解析几何专题讲座
平面解析几何专题讲座

,当l绕点M旋转时,求: (1)动点P的轨迹方程; (2) | NP | 的最小值与最大值.
x2 例:设双曲线C 2 y 2 1(a 0)与直线l : x y : 1 a
相交于两个不同的点A、B. (I)求双曲线C的离心率e的取值范围: 5 (II)设直线l与y轴的交点为P,且 PA PB . 12 求a的值.
(Ⅱ)设A、B两点的坐标分别 为 ( x1 , y1 ) 、( x2 , y2 ) ,则由①式得
2k x1 x 2 , 2 2k x x 2 . 2 2 k2 2
……②
假设存在实数k,使得以线段AB为直径的圆经 过双曲线C的右焦点F(c,0). 则由FA⊥FB得:
( x1 c)(x2 c) y1 y 2 0. 即( x1 c)(x2 c) (kx1 1)(kx2 1) 0.
整理得
6 把②式及 c 2 2
(k 1) x1 x2 (k c)(x1 x2 ) c 1 0. ……③
2 2
代入③式化简得 5k 2 6k 6 0. 解得 k 6 6 或k 6 6 (2, 2 )(舍去) 5 5 6 6 可知 k 使得以线段AB为直径的圆 5
二.圆锥曲线方程
考试内容: 椭圆及其标准方程.椭圆的简单几何 性质.椭圆的参数方程. 双曲线及其标准方程.双曲线的简单 几何性质. 抛物线及其标准方程.抛物线的简单 几何性质.
考试要求:
(1)掌握椭圆的定义、标准方程和椭圆的简 单几何性质,理解椭圆的参数方程. (2)掌握双曲线的定义、标准方程和双曲线 的简单几何性质. (3)掌握抛物线的定义、标准方程和抛物线 的简单几何性质. (4)了解圆锥曲线的初步应用.
解析几何专题讲座

解析几何专题讲座题型一 圆锥曲线的概念及性质【例1】椭圆x 2a 2+y2b 2=1(a >b >0)的右焦点为F ,其右准线与x 轴的交点为A .在椭圆上存在点P满足线段AP 的垂直平分线过点F ,则椭圆离心率的取值范围是( )A.⎝⎛⎦⎤0,22 B.⎝⎛⎦⎤0,12 C .[2-1,1)D.⎣⎡⎭⎫12,1又e =ca ,∴2e 2+e ≥1,∴2e 2+e -1≥0,即(2e -1)(e +1)≥0,又0<e <1,∴12≤e <1,故选D. 答案:D 拓展提升——开阔思路 提炼方法圆锥曲线的性质是高考的必考内容,常以选择、填空形式考查,也在大题中考查,重点考查椭圆、双曲线的离心率及双曲线的渐近线.变式1.已知F 1、F 2是椭圆的两个焦点,P 为椭圆上一点,∠F 1PF 2=60°.求椭圆离心率的范围;(2)求证:△F 1PF 2的面积只与椭圆的短轴长有关.解:(1)设椭圆方程为x 2a 2+y 2b 2=1(a >b >0),|PF 1|=m ,|PF 2|=n .在△PF 1F 2中,由余弦定理可知,4c 2=m 2+n 2-2mn cos 60°. ∵m +n =2a ,∴m 2+n 2=(m +n )2-2mn =4a 2-2mn ,∴4c 2=4a 2-3mn ,即3mn =4a 2-4c 2.又mn ≤⎝⎛⎭⎫m +n 22=a 2(当且仅当m =n 时取等号),∴4a 2-4c 2≤3a 2,∴c 2a 2≥14,即e ≥12,∴e 的取值范围是⎣⎡⎭⎫12,1. (2)证明:由(1)知mn =43b 2,∴S △PF 1F 2=12sin 60°=33b 2,即△PF 1F 2的面积只与短轴长有关.题型二 圆锥曲线的方程【例2】设椭圆C :22221(0),l ,x y a b F F C A B ab+=>>的右焦点为过的直线与椭圆相交于两点60,2l AF FB =直线的倾斜角为(1)求椭圆C 的离心率;(2)如果|AB |=154,求椭圆C 的方程.解:设A (x 1,y 1),B (x 2,y 2),由题意知y 1<0,y 2>0. (1)直线l 的方程为y =3(x -c ),其中c =a 2-b 2.联立⎩⎪⎨⎪⎧y =3(x -c ),x 2a 2+y 2b 2=1得(3a 2+b 2)y 2+23b 2cy -3b 4=0.解得y 1=-3b 2(c +2a )3a 2+b 2,y 2=-3b 2(c -2a )3a 2+b 2. 因为FA →=2FB →,所以-y 1=2y 2.即3b 2(c +2a )3a 2+b 2=2·-3b 2(c -2a )3a 2+b 2得离心率e =c a =23. (2)因为|AB |=1+13|y 2-y 1|,所以23·43ab 23a 2+b 2=154. 由c a =23得b =53a ,所以54a =154,得a =3,b = 5. 椭圆C 的方程为x 29+y 25=1.拓展提升——开阔思路 提炼方法求圆锥曲线的方程常利用圆锥曲线的定义或待定系数法求解,但要注意焦点所在坐标轴,避免漏解.题型三 热点交汇【例3】)已知直线x -2y +2=0经过椭圆C :x 2a 2+y2b 2=1(a >b >0)的左顶点A 和上顶点D ,椭圆C 的右顶点为B ,点S 是椭圆C 上位于x 轴上方的动点,直线AS ,BS 与直线l :x =103分别交于M ,N 两点.(1)求椭圆C 的方程;(2)求线段MN 的长度的最小值.(1)解:如图,由题意得椭圆C 的左顶点为A (-2,0), 上顶点为D (0,1),即a =2,b =1.故椭圆C 的方程为x 24+y 2=1.(2)直线AS 的斜率显然存在且不为0,设直线AS 的方程为 y =k (x +2)(k >0),解得M ⎝⎛⎭⎫103,16k 3,且将直线方程代入椭圆C 的方程,得(1+4k 2)x 2+16k 2x +16k 2-4=0.设S (x 1,y 1),由根与系数的关系得(-2)·x 1=16k 2-41+4k 2.由此得x 1=2-8k 21+4k 2,y 1=4k 1+4k 2,即S ⎝⎛⎭⎫2-8k 21+4k 2,4k 1+4k 2. 又B (2,0),则直线BS 的方程为y =-14k x -2),联立直线BS 与l 的方程解得N ⎝⎛⎭⎫103,-13k .∴|MN |=⎪⎪⎪⎪16k 3+13k =16k 3+13k≥216k 3·13k =83当且仅当16k 3=13k k =14时等号成立,故当k =14时,线段MN 的长度的最小值是83. 拓展提升——开阔思路 提炼方法(1)以直线与圆锥曲线的位置关系为载体,以不等式或导数为工具,考查圆锥曲线的最值、参数范围、不等式论证等问题,是近年高考的热点内容.这类问题综合性强、能力要求高、解法灵活,值得关注.(2)本题涉及到最值问题时,可先建立问题(即面积)的函数关系式,然后根据其结构特征,运用函数的单调性或基本不等式去获解.求解时应掌握消元技巧,尽量利用根与系数的关系去简化解题过程,提高运算速度和准确度.题型四 直线与圆锥曲线的位置关系【例4】 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为63,短轴一个端点到右焦点的距离为 3.(1)求椭圆C 的方程;(2)设直线l 与椭圆C 交于A 、B 两点,坐标原点O 到直线l 的距离为32,求△AOB 面积的最大值.解:(1)设椭圆的半焦距为c ,依题意⎩⎪⎨⎪⎧c a =63,a =3,∴b =1,∴所求椭圆方程为x 23+y 2=1.(2)设A (x 1,y 1),B (x 2,y 2). ①当AB ⊥x 轴时,|AB |= 3.②当AB 与x 轴不垂直时,设直线AB 的方程为y =kx +m . 由已知|m |1+k 2=32,得m 2=34k 2+1). 把y =kx +m 代入椭圆方程,整理得(3k 2+1)x 2+6kmx +3m 2-3=0, ∴x 1+x 2=-6km 3k 2+1x 1x 2=3(m 2-1)3k 2+1. ∴|AB |2=(1+k 2)(x 2-x 1)2=(1+k 2)·⎣⎡⎦⎤36k 2m 2(3k 2+1)2-12(m 2-1)3k 2+1=12(k 2+1)(3k 2+1-m 2)(3k 2+1)2=3(k 2+1)(9k 2+1)(3k 2+1)2=3+12k 29k 4+6k 2+1=3+129k 2+1k26≤3+122×3+6=4(k ≠0). 当且仅当9k 2=1k 2,即k =±33时等号成立.当k =0时,|AB |=3,综上所述|AB |max =2.∴当|AB |最大时,△AOB 面积取最大值S =12×|AB |max ×32=32.拓展提升——开阔思路 提炼方法解决直线与圆锥曲线的位置关系问题对于直线与圆锥曲线的交点可利用“设而不求”的办法,可利用一元二次方程的判别式和根与系数之间的关系进行过渡,解决的常见问题有:弦长、弦的中点、垂直、三点共线等等.题型五 圆锥曲线中的探索性问题【例5】 (2010·福建)已知中心在坐标原点O 的椭圆C 经过点A (2,3),且点F (2,0)为其右焦点.(1)求椭圆C 的方程;(2)是否存在平行于OA 的直线l ,使得直线l 与椭圆C 有公共点,且直线OA 与l 的距离等于4?若存在,求出直线l 的方程;若不存在,说明理由.解:解法一:(1)依题意,可设椭圆C 的方程为x 2a 2+y 2b 2=1(a >b >0),且可知左焦点为F ′(-2,0).从而有⎩⎪⎨⎪⎧c =2,2a =|AF |+|AF ′|=3+5=8,解得⎩⎪⎨⎪⎧c =2,a =4.又a 2=b 2+c 2,所以b 2=12,故椭圆C 的方程为x 216+y 212=1.(2)假设存在符合题意的直线l ,其方程为y =32x +t .由⎝ ⎛y =32x +t ,x 216+y212=1得3x 2+3tx +t 2-12=0.因为直线l 与椭圆C 有公共点,所以Δ=(3t )2-4×3(t 2-12)≥0, 解得-43≤t ≤4 3.另一方面,由直线OA 与l 的距离d =4可得|t |94+1=4,从而t =±213.由于±213∉[-43,43],所以符合题意的直线l 不存在. 解法二:(1)依题意,可设椭圆C 的方程为 x 2a 2+y 2b2=1(a >b >0),且有:⎩⎪⎨⎪⎧4a 2+9b 2=1,a 2-b 2=4.解得b 2=12或b 2=-3(舍去),从而a 2=16.所以椭圆C 的方程为x 216+y212=1.(2)同解法一.题型六 热点交汇【例6】已知两点M (-2,0),N (2,0),动点P 在y 轴上的射影是H ,如果PH →·PH →,PM →·PN→分别是公比q =2的等比数列的第三、第四项.(1)求动点P 的轨迹C 的方程;(2)已知过点N 的直线l 交曲线C 于x 轴下方两个不同的点A ,B ,设R 为AB 的中点,若过点R 与定点Q (0,-2)的直线交x 轴于点D (x 0,0),求x 0的取值范围.设222222:(,),(0,),(,0),(2,),(2,),4422P x y H y P H x P M x y P N x y P H P H x P M P N x y P M P N x y x P H P H=-=---=--==+-+-==(1)解则又则有∴点P 的轨迹方程为y 2-x 2=4(x ≠0).(2)当k =±1时,不成立.设直线AB 的方程为:y =k (x -2),A (x 1,y 1), B (x 2,y 2),R (x 3,y 3),其中x 3=x 1+x 22,y 3=y 1+y 22. 由⎩⎪⎨⎪⎧y =k (x -2),y 2-x 2=4,化简得(k 2-1)x 2-4k 2x +4(k 2-1)=0,∴y 3x 3=1k ,∴DQ 的方程为y +2x =y 3+2x 3. 令y =0,得2x 0=y 3+2x 3=1k +2x 3,∴x 0=21k +2·k 2-12k2=2-⎝⎛⎭⎫1k -122+54. 又由Δ=16k 4-16(k 2-1)2=32k 2-16>0,y 1+y 2<0, y 1·y 2>0,可得22<k <1, ∴1<1k2,∴2-1<-⎝⎛⎭⎫1k -122+54<1, ∴2<x 0<2+2 2.故所求的x 0的取值范围为(2,2+22).变式1.如图,在直角坐标系xOy中,有一组对角线长为a n的正方形A n B n C n D n(n=1,2,…),其对角线B n D n依次放置在x轴上(相邻顶点重合).设{a n}是首项为a,公差为d(d>0)的等差数列,点B1的坐标为(d,0).(1)当a=8,d=4时,证明:顶点A1、A2、A3不在同一条直线上;(2)在(1)的条件下,证明:所有顶点A n均落在抛物线y2=2x上.(3)为使所有顶点A n均落在抛物线y2=2px(p>0)上,求a与d之间所应满足的关系式.解析几何训练题(1)设双曲线22221x ya b-=(a>0,b>0)的渐近线与抛物线y=x2 +1相切,则该双曲线的离心率等于( )(2)已知椭圆22:12xC y+=的右焦点为F,右准线为l,点A l∈,线段A F交C于点B,若3FA FB=,则||AF=( )D. 3(3)(2009浙江理)过双曲线22221(0,0)x ya ba b-=>>的右顶点A作斜率为1-的直线,该直线与双曲线的两条渐近线的交点分别为,B C.若12A B B C=,则双曲线的离心率是( ) A.B.CD(4)设1F和2F为双曲线22221x ya b-=(0,0a b>>)的两个焦点, 若12F F,,(0,2)P b是正三角形的三个顶点,则双曲线的离心率为A.32B.2C.52D.3(5)已知双曲线22122x y-=的准线过椭圆22214x yb+=的焦点,则直线2y kx=+与椭圆至多有一个交点的充要条件是( )A.11,22K⎡⎤∈-⎢⎥⎣⎦B.11,,22K⎛⎤⎡⎫∈-∞-+∞⎪⎥⎢⎝⎦⎣⎭C.22K⎡∈-⎢⎣⎦D. ,22K⎛⎡⎫∈-∞-+∞⎪⎢⎪⎝⎦⎣⎭(6)已知双曲线()222210,0x yC a ba b-=>>:的右焦点为F,过F的直线交C于A B、两点,若4AF FB=,则C的离心率为(A.65B.75C.58D.95(7)抛物线2y x=-上的点到直线4380x y+-=距离的最小值是()A.43B.75C.85D.3(8)对于抛物线y2=4x上任意一点Q,点P(a,0)都满足|PQ|≥|a|,则a的取值范围是()A.(-∞,0)B.(-∞,2]C.[0,2]D.(0,2)9、已知直线)0(112222>>=++-=b a by ax x y 与椭圆相交于A 、B 两点。
竞赛专题讲座解析几何

1.以知过点(0,1)的直线l 与曲线1:(0)C y x x x=+>交于两个不同点M 和N ,求曲线C 在点M 、N 处的切线的交点轨迹。
解:设,M N 的坐标分别为11(,)x y 和22(,)x y ,曲线C 在点M 、N 处的切线分别为12,l l ,其交点P 的坐标为(,)p p x y 。
若直线l 的斜率为k ,则l 的方程为1y kx =+由方程组11y x x y kx ⎧=+⎪⎨⎪=+⎩,消去y ,得11x kx x +=+,即2(1)10k x x -+-=。
由题意知,该方程在(0,)+∞上有两个相异的实根12,x x ,故1k ≠,且121214(1)0(1)130(2)11410(3)1k x x k k x x k ⎧⎪=+->⎪⎪+=>⇒<<⎨-⎪⎪=>⎪-⎩对1y x x=+求导,得1''221111,1x x y y x x ==-=-则,2'2211x x y x ==-。
于是,直线1l 的方程为 11211(1)()y y x x x -=--,即1121111()(1)()y x x x x x -+=--, 化简后得到直线1l 的方程为:21112(1)(4)y x x x =-+,同理可求得直线2l 的方程为:22212(1)(5)y x x x =-+,(4)(5)-得:2221121122()0p x x x x x -+-=,因为12x x ≠,故有:12122(6)p x x x x x =+, 将(2),(3)两式代入(6)式得2p x =(4)(5)+得:22121211112(2())2()(7)p p y x x x x x =-+++,其中121212111x x x x x x ++== 2222121212122222221212121212()2112()12(1)21x x x x x x x x k k x x x x x x x x x x ++-++===-=--=-代入(7)得:2(32)2p p y k x =-+,而2p x =,得42p y k =-,又由314k <<得: 522p y <<,即点P 的轨迹为(2,2),5(2,)2两点间的线段(不含端点)。
最新人教版高中数学选修2-1第二章《解析几何》专题讲座

《解析几何》专题讲座一、专题内容分析(一)本专题知识体系的梳理本专题内容在高中数学中衔接几何与代数,充分体现了数形结合,重点研究如何用代数方法解决几何问题,如何在代数与几何之间实现问题与解答的转化.从学习者的角度来看,解析几何的学习需要培养数形结合的思想、较强的运算能力和一定的几何与代数的转化能力;从教学者的角度来看,解析几何的教学除了遵循学习者的要求外,还需要重视常规与规范的训练.本专题的知识体系结构为:(二)本专题中研究的核心问题本专题研究的核心问题是如何用代数语言表示几何元素,进而用解析方法(坐标法)解决几何问题.因而,首先要复习直线、圆、圆锥曲线的方程,然后要用方程研究直线与圆、直线与圆锥曲线的位置关系,能够在数和形之间相互转化,综合运用几何方法与解析方法解决几何问题.解析法是借助代数方法解决几何问题的一种方法,解决几何就是利用坐标方法解决几何问题过程中形成的一门学科,它对贯穿代数与几何起着十分重要的作用.(三)本专题蕴含的核心观点、思想和方法解析几何是几何学的一个分支,是通过坐标法运用代数工具研究几何问题的一门学科,它把形与数有机地结合起来.一方面,将几何问题代数化------用代数的语言描述几何要素及其关系,进而将几何问题转化为代数问题;另一方面,将代数问题几何化------分析代数语言的几何含义,使代数语言更直观、更形象地表达出来.解析几何的核心观点就是用恰当运用代数的方法解决几何问题,基本思想是数形结合思想,核心方法是坐标法.数形结合思想和坐标法是统领全局的,解析几何就是在坐标系的基础上,用代数的方法研究几何问题一门学科.用解析法研究几何图形的性质,须先将几何图形置于坐标系下,让“形”与“数”对应起来,将“形”进行翻译转化:把点转化为坐标、把曲线转化为方程,把题目中明显的或隐含的解题所需要的一切几何特征,用数式和数量关系表示出来.用图可以简略表示为:例如,直角三角形ABC 中,CB >CA ,点D 、E 分别在边CA 、CB 上,且满足BE =CA ,AD =CE ,AE 与BD 交于点F ,求∠AFD 的度数.二、教学目标定位与分析 (一)学习目标与要求D CBA 点 坐标 曲线 方程几何特征数式和数量关系(二)考查要求、类型及考题分析1.平面解析几何初步。
高考专题讲座--解析几何热点问题(PPT)4-2

专 题 解析几何热点问题 秭归县屈原高中 张鸿斌
中还有分生组织,其中的细胞经过反复地分裂,产生大量的细胞。这些细胞中大部分停止分裂而分化成各种组织;小部分则保留为分生组织。 生态作用编辑 陆生植物和藻类所行使的光合作用几乎是所有的生态系中能源及有机物质的最初来源。光合作用根本地改变了早期地球大气的组成,使得有%的氧气。动物 和大多数其他生物是;祛斑 https:/// 祛斑 ; 好氧的,依靠氧气生存。植物在大多数的陆地生态系中属于生产者,形成食物链的基本。 许多动物依靠着植物作为其居所、以及氧气和食物的提供者。 陆生植物是水循环和数种其他物质循环的关键。一些植物(如豆科植物等)和固氮菌共演化, 使得植物成为氮循环重要的一部分。植物根部在土壤发育和防止水土流失上也扮演着很重要的角色。 [] 分布 植物分布在全世界水圈的大部,岩石圈的表面, 大气层的底部,随着不同气候区而有不同的数量,其中有一些甚至生长在大陆棚极北端的冻土层上。在极南端的南极上,植物亦顽强地对抗其凛冽的环境。
植物通常是它们栖所上主要的物理及结构组成。许多地球上的生态圈即以植被的类型而命名,因为植物是此些生态圈中的主要生物,如草原和森林等等。它 们通过遗传分化和表型可塑性来适应不同环境。 生态关系 食虫植物——捕蝇草 食虫植物——捕蝇草 许多动物和植物共演化,例如:许多动物会帮助花授粉 以交换其花蜜;许多动物会在吃掉果实且排泄出种子时帮到植物散播其种子。适蚁植物是一种和蚂蚁共演化的植物。此类植物会提供蚂蚁居所,有时还有食 物。作为交换,蚂蚁则会帮助植物防卫草食性动物,且有时还会帮助其和其他植物竞争。蚂蚁的废物还可以提供给植物做有机肥料。大部分植物的根系会和 不同的真菌有互利共生的关系,称之为菌根。真菌会帮助植物从土壤中获得水份和矿物质,而植物则会提供真菌从光合作用中组成的碳水化合物。一些植物 会提供内生真菌居所,而真菌则会产生毒素以保护植物不被草食性动物食用。高羊茅中的Neotyphodium coenophialum即为一种内生真菌,其在美国的畜牧 业造成了极严重的经济伤害。许多种类型的寄生在植物中亦是很普遍的,从半寄生的槲寄生(只是从其寄主中得取一些养分,但依然留有光合作用的叶子) 到全寄生的列当和齿鳞草(全部都经由和其他植物根部的连结来获取养分,所以没有叶绿素)。一些植物会寄生在菌根真菌上,称之为菌根异养,且因此会 像是外寄生在其他植物上。许多植物是附生植物,即长在其他植物(通常是树木)上,而没有寄生在其上头。附生植物可能被间接地伤害到其宿者,轨迹方程是解析几何的基本问题之一,是高考中的一
高三复习专题讲座解析几何

高三复习专题讲座解析几何高三复习专题讲座解析几何一、高考考纲要求高中《解析几何》内容包含两章——直线和圆的方程和圆锥曲线方程,这两章的要求分别如下:(一)直线和圆的方程(1)理解直线的斜率的概念,掌握过两点的直线的斜率公式,掌握直线方程的点斜式、两点式、一般式,并能根据条件熟练地求出直线方程。
(2)掌握两条直线平行与垂直的条件,两条直线所成的角和点到直线的距离公式,能够根据直线的方程判断两条直线的位置关系。
(3)了解二元一次不等式表示平面区域。
(4)了解线性规划的意义,并会简单的应用。
(5)了解解析几何的基本思想,了解坐标法。
(6)掌握圆的标准方程和一般方程,了解参数方程的概念,理解圆的参数方程。
(二)圆锥曲线的方程(1)掌握椭圆的定义、标准方程和椭圆的简单几何性质,理解椭圆的参数方程。
(2)掌握双曲线的定义、标准方程和双曲线的简单几何性质。
(3)掌握抛物线的定义、标准方程和抛物线的简单几何性质。
(4)了解圆锥曲线的初步应用。
二、高考考点分析04年高考,各地试题中解析几何内容在全卷的平均分值为27.1分,占18.1%;01年以来,解析几何内容在全卷的平均分值为29.3分,占19.5%.因此,占全卷近1/5的分值的解析几何内容,值得我们在二轮复习中引起足够的重视.近几年高考试题知识点分析从上表中可以发现,高考试题中对解析几何内容的考查几乎囊括了该部分的所有内容,对直线、线性规划、圆、椭圆、双曲线、抛物线等内容都有涉及.1.选择、填空题1.1 大多数选择、填空题以对基础知识、基本技能的考查为主,难度以容易题和中档题为主(1)对直线、圆的基本概念及性质的考查例1 (’04全国文Ⅱ)已知点A(1,2)、B(3,1),则线段AB的垂直平分线的方程是(A)(B)(C)(D)例2(’03全国文Ⅰ)已知点的距离为1,则a=(A)(B)-(C)(D)例3(’04江苏)以点(1,2)为圆心,与直线4x+3y-35=0相切的圆的方程是_________.例4(’04全国文Ⅱ)已知圆C与圆关于直线。
高中数学专题讲座

高中数学专题讲座篇一:高中数学专题讲座讲座题目:解析几何讲座主题:解析几何的基本概念、方法和应用讲座时长:30分钟正文:解析几何是高中数学中重要的分支之一,主要研究平面上点与线之间的关系,以及它们在空间中的相互转化。
解析几何的应用非常广泛,包括几何光学、天体物理学、工程学等领域。
讲座开始时,我们将介绍解析几何的基本概念和符号表示。
解析几何中的点通常用字母P表示,线通常用字母l表示,函数通常用字母f表示,变量通常用字母x表示。
我们将使用这些符号来表示解析几何中的各种概念和公式。
接下来,我们将介绍解析几何的基本方法。
这些方法包括几何法、代数法和曲线法等。
几何法是利用几何图形来表示函数,代数法是利用代数公式来表示函数,曲线法是利用曲线来表示函数。
我们将介绍这些方法的基本原理和应用。
最后,我们将介绍解析几何的应用。
解析几何在几何光学、天体物理学、工程学等领域都有广泛的应用。
例如,在光学中,解析几何可以用来研究光的传播规律;在天体物理学中,解析几何可以用来研究行星的轨道和运动规律;在工程学中,解析几何可以用来研究机械运动的分析和控制。
在讲座的结尾,我们将总结一下解析几何的基本概念、方法和应用。
我们还将介绍一些常见的解析几何问题和解决方法,以便听众们能够更好地掌握解析几何的知识和技能。
以上就是本次高中数学专题讲座的全部内容。
希望本次讲座能够帮助听众们更好地掌握解析几何的基本概念、方法和应用,为未来的学习和研究打下坚实的数学基础。
篇二:高中数学专题讲座讲座题目:高中数学专题讲座讲座主题:高中数学基础知识的讲解与拓展正文:大家好,今天我们来谈一谈高中数学基础知识的讲解与拓展。
高中数学是一个非常重要的学科,因为它是许多大学专业的基础课程,同时也是许多职业领域中必不可少的技能。
因此,在学习高中数学时,掌握基础知识是非常重要的。
在讲解基础知识时,我们需要注意以下几个方面:1. 理解概念和定义。
概念和定义是数学的基石,只有理解了它们,才能更好地应用数学知识。
“中学数学必备解析几何课件讲义”

学会直线的一般式方程,了解其意义及在求解直线问题上的应用。
圆的标准式
学会圆的标准式方程,了解其几何性质及在求解圆的问题上的应用。
圆的一般式
学会圆的一般式方程,了解其意义及在求解圆的问题上的应用。
直线与圆的位置关系
1 判定方法
学会判定直线与圆的位置关系的方法,了解其相对位置的几何意义。
2 求解方法
3
空间图形位置关系
掌握解决空间图形位置关系的方法的定义及公式,理解 其几何特征。
平移与伸缩
学会求双曲线方程,理解平移和 伸缩对双曲线特征的影响。
应用
掌握双曲线的相关几何应用,学 会解决相关几何问题。
空间直角坐标系及其应用
1
定义
学会空间直角坐标系的定义及其应用,理解空间几何的特征。
2
向量
掌握空间向量及其运算法则,学会用向量表示线段和平面的几何特征。
解析几何课件讲义
掌握解析几何的重要性在于可以将平面几何与向量分析相互结合,拓宽数学 思路,提高抽象思维能力。本课件将详细解析各种解析几何知识点。
二维直角坐标系及其应用
点与向量
了解点和向量在平面直角坐标系中的定义及相 互关系。
旋转
掌握平面上图形的旋转操作方法,理解旋转对 点、向量的影响。
平移
学会平面上图形的平移操作方法,理解平移对 点、向量的影响。
比例
了解平面上图形的等比例变化,了解比例的概 念及运算法则。
向量的概念及其运算法则
向量加法
掌握向量相加的方法,理解向量 加法的几何意义。
数量积
学会计算向量的数量积,了解其 几何意义及应用。
向量积
学会求向量积,了解其几何意义 及应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x R, y - ,0
关于y轴对称
F 0, - p
2
y p 2
(二)圆锥曲线的定义、标准方程和几何性质
例7(2019 上海)设 m 是常数,若点 F(0,5)是双曲线
m=
16 .
y2 x2 1 的一个焦点,则
m9
【解析】由于点 F(0,5) 是双曲线 y2 x2 1 的一个焦点,
mx y 2m 1 0m R 相 切 的所 有 圆 中, 半 径 最 大的 圆 的 标准 方 程
为 x 12 y2 2.
【解析】由直线 mx y 2m 1 0m R与圆相切得圆心到直线的距离d 等于
圆的半径 r ,
即r m1 m1 , m2 1 m2 1
到直线 2x y 0 的距离为 4 5 ,则圆 5
【解析】
的方程为 x 22 y2 9.
圆 C 的圆心在 x 轴正半轴上,圆心到直线 2x y 0 的距离为 4 5 , 5
待定系数法
设圆的方程 x a2 y b2 r 2,其中圆心 (a, b) ,
C1
C2
C1
C2
C1
(一)直线与圆、圆与圆
例1(2016 浙江)已知
,方程 a2 x2 (a 2) y2 4x 8y 5a 0 表示圆,则
圆心坐标是
- 2,-4 ,半径是
5.
【解析】因为方程 a2 x2 (a 2) y2 4x 8y 5a 0 表示圆 ,
AB CD 0 ,则点 A 的横坐标为
.
(一)直线与圆、圆与圆
巩固练习1.
A
【解析】圆 x 22 y2 2 的圆心C2,0 ,半径r 2 ,可以计算 AB 2 2 ,
设点 P 到直线 x y 2 0 的距离为 h ,△ ABP的面积 S 1 AB h
2
设圆心 C2,0 到直线 x y 2 0 的距离为d ,
A
由点到直线距离公式计算得 d 2 2 .
hmax d r 2 2 2 3 2 , hmin d r 2 2 2 2 2≤S≤6.
y
P
O
Cx
B
(一)直线与圆、圆与圆
巩固练习2. (2018 江苏) 在平面直角坐标系 xOy 中, 为直线 l : y 2x 上在第一象
r
m 1
m2 1
m 12
m2 1
m2 2m 1 m2 1
1
2m m2
1
,
因为
m2
1≥
2m
,
2m m2
1
≤1,当且仅当
m
1
时等号成立,
故 r ≤ 2 ,所以所求圆为 x 12 y2 2 .
(一)直线与圆、圆与圆
例5 (2015 江苏) 在平面直角坐标系 xOy 中,以点 1,0 为圆心且与直线
A. 内切
【解析】由
B. 相交
,得
C. 外切
D. 相离
,所以圆
的圆心为
,半径为
.由圆 截直线
所得线段的长
度是 ,得
,解得
.
圆 的圆心为
,半径为
,所以
, ,所以圆 与圆
, 相交.
,因为
(一)直线与圆、圆与圆
巩固练习1.
(2018 全国 III)直线 x y 2 0 分别与 x 轴,y 轴交于 A, B 两点,点 P 在圆
y
O Fx
x 0, , y R
关于x轴对称
F p ,0 2
x p 2
y
FO
x
y
F
Ox
y
O x
F
x - ,0, y R x R, y 0,
O0,0
关于x轴对称
关于y轴对称
F - p ,0 2
x p 2
e 1
F 0,p 2
5.圆与圆的位置关系:
设圆C1半径为r1,设圆C2半径为r2, C1C2 为两圆的圆心距,则
内含
C1C2 r1 r2
内切
C1C2 r1 r2
相交
r1 r2 C1C2 r1 r2
外切
C1C2 r1 r2
相离
C1C2 r1 r2
C C2 1ຫໍສະໝຸດ C C2 1C2设圆心到直线距离为 d,圆的半径为 r,则 d r时,直线与圆相离;d r时,直线与圆相切;d r时,直线与圆相交
C
C
C
4.直线与圆相交的弦长:
AB 2 r2 d 2
B
D
A
C
在RtACD中,AC
r, CD
d,
AD
AB ,
2
则
AB 2
2
d2
r2
(一)直线与圆、圆与圆
mx y 2m 1 0m R 相 切 的所 有 圆 中, 半 径 最 大的 圆 的 标准 方 程
为 x 12 y2 2 . 【解析】观察直线 mx y 2m 1 0 可化为mx 2 y 1 0 ,
表示直线 mx y 2m 1 0 恒过定点 P2,-1 ,
圆心C1,0 到直线距离的最大值就是 PC ,r PC 2 .
(一)直线与圆、圆与圆
例6(2016 山东)已知圆 M:x2 y2 2ay 0a 0截直线 x y 0 所得线段的
长度是 2 2 ,则圆 M 与圆 N:x 12 y 12 1 的位置关系是 B
m9
故该双曲线的焦点在 y 轴上,从而
.
从而得出
,解得
.
(二)圆锥曲线的定义、标准方程和几何性质
例8 (2018 江苏)在平面直角坐标系
xOy
中,若双曲线
x2 a2
y2 b2
1(a
0,b
0)
的
右 焦 点 F(c,0) 到 一 条 渐 近 线 的 距 离 为 3 c , 则 其 离 心 率 的 值 2
所以 a2 a 2 ,解得 a 1或a 2
当
时,
圆的方程为
,即
.
圆心的坐标为(- 2,- 4),半径为 5.
当 a 2 时, 圆的方程为 4x2 4 y2 4x 8y 10 0 ,即 x2 y2 x 2 y 5 0 ,
2 此时, D2 E2 4F 1 4 4 5 0 ,应舍去.
所以圆的方程为 x2 y2 - 2x 0 .
【 另解】 由图可知,三角形ABO是等腰直角三角形, 所以经过三个点的圆的圆心是OB中点(1,0),半径等于1.
y
A
B
O
x
数形结合
(一)直线与圆、圆与圆
例3 (2016 天津)已知圆 C 的圆心在 x 轴正半轴上,点 (0, 5)在圆 C 上,且圆心
2
2
2
因为 AB CD 0 ,所以 AB CD ,故 ACD 为等腰直角三角形,
点 C 到直线 l : y 2x 的距离 d 2 r , 2
即 5 2 5a2 10a 25 ,解得 a 31舍 .
5
4
D O
C
Bx
(二)圆锥曲线的定义、标准方程和几何性质
1.椭圆定义:
F1-c,0,F2 c,0其中c2 a 2 b2
关于x轴、y轴对称,关于( 0,0)中心对称
A1- a,0,A2 a,0
F1-c,0,F2 c,0其中c2 a2 b2
关于x轴、y轴对称,关于(0,0)中心对称
2a、2b、2c 长轴 A1A2 2a,短轴B1B2 2b,焦距F1F2 2c 实轴A1A2 2a,虚轴B1B2 2b,焦距F1F2 2c
解析几何专题讲座
天津市第十四中学 管亚楠
核心是“坐标法” 解决解析几何问题的“三步曲”
几何问题
翻译
转化
代数结果
代数问题
运算
(一)直线与圆、圆与圆 (二)圆锥曲线的定义、标准方程和几何性质 (三)直线与圆锥曲线
(一)直线与圆、圆与圆
1.常用公式:
直线的点斜式方程:y yo k (x x0 ) 直线的斜截式方程:y kx b
限内的点,
,以 AB 为直径的圆 C 与直线 交于另一点 .若
AB CD 0 ,则点 的横坐标为
3
.
【解析】设 Aa,2a a 0 ,点C 是 A, B 的中点,则圆心C a 5 , a ,
2
y
A
半径 r 1 AB
a 52 4a2
5a2 10a 25 ,
x 22 y2 2 上,则△ ABP面积的取值范围是
A. 2,6 B. 4,8 C. [ 2,3 2] D. [2 2,3 2]
巩固练习2.
(2018 江苏) 在平面直角坐标系 xOy 中, 为直线 l : y 2x 上在第一象
限内的点,
,以 AB 为直径的圆 C 与直线 交于另一点 .若
两点Ax1, y1 , Bx2 , y2 间的距离 AB x2 x1 2 y2 y1 2
点Px0 , y0 到直线l : Ax By C 0的距离d
Ax0 By0 C A2 B2
两平行直线l1 : Ax By C1 0与l2 : Ax By C2 0间的距离d
2
(一)直线与圆、圆与圆
例2(2018 天津) 在平面 直角坐标系中 ,经过三点 (0,0),(1,1),(2,0) 的圆的 方程