分别按50%和40%的利润标定出售价.(1)如果按上述进价和售价进行交易,那么该店买卖这两件商品能否盈利260元?为什么?(2)如果该店按原定售价八折促销,某顾客同时购买了甲、乙两种商品,实际付款584元,那么甲、乙两商品原进价各多少元?6、方案选择问题公司推销某种产品,付给推销员每月的工资有以下两种方案:方案一:不论推销多少件,都有200元的底薪,每销售一件产品增加推销费5元;方案二:不付底薪,每销售一件产品给推销费10元.(1)推销50件产品时,应选择方案几所得工资合算?(2)推销多少件产品时,两种方案所得工资一样多?某班需要购买20本笔记本和x(x>40)支圆珠笔作为期末考试的奖品,笔记本每本8元,圆珠笔每支0.8元.现有甲、乙两家文具店可供选择,甲文具店优惠方法:买1本笔记本赠送2支圆珠笔;乙文具店优惠方法:全部商品按九折出售.(1)求单独到甲,乙文具店购买奖品,应各付多少元?(2)圆珠笔买多少支时,单独到甲文具店和单独到乙文具店购买所花的总钱数一样多?(3)若该班需要购买60支圆珠笔,则怎么样购买最省钱?写出购买方案.7、分段计费问题某市按以下规定收取每月水费:每立方米水费包括基本水费和污水处理费两部分.基本水费实行阶段收费:若每月每户不超过20立方米,则每立方米基本水费按2.2元收费;若超过20立方米则超过部分每立方米按3元收费;污水处理费每立方米均按0.3元收取.(1)若当月用水量为x(立方米),请你用含x的式子表示当月所付水费金额;(2)如果某户居民在某月所交水费的平均价为每立方米 2.8元,那么这个月每户居民共用多少立方米的水?某地出租车收费标准是:起步价10元,可乘3千米;3千米到5千米,每千米价1.8元;5千米后,每千米价格2.7元.(1)若某人乘坐了5千米的路程,请写出他应支付的费用.(2)若他支付了19元车费,你能算出他乘坐的路程吗?。

初中七年级上册数学《解一元一次方程》教案优质优秀10篇

初中七年级上册数学《解一元一次方程》教案优质优秀10篇

初中七年级上册数学《解一元一次方程》教案优质优秀10篇初中七年级上册数学《解一元一次方程》教案优质篇一一、学生起点分析学生的知识技能基础:学生在小学已经学习过算术四则运算,而初中的有理数运算是以小学算术四则运算为基础的,不同的是有理数运算多了一个符号问题。

符号法则是有理数运算法则的重要组成部分,也是学生学习本章知识和今后学习其他与计算有关的内容时容易出错的知识点之一。

学生活动经验基础:在前面相关知识的学习过程中,学生已经经历了一些数学活动,感受到了数的范围的扩大,能借助生活经验对一些简单的实际问题进行有理数的运算,如计算比赛的得分,计算温差等等。

同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定数学交流的能力。

学生学习中的困难预设:学生学习数学是一种认识过程,要遵循一般的认识规律,而七年级的学生,对异号两数相加从未接触过,与小学加法比较,思维强度增大,需要通过绝对值大小的比较来确定和的符号和加法转化为减法两个过程,要求学生在课堂上短时间内完成这个认识过程确有一定的难度,在教学时应从实例出发,充分利用教材中的正负抵消的思想,用数形结合的观点加以解释,让学生感知法则的由来,以突破这一难点。

二、教学任务分析对于有理数的运算,首先在于运算的意义的理解,即首先要回答为什么要进行运算。

为此,必须让学生通过具体的问题情境,认识到运算的作用,加深学生对运算本身意义的理解,同时也让学生体会到运算的应用,从而培养学生一定的应用意识和能力。

教科书基于学生学习了相反数和绝对值基础之上,提出了本课时的具体学习任务:探索有理数的加法运算法则,进行有理数的加法运算。

本课时的教学重点是有理数加法法则的探索过程,利用有理数的加法法则进行计算,教学难点是异号两数相加的法则。

教学方法是“引导分类归纳”。

本课时的教学目标如下:1.经历探索有理数加法法则的过程,理解有理数的加法法则;2.能熟练进行整数加法运算;3.培养学生的数学交流和归纳猜想的能力;4.渗透分类、探索、归纳等思想方法,使学生了解研究数学的一些基本方法。

七年级上册数学一元一次方程应用题及答案

七年级上册数学一元一次方程应用题及答案

1.一块石头从高处自由下落,下落时间t与下落距离h之间的关系可以用一元一次方程表示为h=5t。

如果已知下落时间为2s,则求下落距离。

解:将已知条件代入方程中,得到h=5*2=10,所以下落距离为10米。

2.一家利用机器生产玩具,生产每个玩具需要2元的原材料费和3元的人工费。

如果每天生产了x个玩具,总成本为10x+6元。

求每天生产的玩具个数。

解:成本等于每个玩具的原材料费和人工费之和,所以可以列出方程10x+6=2x+3x,化简得到10x+6=5x,再化简得到5x=6,解得x=6/5=1.2、所以每天需要生产1.2个玩具。

3.一辆汽车每小时行驶a千米,行驶x小时后剩余距离为b千米。

如果已知汽车行驶总里程为100千米,求未知数a、b和x的值。

解:根据已知条件可列出方程ax + b = 100。

由于未指定具体数值,无法求得具体解。

4.一块土地在过去10年内每年平均涨价100元,现在的价格是1000元。

求10年前这块土地的价格。

解:设10年前土地价格为x元。

根据题意可列出方程x+10*100=1000,解得x=1000-1000=0。

所以10年前这块土地的价格为0元。

5.甲、乙两人一起做作业,甲一小时能做1/3份,乙一小时能做1/4份。

如果两人共用4小时做完了作业,求甲和乙一共做了多少份。

解:设甲共做了x份,乙共做了y份。

根据每个人的工作效率可列出方程x/1/3+y/1/4=4,化简得到4x/3+4y/4=4,化简得到4x+3y=12、由于只有一个方程无法求得具体解。

6.一个数的三倍减去7等于25,求这个数。

解:设这个数为x。

根据题意可列出方程3x-7=25,化简得到3x=32,解得x=32/3=10.67、所以这个数约为10.677.一个角的度数减去30等于它的三分之一,求这个角的度数。

解:设这个角的度数为x。

根据题意可列出方程x-30=x/3,化简得到3x-90=x,解得2x=90,解得x=45、所以这个角的度数为45度。

人教版七年级上册数学一元一次方程应用题及答案

人教版七年级上册数学一元一次方程应用题及答案

人教版七年级上册数学一元一次方程应用题及答案1.某商店开张,为了吸引顾客,所有商品一律按八折优惠出售。

已知某种皮鞋进价60元一双,八折出售后商家获利润率为40%。

问这种皮鞋标价是多少元?优惠价是多少元?答:根据知能点1中的公式,可得:商品利润率 = (售价 - 成本价)/ 成本价 × 100%40% = (售价 × 0.8 - 60)/ 60 × 100%售价 = 96元优惠价 = 76.8元2.一家商店将某种服装按进价提高40%后标价,又以八折优惠卖出,结果每件仍获利15元。

这种服装每件的进价是多少?答:设进价为x元,则:售价 = 1.2x × 0.8 = 0.96x利润 = 0.96x - x = 0.04x0.04x = 15x = 375元3.一家商店将一种自行车按进价提高45%后标价,又以八折优惠卖出,结果每辆仍获利50元。

这种自行车每辆的进价是多少元?若设这种自行车每辆的进价是x元,那么所列方程为:答:根据知能点1中的公式,可得:售价 = 1.45x × 0.8 = 1.16x利润 = 1.16x - x = 0.16x0.16x = 50x = 312.5元4.某商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则至多打几折。

答:设打折为x折,则:售价 = 1200 × x / 10 = 120x利润 = 120x - 800利润率 = 利润 / 进价 × 100%5% = (120x - 800)/ 800 × 100%x = 6.67折,即至多打7折。

5.一家商店将某种型号的彩电先按原售价提高40%,然后在广告中写上“大酬宾,八折优惠”。

经顾客投拆后,拆法部门按已得非法收入的10倍处以每台2700元的罚款,求每台彩电的原售价。

答:设原售价为x元,则:售价 = 1.4x × 0.8 = 1.12x非法收入 = (1.12x - x)× 10 = 0.12x × 10 = 1.2x罚款 = 2700元1.2x = 2700x = 2250元6.某蔬菜公司的一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元,经粗加工后销售,每吨利润可达4500元,经精加工后销售,每吨利润涨至7500元。

初一数学上册一元一次方程的应用12种经典题型汇总

初一数学上册一元一次方程的应用12种经典题型汇总

初一数学上册一元一次方程的应用12种经典题型汇总题型1:增长率问题某石油进口国这个月的石油进口量比上个月减少了5%,由于国际油价上涨,这个月进口石油的费用反而比上个月增加了14%.求这个月的石油价格相对上个月的增长率?解:设这个月的石油价格相对上个月的增长率为x.根据题意,得(1+x)x(1-5%)=1+14%解得x=0.2=20%答:这个月的石油价格相对上个月的增长率20%题型2:配套问题某服装厂要做一批某种型号的学生校服,已知某种布料每3m长可做2件上衣或3条裤子,一件上衣和一条裤子为一套,计划用600m长的这种布料做学生校服,应分别用多少米布料做上衣和裤子,才能恰好配套?解:设用x m布料做上衣,则用(600-x)m布料做裤子,则上衣共做2x/3件,裤子共做(600-x)条因为一件上衣配一条裤子,所以2x/3=600-x.解得x=360.所以600-360=240(m)答:应用360m布料做上衣,240m布料做裤子.题型3:销售问题某商品的进价是2000元,标价为3000元,商店将以利润率为5%的售价打折出售此商品,则该商店打几折出售此商品?解:设利润率为5%时售价为x元.根据题意(x-2000)/2000·100%=5%解得x=2100.所以2100/3000=7/10答:该商店打7折出售此商品.题型4:储蓄问题李明以两种方式储蓄了500元钱,一种方式储蓄的年利率是5%,另一种是4%,一年后共得利息23元5角,求两种储蓄各存了多少元钱?解:设年利率是5%的储蓄存了x元,则年利率是4%的储蓄存了(500-x)元.根据题意,得x·5%·1+(500-x)·4%·1=23.5解得x=350所以500-x=500-350=150答:年利率是5%和4%的储蓄分别存了350元和150元.题型5:等积变形问题用直径为4cm的圆钢,铸造3个直径为2cm,高为16cm的圆柱形零件,求需要截取多长的圆钢.解:设需要截取x cm长的圆钢.根据题意,得4·π·(4/2)^2=3·π·(2/2)^2·16解得x=12答:需要截取12cm长的圆钢。

七年级上册数学一元一次方程应用题知识点

七年级上册数学一元一次方程应用题知识点

七年级上册数学一元一次方程应用题的知识点主要包括以下几个方面:
1.方程的概念:了解方程的基本定义,即含有未知数的等式。

2.一元一次方程的解法:通过去分母、去括号、移项、合并同类项等步骤,将一元一
次方程化为标准形式,并求解。

3.方程的解与解集:理解方程的解是指使方程成立的未知数的值,而解集则是指所有
满足方程的未知数的值的集合。

4.实际问题的数学模型:能够将实际问题转化为数学问题,通过建立一元一次方程来
求解。

在应用题方面,通常会涉及到以下几种类型:
1.相遇问题:两个物体在某一点相遇,需要求出它们的速度和时间等参数。

2.追及问题:一个物体追赶另一个物体,需要求出追赶的速度和时间等参数。

3.利润与折扣问题:涉及到商品的利润和折扣计算,需要建立一元一次方程来求解。

4.工程的分配问题:需要分配一定量的工程任务给多个工人或机器,需要根据各自的
效率或能力进行分配,需要建立一元一次方程来求解。

总之,七年级上册数学一元一次方程应用题的知识点包括方程的概念、一元一次方程的解法、方程的解与解集以及实际问题的数学模型等。

通过掌握这些知识点,可以更好地解决实际问题。

初中七年级上册数学《解一元一次方程》教案优质范文五篇

初中七年级上册数学《解一元一次方程》教案优质范文五篇

初中七年级上册数学《解一元一次方程》教案优质范文五篇星星从不嫉妒太阳的灿烂辉煌,它在自己的岗位上尽力发光。

今天小编为大家带来的是初中七年级上册数学《解一元一次方程》教案优质范文,希望可以帮助到大家。

初中七年级上册数学《解一元一次方程》教案优质范文一教材分析:《解一元一次方程(一)合并同类项与移项》是义务教育教科书七年级数学上册第三章第二节的内容。

在此之前,学生已学会了有理数运算,掌握了单项式、多项式的有关概念及同类项、合并同类项,和等式性质,进一步将所学知识运用到解方程中。

这为过渡到本节的学习起着铺垫作用。

合并同类项与移项是解方程的基础,解方程它的移项根据是等式性质1、系数化为1它的根据是等式性质2,解方程是今后进一步学习不可缺少的知识。

因而,解方程是初中数学中必须要掌握的重点内容。

设计思路:《数学课程标准》中明确指出:学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。

基于以上理念,结合本节课内容及学生情况,教学设计中采用了探究发现法和多媒体辅助教学法,在学生已有的知识储备基础上,利用课件,鼓励和引导学生采用自主探索与合作交流相结合的方式进行学习,让学生始终处于积极探索的过程中,通过学生动手练习,动脑思考,完成教学任务。

其基本程序设计为:复习回顾、设问题导入探索规律、形成解法例题讲解、熟练运算巩固练习、内化升华回顾反思、进行小结达标测试、反馈情况作业布置、反馈情况。

教学目标:1、知识与技能:(1)通过分析实际问题中的数量关系,建立方程解决实际问题,进一步认识方程模型的重要性;(2)、掌握移项方法,学会解“a·+b=c·+d”的一元一次方程,理解解方程的目标,体会解法中蕴涵的化归思想。

2、过程与方法:通过解形如“a·+b=c·+d”形式的方程,体验数学的建模思想。

3、情感、态度与价值观:通过合作探究,培养学生积极思考、勇于探索的精神。

教学重点:建立方程解决实际问题,会解“a·+b=c·+d”类型的一元一次方程。

七年级数学一元一次方程的应用

七年级数学一元一次方程的应用

七年级数学一元一次方程的应用一元一次方程是初中数学中的基础内容,也是数学在实际生活中广泛应用的一种工具。

本文将从实际问题的角度出发,探讨七年级数学一元一次方程的应用。

1. 商品打折问题假设某商场正在进行打折促销活动,现有一款商品原价为x元,经过折扣后降价到原价的80%。

我们可以通过一元一次方程来计算出折后价格。

设折后价格为y元,则有方程:y = 0.8x。

通过解这个方程,便可以得出折后价格。

这个例子展示了一元一次方程在计算打折后价格问题中的应用。

2. 速度问题在旅行中,我们常常需要计算行驶距离、速度和时间之间的关系。

假设某辆汽车行驶的速度是v km/h,行驶t小时后,行驶的总距离s km。

我们可以通过一元一次方程来计算这些参数之间的关系。

设总距离s为y km,则有方程:s = vt。

通过解这个方程,我们可以计算出汽车行驶的总距离。

这个例子展示了一元一次方程在速度问题中的应用。

3. 家庭预算问题家庭预算是人们生活中常遇到的问题之一。

假设某家庭每月的总收入是x元,总支出是y元。

我们可以通过一元一次方程来计算每月结余或者透支的情况。

设结余为z元,则有方程:z = x - y。

通过解这个方程,我们可以得到每月的结余或者透支情况。

这个例子展示了一元一次方程在家庭预算问题中的应用。

4. 距离、时间、速度问题某辆汽车行驶了一段距离d,行驶的时间是t小时,我们需要计算汽车的平均速度v km/h。

通过一元一次方程我们可以找出速度与距离、时间之间的关系。

设平均速度v为y km/h,则有方程:v = d/t。

通过解这个方程,我们可以计算汽车的平均速度。

这个例子展示了一元一次方程在距离、时间和速度问题中的应用。

以上是几个七年级数学中一元一次方程的应用例子,从商品打折、速度问题、家庭预算问题到距离、时间、速度问题,一元一次方程在实际生活中无处不在。

掌握了一元一次方程的应用,我们不仅能更好地理解数学的基础概念,还能更好地解决实际生活中的问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级上应用一元一次方程
篇一:最新北师大版七年级数学上册《应用一元一次方程-水箱变高了》导学案
最新北师大版七年级数学上册《应用一元一次方程-水箱变高了》导学案
篇二:
【最新】
北师大版七年级数学上册《应用一元一次方程-水箱变高了》学案
最新北师大版七年级数学上册《应用一元一次方程-水箱变高了》学案
学习目标、重点、难点
【学习目标】
1.通过分析图形问题中的数量关系,运用方程解决问题.进一步体会运用方程解决问题的关键是抓住等量关系,并认识方程的重要性.
2.通过对“变化中的不变量”的分析,提高分析问题、解决问题的能力.
【重点难点】
寻找面体积问题中的等量关系。

知识概览图

新课导引
图5—4—1是一筒状的地膜示意图,其内圆半径和外圆半径分别为
r=10厘米和R=20厘米,高h=50厘米.如果地膜的厚度是0.005厘米,你
能计算出这些地膜的总长度是多少吗?
教材精华
知识点1 相关公式
长方体体积=长×宽×高.
圆柱体积=πrh(h为圆柱的高,r为底面半径).
长方形周长=2×(长+宽),长方形面积=长×宽.
知识点2 形积变化问题
对于这类问题,虽然形状、面积和体积都可能发生变化,但应用题中仍然含有一个相等关系,要通过分析题意和题目中的数量关系,把这个能够表示应用题全部含义的等量关系找出来,然后根据这个等量关系列出方程.此类问题常见的有以下几种情况:
(1)形状发生了变化,而体积没变.此时,等量关系为变化前后体积相等.
(2)形状、面积发生了变化,而周长没变.此时,等量关系为变化前后周长相等.
(3)形状、体积不同,但根据题意能找出体积之间的关系,把这个关系作为等量关系. 课堂检测
1 2
篇三:北师大版七年级上册第五章一元一次方程 5.3 应用一元一次方程——水箱变高了同步测含
北师大版七年级上册第五章一元一次方程 5.3 应用一元一次方程——水箱变高了同步测试题
1.把一个用铁丝围成的长方形改制成一个正方形,则这个正方形与原来的长方形比较( )
A.面积与周长都不变化 B.面积相等但周长发生变化
C.周长相等但面积发生变化 D.面积与周长都发生变化
2.某工厂要制造直径为120毫米、高为20毫米的圆钢毛坯,现有直径为60毫米的圆钢若干米,则应取原料的长为( ) A.50毫米 B.60毫米 C.70毫米 D.80毫米
3.有一个底面半径为10 cm,高为30 cm的圆柱形大杯中存满了水,把水倒入一个底面直径为10 cm的圆柱形小杯中,刚好倒满12杯,则小杯的高为( )
A.6 cm B.8 cm C.10 cm D.12 cm
4.从一个底面半径是10 cm的凉水杯中,向一个底面半径为5 cm,高为8 cm的空玻璃杯中倒水,当玻璃杯倒满水后,凉水杯的水面将下降( )
A.8 cm B.2 cm C.5 cm D.4 cm
5.如图,小明从一个正方形的纸片上剪下一个宽为6 cm的长条后,再从剩下的纸片上剪下一条宽为8 cm的长条,如果两次剪下的长条面积正好相等,则原正方形的边长是(
)
A.20 B.24 C.48 D.144
6.如图,一个装有半瓶饮料的饮料瓶中,饮料的高度为20 cm,把饮料瓶倒过来放置,饮料瓶空余部分的高度为5 cm.已知饮料瓶的容积为30立方分米,则瓶内现有饮料________立方分米.17.如图,两根铁棒直立于桶底水平的木桶中,在桶中加入水后,另一根露3
1出水面的长度是它的两根铁棒长度之和为55 cm,此时木桶中水的深度是________cm
. 5
8.20XX年“地球停电一小时”活动的某地区烛光晚餐中,设座位有x排,每排坐30人,则有8人无座位;每排坐31人,则空26个座位.则下列正确的方程是( )
A.30x-8=31x+26B.30x+8=31x+26
C.30x-8=31x-26 D.30x+8=31x-26
9.某制衣厂接受一批服装订货任务,按天数进行生产,如果每天平均生产20套服装,就比订货任务少100套,如果每天平均生产23套服装,就可以超过订货任务20套,问:这批服装的订货任务是多少套?
原计划几天完成任务?
10.连云港至徐州客运专线项目建成后,连云港至徐州的最短客运时间将由现在的2小时缩短为40分钟,其速度每小时将提高200 km.求提速后的火车速度.
111.在甲处工作的有272人,在乙处工作的有196人,则应从3
乙处调多少人到甲处?
12.要锻造直径为16厘米、高为5厘米的圆柱形毛坯,设需截取边长为6厘米的方钢x厘米,则可得方程为__________.13.一个长方体合金底面长为80、宽为60、高为100,现要锻压成新的长方体,其底面边长是40的正方形,则新长方体的高为________.
14.图①是边长为30 cm的正方形纸板,裁掉阴影后将其折叠成图②所示的长方体盒子,已知该长方体的宽是高的2倍,则它的体积是________cm3
.
15.如图,10块相同的小长方形墙砖能拼成一个大长方形,已知大长方形的宽为35 cm,则一块小长方形墙砖的面积为( ) A.147 cm2 B.75 cm2 C.35 cm2 D.21 cm2
16.将一个底面直径是20厘米,高为9厘米的“矮胖”形圆柱,锻压成底面直径是10厘米的“瘦长”形圆柱,高变成了多少?
17.用长为16 m的铁丝沿墙围成一个长方形(墙的一面为长方形的长,不用铁丝),长方形的长比宽长1 m,求长方形的面积.
18.如图所示,一个长方体容器里装满了果汁,长方体的长为12 cm,宽为8 cm,高为24 cm.把果汁倒满旁边的圆柱形的玻璃杯,杯子的内径为6 cm,高为18 cm,这时原装的果汁容器内的果汁高度是多少?(π取3.14,结果精确到0.01 cm )
19.根据图中给出的信息,解答下列问题:
(1)放入一个小球水面升高________cm,
放入一个大球水面升高________cm;
(2)如果要使水面上升到50 cm,应放入大球、小球各多少个?
答案:
1. C
2. D
3. C
4. B
5. B
6.24
7. 20
8. D
9. 设这批服装的订货任务是x套,
x-100x+20依题意得:2023,
x-100解得:x=900,2040.
答:这批服装的订货任务是900套,原计划40天完成
10. 设火车提速后的速度为x千米/小时,
40则提速前的速度为(x-200)千米/小时,则60x=2(x-200).
解得x=300,即火车提速后的速度为300千米/时
11. 设应从乙处调x人到甲处,
1依题意得:196-x3(272+x),
解得x=79.
答:应从乙处调79人到甲处
12. 64π×5=36x
13. 300
14. 1000
15. A
16. 设高变成了x厘米,
根据题意π×102×9=π×52·x.
解得x=36.
答:高变成了36厘米
17. 设宽为x m,长为(x+1)m,根据题意,得2x+(x+1)=16.解方程,得x=5.所以x+1=6(m).故长方形的面积为:5×6=30(m2).答:长方形的面积为30 m2
18. 设倒入杯子的果汁在长方体容器内的高度为x cm,
依题意得:12×8x=3.14×32×18,解得x≈5.30,
所以24-5.30=18.70,
即原装果汁容器内此时果汁高度约为18.70 cm。

相关文档
最新文档