材料力学第二章轴向载荷作用下杆件的材料力学问题

合集下载

材料力学(机械类)第二章 轴向拉伸与压缩

材料力学(机械类)第二章  轴向拉伸与压缩



拉伸压缩与剪切
1
பைடு நூலகம்
§2-1

轴向拉伸与压缩的概念和实例
轴向拉伸——轴力作用下,杆件伸长 (简称拉伸) 轴向压缩——轴力作用下,杆件缩短 (简称压缩)

2
拉、压的特点:

1.两端受力——沿轴线,大小相等,方向相反 2. 变形—— 沿轴线
3

§2-2 轴向拉伸或压缩时横截面上的内力和应力
1 、横截面上的内力
A3
2
l1 l2 y AA3 A3 A4 sin 30 tan 30 2 1.039 3.039mm
A
A A4
AA x2 y2 0.6 2 3.039 2 3.1mm
40
目录
例 2—5 截面积为 76.36mm² 的钢索绕过无摩擦的定滑轮 F=20kN,求刚索的应力和 C点的垂直位移。 (刚索的 E =177GPa,设横梁ABCD为刚梁)
16
§2-4

材料在拉伸时的力学性能
材料的力学性能是指材料在外力的作用下表现出的变 形和破坏等方面的特性。

现在要研究材料的整个力学性能(应力 —— 应变):
从受力很小
破坏
理论上——用简单描述复杂
工程上——为(材料组成的)构件当好医生
17
一、 低碳钢拉伸时的力学性能 (含碳量<0.3%的碳素钢)
力均匀分布于横截面上,σ等于常量。于是有:
N d A d A A
A A
得应力:

N A
F
FN
σ
10
例题2-2
A 1
45°
C
2

材料力学课件第二章 轴向拉伸和压缩

材料力学课件第二章 轴向拉伸和压缩

2.3 材料在拉伸和压缩时的力学性能
解: 量得a点的应力、应变分别 为230MPa、0.003
E=σa/εa=76.7GPa 比例极限σp=σa=230MPa 当应力增加到σ=350MPa时,对应b点,量得正应变值
ε = 0. 0075 过b点作直线段的平行线交于ε坐标轴,量得 此时的塑性应变和弹性应变
εp=0. 0030 εe= 0 . 0075-0.003=0.0045
内力:变形固体在受到外力作用 时,变形固体内部各相邻部分之 间的相互作用力的改变量。
①②③ 切加求 一内平 刀力衡
应力:是内力分布集度,即 单位面积上的内力
p=dF/dA
F
F
FX = 0
金属材料拉伸时的力学性能
低碳钢(C≤0.3%)
Ⅰ 弹性阶段σe σP=Eε
Ⅱ 屈服阶段 屈服强度σs 、(σ0.2)
FN FN<0
2.2 拉压杆截面上的内力和应力
第二章 轴向拉伸和压缩
在应用截面法时应注意:
(1)外载荷不能沿其作用线移动。
2.2 拉压杆截面上的内力和应力
第二章 轴向拉伸和压缩
在应用截面法时应注意:
(2)截面不能切在外载荷作用点处,要离开或 稍微离开作用点。
1
2
11
22
f 30 f 20
60kN
Ⅲ 强化阶段 抗压强度 (强度极限)σb
Ⅳ 局部颈缩阶段
例1
一根材料为Q235钢的拉伸试样,其直径d=10mm,工作段 长度l=100mm。当试验机上荷载读数达到F=10kN 时,量 得工作段的伸长为Δ l=0.0607mm ,直径的缩小为 Δd=0.0017mm 。试求此时试样横截面上的正应力σ,并求出 材料的弹性模量E。已知Q235钢的比例极限为σ p =200MPa。

材料力学第二章 轴 向拉压习题及答案

材料力学第二章 轴 向拉压习题及答案

第二章轴向拉压一、选择题1.图1所示拉杆的外表面上有一斜线,当拉杆变形时,斜线将( D)A.平动B.转动C.不动D.平动加转动2.轴向拉伸细长杆件如图2所示,其中1-1面靠近集中力作用的左端面,则正确的说法应是( C)A.1-1、2-2面上应力皆均匀分布B.1-1、2-2面上应力皆非均匀分布C.1-1面上应力非均匀分布,2-2面上应力均匀分布D.1-1面上应力均匀分布,2-2面上应力非均匀分布(图1)(图2)3.有A、B、C三种材料,其拉伸应力—应变实验曲线如图3所示,曲线( B)材料的弹性模量E大,曲线( A )材料的强度高,曲线( C)材料的塑性好。

4.材料经过冷作硬化后,其( D)。

A.弹性模量提高,塑性降低B.弹性模量降低,塑性提高C.比例极限提高,塑性提高D.比例极限提高,塑性降低5.现有钢、铸铁两种杆材,其直径相同。

从承载能力与经济效益两个方面考虑,图4所示结构中两种合理选择方案是( A)。

A.1杆为钢,2杆为铸铁B.1杆为铸铁,2杆为钢C.2杆均为钢D.2杆均为铸铁(图3)(图4)(图5)6.在低碳钢的拉伸试验中,材料的应力变化不大而变形显著增加的是(B)。

A. 弹性阶段;B.屈服阶段;C.强化阶段;D.局部变形阶段。

7.铸铁试件压缩破坏(B)。

A. 断口与轴线垂直;B. 断口为与轴线大致呈450~550倾角的斜面;C. 断口呈螺旋面;D. 以上皆有可能。

8.为使材料有一定的强度储备,安全系数取值应( A )。

A .大于1; B. 等于1; C.小于1; D. 都有可能。

9. 等截面直杆在两个外力的作用下发生轴向压缩变形时,这对外力所具备的特点一定是等值、( C )。

A 反向、共线B 反向,过截面形心C 方向相对,作用线与杆轴线重合D 方向相对,沿同一直线作用10. 图6所示一阶梯形杆件受拉力P的作用,其截面1-1,2-2,3-3上的内力分别为N 1,N 2和N 3,三者的关系为( B )。

材料力学习题及答案

材料力学习题及答案

资料力学-学习指导及习题答案之马矢奏春创作第一章绪论1-1 图示圆截面杆,两端承受一对方向相反、力偶矩矢量沿轴线且大小均为M 的力偶作用。

试问在杆件的任一横截面m-m上存在何种内力分量,并确定其大小。

解:从横截面m-m将杆切开,横截面上存在沿轴线的内力偶矩分量M x,即扭矩,其大小等于M。

1-2 如图所示,在杆件的斜截面m-m上,任一点A处的应力p=120 MPa,其方位角θ=20°,试求该点处的正应力σ与切应力τ。

解:应力p与斜截面m-m的法线的夹角α=10°,故σ=p cosα=120×cos10°=118.2MPaτ=p sinα=120×sin10°=20.8MPa1-3 图示矩形截面杆,横截面上的正应力沿截面高度线性分布,截面顶边各点处的正应力均为σmax=100 MPa,底边各点处的正应力均为零。

试问杆件横截面上存在何种内力分量,并确定其大小。

图中之C点为截面形心。

解:将横截面上的正应力向截面形心C简化,得一合力和一合力偶,其力即为轴力F N=100×106×××103 N =200 kN其力偶即为弯矩M z=200×(50-33.33)×10-3 =3.33 kN·m1-4 板件的变形如图中虚线所示。

试求棱边AB与AD的平均正应变及A点处直角BAD的切应变。

解:第二章轴向拉压应力2-1试计算图示各杆的轴力,并指出其最大值。

解:(a) F N AB=F,F N BC=0,F N,max=F(b) F N AB=F,F N BC=-F,F N,max=F(c) F N AB=-2 kN, F N2BC=1 kN,F N CD=3 kN,F N,max=3 kN(d) F N AB=1 kN,F N BC=-1 kN,F N,max=1 kN2-2 图示阶梯形截面杆AC,承受轴向载荷F1=200 kN与F2=100 kN,AB段的直径d1=40 mm。

2014-2015学年第2学期《材料力学》复习要点_参考填空题

2014-2015学年第2学期《材料力学》复习要点_参考填空题

2014—2015学年第2学期《材料力学》复习要点_参考填空题——仅供参考,有待修改!适用班级:20130300401/2/3/4、20130300501/2/3、20130500901/2/3/4 班第一章绪论1.强度是指构件抵抗破坏的能力,刚度是指构件抵抗变形的能力。

2材料力学的任务,是在保证构件既安全可靠又经济节省的前提下,为构件选择合适的材料,确定合理的的截面形状和尺寸,提供必要的理论基础、实用的计算方法和实验技术。

3.研究构件的承载能力时,构件所产生的变形不能忽略,因此把构件抽象为变形固体。

4.变形固体材料的基本假设是(1)连续性假设,(2)均匀性假设,(3)各向同性假设,(4)小变形假设。

5.杆件的基本变形形式是拉伸或压缩、剪切、扭转、弯曲。

第二章拉伸、压缩与剪切1.轴向拉(压)杆的受力特点是:外力(或合外力)沿杆件的轴向作用,变形特点是:杆件沿轴线方向伸长或缩短,沿横向扩大或缩小。

2.杆件由于外力作用而引起的附加内力简称为杆的内力,轴向拉(压)时杆件的内力称为轴力,用符号F N表示,并规定背离截面的轴力为正,反之为负。

3.求任一截面上的内力应用截面法法,具体步骤是:在欲求内力的杆件上,假想地用一截面把杆件截分为两部分,取其中一部分为研究对象,列静力学的平衡方程,解出该截面内力的大小和方向。

4.由截面法求轴力可以得出简便方法:两外力作用点之间各截面的轴力相等,任意x截面的轴力F N (x)等于x截面左侧(或右侧)全部轴向外力的代数和。

5.应力是内力在截面的单位面积上的力,其单位用N/m2(p a)表示。

由于一般机械类工程构件尺寸较小,应力数值较大,因此应力还常常采用k pa、M pa、Gpa等单位。

通常把垂直于截面的应力称为正应力,用符号δ表示,相切于截面的应力称为切应力,用符号η表示。

6.杆件轴向拉压可以作出平面假设:变形前为平面的横截面,变形后仍为平面且始终与杆的轴线垂直,由此可知,两个横截面之间所有原长相等的纵向线伸长或缩短量是相等的。

《材料力学》第二章

《材料力学》第二章

F
F
F
F
横截面上 正应力分
横截面间 的纤维变
斜截面间 的纤维变
斜截面上 应力均匀
布均匀
形相同
形相同
m
分布
F
m
p
Page24
第二章 轴向拉压应力与材料的力学性能 s t
n
F p
n p
FN FN p s 0 cos A A / cos
s p cos s 0 cos 2 s t p sin 0 sin 2
二、材料拉伸力学性能 低碳钢Q235
s
D E A
o
线弹性 屈服
硬化
缩颈
e
四个阶段:Linear, yielding, hardening, necking
Page32
第二章 轴向拉压应力与材料的力学性能
低碳钢Q235拉伸试验 线性阶段
s
B A
规律:
s Ee (OA段)
变形:变形很小,弹性 特征点:s p 200MPa (比例极限)
应力——应变曲线(低碳钢)
思考:颈缩阶段后,图中应力为什么会下降?
Page37
第二章 轴向拉压应力与材料的力学性能
名义应力与真实应力
真实应力曲线 名义应力曲线 名义应力
FN s A
变形前截面积
颈缩阶段载荷减小,截面积也减小,真实应力继续增加
Page38
第二章 轴向拉压应力与材料的力学性能
低碳钢试件在拉伸过程中的力学现象
材料力学应力分析的基本方法:
•试验观察
•几何方程
e const 变形关系
•提出假设
•物理方程
s Ee

材料力学-第二章

材料力学-第二章

第二单元第二章 杆件的轴向拉压应力与材料的力学性能§2-1 引言工程实例: 连杆、螺栓、桁架、房屋立柱、桥墩……等等。

力学特征: 构件:直杆外力:合力沿杆轴作用(偏离轴线、怎样处理?)内力:在轴向载荷作用下,杆件横截面上的唯一内力分量为轴力N ,它们在该截面的两部分的大小相等、方向相反。

规定拉力为正,压力为负。

变形:轴向伸缩§2-2 拉压杆的应力一、拉压杆横截面上的应力(可演示,杆件受拉,上面所划的横线和纵线仍保持直线,仅距离改变,表明横截面仍保持为平面)平面假设→应变均匀→应力均匀AN=σ或A P =σ(拉为正,压为负)二、Saint-Venant 原理(1797-1886,原理于1855年提出)问题:杆端作用均布力,横截面应力均布。

杆端作用集中力,横截面应力均布吗? 如图, 随距离增大迅速趋于均匀。

局部力系的等效代换只影响局部。

它已由大量试验和计算证实,但一百多年以来,无数数学力学家试图严格证明它,至今仍未成功。

这是固体力学中一颗难以采撷的明珠。

三、拉压杆斜截面上的应力(低碳钢拉伸,沿45°出现滑移线,为什么?)0cos =-P Ap αα ασ=α=αcos cos AP p ασ=α=σαα2cos cos pασ=α=ταα22sin sin p ()0=ασ=σm ax ()452=ασ=τmax方位角α:逆时针方向为正剪应力τ:使研究对象有顺时针转动趋势为正。

例1和例2,看书p17,18§2-3 材料拉伸时的力学性能(构件的强度、刚度和稳定性,不仅与构件的形状、尺寸和所受外力有关,而且与材料的力学性能有关。

拉伸试验是最基本、最常用的试验。

)一、拉伸试验P18: 试样 拉伸图绘图系统放大变形传感器力传感器--→→→→二、低碳钢拉伸时的力学性能材料分类:脆性材料(玻璃、陶瓷和铸铁)、塑性材料(低碳钢:典型塑性材料)四个阶段:线性阶段(应力应变成正比,符合胡克定律,正比阶段的结束点称为比例极限)、屈服阶段(滑移线)(可听见响声,屈服极限s σ)、强化阶段(b σ强度极限)、局部变形(颈缩)阶段(名义应力↓,实际应力↑) 三(四个)特征点:比例极限、(接近弹性极限)、屈服极限、强度极限(超过强度极限、名义应力下降、实际应力仍上升)。

材料力学内部习题集及答案

材料力学内部习题集及答案

第二章 轴向拉伸和压缩2-1一圆截面直杆,其直径d =20mm,长L =40m ,材料的弹性模量E =200GPa ,容重γ=80kN/m 3,杆的上端固定,下端作用有拉力F =4KN ,试求此杆的:⑴最大正应力; ⑵最大线应变; ⑶最大切应力;⑷下端处横截面的位移∆。

解:首先作直杆的轴力图⑴最大的轴向拉力为232N,max 80100.024*********.8N 44d F V F L F ππγγ=+=+=⨯⨯⨯⨯+= 故最大正应力为:N,maxN,maxN,maxmax 222445004.8=15.94MPa 3.140.024F F F Addσππ⨯====⨯⑵最大线应变为:64maxmax915.94100.7971020010E σε-⨯===⨯⨯ ⑶当α(α为杆内斜截面与横截面的夹角)为45︒时,maxmax 7.97MPa 2ασττ===⑷取A 点为x 轴起点,2N (25.124000)N 4d F Vx F x F x πγγ=+=+=+故下端处横截面的位移为:240N 0025.1240001d d (12.564000)2.87mm LL F x x x x x EA EA EA+∆===⋅+=⎰⎰2-2试求垂直悬挂且仅受自重作用的等截面直杆的总伸长△L 。

已知杆横截面面积为A ,长度为L ,材料的容重为γ。

解:距离A 为x 处的轴力为 所以总伸长2N 00()L d d 2LL F x Ax L x x EA EA Eγγ∆===⎰⎰ 2-3图示结构,已知两杆的横截面面积均为A =200mm 2,材料的弹性模量E =200GPa 。

在结点A 处受荷载F 作用,今通过试验测得两杆的纵向线应变分别为ε1=4×10-4,ε2=2×10-4,试确定荷载P 及其方位角θ的大小。

解:由胡克定律得 相应杆上的轴力为取A 节点为研究对象,由力的平衡方程得解上述方程组得2-4图示杆受轴向荷载F 1、F 2作用,且F 1=F 2=F ,已知杆的横截面面积为A ,材料的应力-应变关系为ε=c σn,其中c 、n 为由试验测定的常数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§2.1 轴力与轴力图
工程中有很多构件,例如屋架中的杆,是等直杆,作 用于杆上的外力的合力的作用线与杆的轴线重合,这种载 荷称为轴向载荷。在这种受力情况下,杆的主要变形形式 是轴向伸长或缩短。
屋架结构简图
第二章 轴向载荷作用下杆件的材料力学问题
受轴向外力作用的等截面直杆——拉杆和压杆
桁架的示意图
(未考虑端部连接情况)
以上分析了轴向载荷作用下杆件横截面上的应力, 在计算出拉压杆横截面上的正应力后,可能有以下几方 面的问题:
(1)在给定载荷和材料的情形下,怎样判断结构能否 安全可靠的工作?
(2)如果材料是未知的,在所得到的应力水平下,构 件选用什么材料,才能保证结构可以安全可靠地工作?
(3)如果载荷是未知的,在给定杆件截面尺寸和材料 的情形下,怎样确定结构所能承受的最大载荷?
Ⅱ段柱横截面上的正应力
s2

FN2 A2

150103 N
0.37m0.37m
1.1106 Pa1.1MPa(压应力)
s2 s1
所以,最大工作应力为 smax= s2= -1.1 MPa (压应力)
第二章 轴向载荷作用下杆件的材料力学问题
§2.3 最简单的强度问题
(强度条件·安全因数·许用应力)
第二章 轴向载荷作用下杆件的材料力学问题
F
F
(c)
(f)
பைடு நூலகம்轴力图(FN图)——显示横截面上轴力与横截面位置 的关系。
第二章 轴向载荷作用下杆件的材料力学问题
例题2-1 试作此杆的轴力图。
(a)
等直杆的受力示意图
解:
第二章 轴向载荷作用下杆件的材料力学问题
为求轴力方便,先求出约束力 FR=10 kN
第二章 轴向载荷作用下杆件的材料力学问题
截面法、轴力及轴力图
FN=F
步骤: (1)假想地截开指定截面; (2)用内力代替另一部分对所取分离体的作用力; (3)根据分离体的平衡求出内力值。
第二章 轴向载荷作用下杆件的材料力学问题
横截面m-m上的内力FN其作用线与杆的轴线重合(垂直 于横截面并通过其形心)——轴力。无论取横截面m-m的左
第二章 轴向载荷作用下杆件的材料力学问题
例题2-2 试求此正方 形砖柱由于荷载引起的横 截面上的最大工作应力。 已知F = 50 kN。
第二章 轴向载荷作用下杆件的材料力学问题
解:Ⅰ段柱横截面上的正应力
s1

FN1 A1
50103 N (0.24m)(0.24m)
0.87106 Pa0.87MPa(压应力)
A
第二章 轴向载荷作用下杆件的材料力学问题
注意: 1. 上述正应力计算公式来自于平截面假设;对于某些
特定杆件,例如锲形变截面杆,受拉伸(压缩)时,平截面假 设不成立,故原则上不宜用上式计算其横截面上的正应力。
2. 即使是等直杆,在外力作用点附近,横截面上的应 力情况复杂,实际上也不能应用上述公式。
为方便,取横截面1-1左 边为分离体,假设轴力为 拉力,得
FN1=10 kN(拉力)
第二章 轴向载荷作用下杆件的材料力学问题
FN2=50 kN(拉力) 为方便取截面3-3右边为分 离体,假设轴力为拉力。
FN3=-5 kN (压力),同理,FN4=20 kN (拉力)
第二章 轴向载荷作用下杆件的材料力学问题
轴力图(FN图)显示了各段杆横截面上的轴力。 FNm , a xFN250kN
第二章 轴向载荷作用下杆件的材料力学问题
§2.2 轴向载荷作用下杆件横截面上的应力
Ⅰ.应力的概念 受力杆件(物体)某一截面的M点附近微面积ΔA上分布
内力的平均集度即平均应力, p F ,其方向和大小一般
m A
第二章 轴向载荷作用下杆件的材料力学问题
3. 推论:拉(压)杆受力后任意两个横截面之间纵向线段 的伸长(缩短)变形是均匀的。根据对材料的均匀、连续假设 进一步推知,拉(压)杆横截面上的内力均匀分布,亦即横截
面上各点处的正应力s 都相等。 4. 等截面拉(压)杆横截面上正应力的计算公式 s FN 。
这些问题都是强度设计所涉及的内容。
第二章 轴向拉伸和压缩
Ⅰ. 拉(压)杆的强度条件 强度条件——保证拉(压)杆在使用寿命内不发生强度破
坏的条件:
sm ax[s]
某一截面上切向分 布内力在某一点处 的集度
应力单位:Pa(1 Pa = 1 N/m2,1 MPa = 106 Pa)。
第二章 轴向载荷作用下杆件的材料力学问题
Ⅱ.拉(压)杆横截面上的应力
FN

sdA
A
(1) 与轴力相应的只可能是正应力s,与切应力无关;
(2) s在横截面上的变化规律横截面上各点处s 相等时
可组成通过横截面形心的法向分布内力的合力——轴力FN。
第二章 轴向载荷作用下杆件的材料力学问题
为此: 1. 观察等直杆表面上相邻两条横向线在杆受拉(压)后
的相对位移:两横向线仍为直线,仍相互平行,且仍垂直 于杆的轴线。
2. 设想横向线为杆的横截面与杆的表面的交线。平 截面假设——原为平面的横截面在杆变形后仍为平面,对 于拉(压)杆且仍相互平行,仍垂直于轴线。
边或右边为分离体均可。 轴力的正负按所对应的纵向变形为伸长或缩短规定: 当轴力背离截面产生伸长变形为正;反之,当轴力指向
截面产生缩短变形为负。
轴力背离截面FN=+F
第二章 轴向载荷作用下杆件的材料力学问题
轴力指向截面FN=-F
用截面法求内力的过程中,在截取分离体前,作用于 物体上的外力(荷载)不能任意移动或用静力等效的相当力 系替代。
而言,随所取ΔA的大小而不同。
第二章 轴向载荷作用下杆件的材料力学问题
该截面上M点处分布内力的集度为 plAim 0 FAddFA,其
方向一般既不与截面垂直,也不与截面相切,称为总应力。
第二章 轴向载荷作用下杆件的材料力学问题
总应力
法向分量 正应力s 切向分量 切应力t
某一截面上法向分 布内力在某一点处 的集度
第二章 轴向载荷作用下杆件的材料力学问题
§2.1 轴力和轴力图 §2.2 轴向载荷作用下杆件横 截面上的应力 §2.3 简单的强度问题
§2.4 轴向载荷作用下的变形计算 §2.5 两种典型材料拉伸时的力学性能 §2.6 两种典型材料压缩时的力学性能 §2.7 结论与讨论
第二章 轴向载荷作用下杆件的材料力学问题
相关文档
最新文档