材料力学第二章习题课
材料力学第二章习题

材料力学第二章习题2-1试绘出下列各杆的轴力图。
2-3求下列结构中指定杆的应力。
已知(b)图中杆的横截面面积A1=850 mm2,A2=600 mm2,A3=500 mm2。
2-4 求下列各杆的最大正应力。
(1)图(a)为开槽拉杆,两端受力F=10 kN,b=4mm,h=20mm,h0=10mm;2-6图示短柱,上段为钢制,截面尺寸为100×100mm2,钢的弹性模量E s=200GPa,下段为铝制,截面尺寸为200×200mm2,E a=70GPa。
当柱顶受F力作用时,柱子总长度减少了0.4mm,试求F值(注:不计杆的自重)。
2-11图示结构中,AB为刚性杆,AD为钢杆,面积A1=500mm2,弹性模量E1=200GPa;CG为铜杆,面积A2=1500mm2,弹性模量E2=100GPa;BE为木杆,面积A3=3000mm2,弹性模量E3=10GPa。
当G点受力F=60kN作用时,求该点的竖直位移ΔG。
2-13图示结构,CD 杆为刚性杆,C 端铰接于墙壁上,AB 杆为钢杆,直径d =30mm ,容许应力[]170MPa σ=,弹性模量52.010MPa E =⨯。
试求结构的容许荷载F 。
2-14图示正方形砖柱,顶端受集中力16kN F =作用,柱边长为0.4m ,砌筑在高为0.4m 的正方形块石底脚上。
已知砖的容重3116kN m g ρ=,块石容重3220kN m g ρ=。
地基容许应力[]0.08MPa σ=。
试设计正方形块石底脚的边长a 。
Fa 3m0.4m2-17图示AB 杆为刚性杆,长为3a 。
A 端铰接于墙壁上,在C 、B 两处分别用同材料、同面积的1、2两杆拉住。
在D 点受力F 作用,求1、2两杆的应力。
设弹性模量为E ,横截面面积为A 。
BF C D 12a a a aaA。
(优)优选材料力学第二章课后习题参考答案pptppt文档

变形几何方程
变形几何方程
d
பைடு நூலகம்
2F
32.6mm
切应力
拉伸强度与剪切强度
其它: 1.书写要规范, 2.答案不能用分数、根号, 3.中间步骤过多或过少; 4.作业本不要一分为二,图要在同一侧。
谢谢观看
2-2面的面积计算
①最大切应力;②单位;③公式又推导一遍。
圆整b=120mm,h=165mm
①思路; ②表达; ③计算结果保留数字。
①单位;②轴力图。
(3)理由阐述不准确
考虑自重时没考虑
用卡氏定理
①受力图; ②力的方向与变形假设 不一致; ③步骤思路表现不清。
②力的方向与变形假设不一致; 圆整b=120mm,h=165mm 答答圆圆②圆 答圆答答圆圆答 答答答②②圆圆圆圆答答答圆②案案整整力整案整案案整整案案案案力力整整整整案案案整力不 不 bb的 b不 b不 不 bb不不 不 不 的 的 bbbb不 不 不 b的===========能能方能能能能 能能能方方能能能方1111111111122222222222用用向用用用用 用用用向向用用用向00000000000mmmmmmmmmmm分分与分分分分 分分分与与分分分与mmmmmmmmmmm数数变数数数数 数数数变变数数数变,,,,,,,,,,,hhhhhhhhhhh、、形、、、、 、、、形形、、、形===========11111111111根根假根根根根 根根根假假根根根假66666666666号号设号号号号 号号号设设号号号设55555555555mmmmmmmmmmm,,不,,,,,,,不不,,,不mmmmmmmmmmm一一一一致致致致;;;; ②力的方向与变形假设不一致; 圆整b=120mm,h=165mm
材料力学第2版 课后习题答案 第2章 轴向拉压与伸缩

习题2-1一木柱受力如图示,柱的横截面为边长20cm 的正方形,材料服从虎克定律,其弹性模量MPa .如不计柱自重,试求:51010.0×=E (1)作轴力图;(2)各段柱横截面上的应力;(3)各段柱的纵向线应变;(4)柱的总变形.解:(1)轴力图(2)AC 段应力a a ΜΡΡσ5.2105.22.010100623−=×−=×−=CB 段应力aa ΜΡΡσ5.6105.62.010260623−=×−=×−=(3)AC 段线应变45105.2101.05.2−×−=×−==ΕσεN-图CB 段线应变45105.6101.05.6−×−=×−==Εσε(4)总变形m 3441035.15.1105.65.1105.2−−−×=××−××−=ΑΒ∆2-2图(a)所示铆接件,板件的受力情况如图(b)所示.已知:P =7kN ,t =0.15cm ,b 1=0.4cm ,b 2=0.5cm ,b 3=0.6cml 。
试绘板件的轴力图,并计算板内的最大拉应力。
解:(2)aΜΡσ4.194101024.015.0767311=×××××=−a ΜΡσ1.311101025.015.0767322=×××××=−a ΜΡσ9.388101026.015.07673=××××=−最大拉应力aΜΡσσ9.3883max ==2-3直径为1cm 的圆杆,在拉力P =10kN 的作用下,试求杆内最大剪应力,以及与横截面夹角为=30o 的斜截面上的正应力与剪应力。
α解:(1)最大剪应力a d ΜΡππΡστ66.6310101102212672241max =××××===−(2)界面上的应力°=30α()a ΜΡασσα49.952366.632cos 12=×=+=a ΜΡαστα13.5530sin 66.632sin 2=×=×=°2-4图示结构中ABC 与CD 均为刚性梁,C 与D 均为铰接,铅垂力P =20kN 作用在C 铰,若(1)杆的直径d 1=1cm ,(2)杆的直径d 2=2cm ,两杆的材料相同,E =200Gpa ,其他尺寸如图示,试求(1)两杆的应力;(2)C 点的位移。
材料力学第五版第二章习题答案

F F
m m
m m
F
(b)
FN
x m m
FN F
F
(c)
FN
(a)
F
m
m
F
(b)
F
FN
m
FN
x m m
m
FN F
F
(c)
若用平行于杆轴线的坐标表示横截面的位置,用 垂直于杆轴线的坐标表示横截面上轴力的数值, 所绘出的图线可以表明轴力与截面位置的关系, 称为轴力图。
F F F
讨论: ( 1) 0
90 (2) 45 45
0
max 0 (横截面) 0 (纵截面) max 0 / 2 min 0 / 2
0 0
(横截面) (纵截面)
90
观察现象:
等直杆相邻两条横向线在杆受拉(压)后仍 为直线,仍相互平行,且仍垂直于杆的轴线。 F
a a' b' b c c' d' d
F
平面假设
原为平面的横截面在杆变形后仍为平面, 对于拉(压)杆且仍相互平行,仍垂直于轴线。
推论:
1、等直拉(压)杆受力时没有发生剪切变形, 因而横截面上没有切应力。 2、拉(压)杆受力后任意两个横截面之间纵向线 段的伸长(缩短)变形是均匀的。 亦即横截面上各点处的正应力 都相等。
FN,max FN2 50kN
补充 例题1
l
F
F
q=F/l
F 2l l 3 F
解: 1、求支反力
1 FR 1 F F F 2 F'=2ql F 3 F 2 q
FR
第2章—力系的简化—工程力学(静力学和材料力学)课后习题答案

工程力学(静力学与材料力学)习题详细解答(第2章)习题2-2图第2章 力系的简化2-1 由作用线处于同一平面内的两个力F 和2F 所组成平行力系如图所示。
二力作用线之间的距离为d 。
试问:这一力系向哪一点简化,所得结果只有合力,而没有合力偶;确定这一合力的大小和方向;说明这一合力矢量属于哪一类矢量。
解:由习题2-1解图,假设力系向C 点简化所得结果只有合力,而没有合力偶,于是,有∑=0)(F C M ,02)(=⋅++−x F x d F ,dx =∴,F F F F =−=∴2R ,方向如图示。
合力矢量属于滑动矢量。
2-2 已知一平面力系对A (3,0),B (0,4)和C (-4.5,2)三点的主矩分别为:M A 、M B 和M C 。
若已知:M A =20 kN·m 、M B =0和M C =-10kN·m ,求:这一力系最后简化所得合力的大小、方向和作用线。
解:由已知M B = 0知合力F R 过B 点;由M A = 20kN ·m ,M C = -10kN ·m 知F R 位于A 、C 间,且CD AG 2=(习题2-2解图)在图中设OF = d ,则θcot 4=dCD AG d 2)sin 3(==+θ (1) θθsin )25.4(sin d CE CD −== (2)即θθsin )25.4(2sin )3(dd −=+ d d −=+93 3=d习题2-1图习题2-1解图R∴ F 点的坐标为(-3, 0)合力方向如图所示,作用线过B 、F 点; 34tan =θ 8.4546sin 6=×==θAG 8.4R R ×=×=F AG F M A kN 6258.420R ==F 即 )kN 310,25(R=F 作用线方程:434+=x y 讨论:本题由于已知数值的特殊性,实际G 点与E 点重合。
2-3三个小拖船拖着一条大船,如图所示。
材料力学第五版课后习题答案详解

Microsoft Corporation材料力学课后答案[键入文档副标题]lenovo[选取日期]第二章轴向拉伸和压缩2-12-22-32-42-52-62-72-82-9下页2-1试求图示各杆1-1和2-2横截面上的轴力,并作轴力图。
(a)解:;;(b)解:;;(c)解:;。
(d)解:。
返回2-2 试求图示等直杆横截面1-1,2-2和3-3上的轴力,并作轴力图。
若横截面面积,试求各横截面上的应力。
解:返回2-3试求图示阶梯状直杆横截面1-1,2-2和3-3上的轴力,并作轴力图。
若横截面面积,,,并求各横截面上的应力。
解:返回2-4 图示一混合屋架结构的计算简图。
屋架的上弦用钢筋混凝土制成。
下面的拉杆和中间竖向撑杆用角钢构成,其截面均为两个75mm×8mm的等边角钢。
已知屋面承受集度为的竖直均布荷载。
试求拉杆AE和EG横截面上的应力。
解:=1)求内力取I-I分离体得(拉)取节点E为分离体,故(拉)2)求应力75×8等边角钢的面积A=11.5 cm2(拉)(拉)2-5(2-6)图示拉杆承受轴向拉力,杆的横截面面积。
如以表示斜截面与横截面的夹角,试求当,30,45,60,90时各斜截面上的正应力和切应力,并用图表示其方向。
解:2-6(2-8) 一木桩柱受力如图所示。
柱的横截面为边长200mm的正方形,材料可认为符合胡克定律,其弹性模量E=10 GPa。
如不计柱的自重,试求:(1)作轴力图;(2)各段柱横截面上的应力;(3)各段柱的纵向线应变;(4)柱的总变形。
解:(压)(压)。
《材料力学》课后习题答案(详细)

第二章轴向拉(压)变形[习题2-1]试求图示各杆1-1和2-2横截面上的轴力,并作轴力图。
(a)解:(1)求指定截面上的轴力FN =-11FF F N -=+-=-222(2)作轴力图轴力图如图所示。
(b)解:(1)求指定截面上的轴力FN 211=-02222=+-=-F F N (2)作轴力图FF F F N =+-=-2233轴力图如图所示。
(c)解:(1)求指定截面上的轴力FN 211=-FF F N =+-=-222(2)作轴力图FF F F N 32233=+-=-轴力图如图所示。
(d)解:(1)求指定截面上的轴力FN =-11F F a aFF F qa F N 22222-=+⋅--=+--=-(2)作轴力图中间段的轴力方程为:x aF F x N ⋅-=)(]0,(a x ∈轴力图如图所示。
[习题2-2]试求图示等直杆横截面1-1、2-2和平3-3上的轴力,并作轴力图。
若横截面面积2400mm A =,试求各横截面上的应力。
解:(1)求指定截面上的轴力kNN 2011-=-)(10201022kN N -=-=-)(1020102033kN N =-+=-(2)作轴力图轴力图如图所示。
(3)计算各截面上的应力MPa mm N A N 504001020231111-=⨯-==--σMPamm N A N 254001010232222-=⨯-==--σMPa mmN A N 254001010233333=⨯==--σ[习题2-3]试求图示阶梯状直杆横截面1-1、2-2和平3-3上的轴力,并作轴力图。
若横截面面积21200mm A =,22300mm A =,23400mm A =,并求各横截面上的应力。
解:(1)求指定截面上的轴力kNN 2011-=-)(10201022kN N -=-=-)(1020102033kN N =-+=-(2)作轴力图轴力图如图所示。
(3)计算各截面上的应力MPa mm N A N 10020010202311111-=⨯-==--σMPa mmN A N 3.3330010102322222-=⨯-==--σMPamm N A N 254001010233333=⨯==--σ[习题2-4]图示一混合屋架结构的计算简图。
材料力学第二章轴向拉伸与压缩习题答案

解:为一次超静定问题。
静力平衡条件:
: ①
变形协调方程:
即:
即: ②
由①②解得:
由于内压的作用,油缸盖与缸体将有分开的趋势,依靠六个螺栓将它们固定在一起。
油缸盖受到的压力为
由于6个螺栓均匀分布,每个螺栓承受的轴向力为
由螺栓的强度条件
≤
可得螺栓的直径应为
≥
3-3图示铰接结构由杆AB和AC组成,杆AC的长度为杆AB长度的两倍,横截面面积均为 。两杆的材料相同,许用应力 。试求结构的许用载荷 。
第二章
2-1试求图示直杆横截面1-1、2-2、3-3上的轴力,并画出轴力图。
2-2图示中部对称开槽直杆,试求横截面1-1和2-2上的正应力。
解:
1.轴力
由截面法可求得,杆各横截面上的轴力为
2.应力
MPa MPa
MPa MPa
2-3图示桅杆起重机,起重杆AB的横截面是外径为 、内径为 的圆环,钢丝绳BC的横截面面积为 。试求起重杆AB和钢丝绳BC横截面上的应力。
解:
由几何关系,有
取AC杆为研究对象
:
由此可知:当 时,
由 ≤
可得
≥
3-9图示联接销钉。已知 ,销钉的直径 ,材料的许用切应力 。试校核销钉的剪切强度,若强度不够,应改用多大直径的销钉。
解:
1.校核销钉的剪切强度
MPa MPa
∴销钉的剪切强度不够。
2.设计销钉的直径
由剪切强度条件 ≤ ,可得
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C
A 0.4m
钢拉杆 8.5m
解:① 整体平衡求支反力
B 0.4m
② 局部平衡求轴力
q=4.2kN/m C
③ 由强度条件求直径
A 0.4m
4.25m
为了经济起见,选用钢拉杆的直径为14mm。其值略小于计算 结果,但是其工作正应力超过许用应力不到5%。
例如图所示的简易起重设备,AB杆用两根70mm×70mm×4mm 等边角钢组成,BC杆用两根10号槽钢焊成一整体。材料均为 Q235钢, [σ]=170MPa。试求设备所许用的起重量W。
材料力学第二章习题课
Ⅱ拉(压)杆的强度计算/三 拉压杆的强度条件/例题
图示石柱桥墩,压力F=1000kN,石料重度ρg=25kN/m3,许用
应力[σ]=1MPa。试比较下列三种情况下所需石料面积(1)等截 面石柱;(2)三段等长度的阶梯石柱;(3)等强度石柱(柱的 每个截面的应力都等于许用应力[σ])
Ⅱ拉(压)杆的强度计算/三 拉压杆的强度条件/例题
图示三角形托架,AC为刚性杆,BD为斜撑杆,荷载F可沿水平梁移 动。为使斜撑杆重量为最轻,问斜撑杆与梁之间夹角应取何值? 不考虑BD杆的稳定。 设F的作用线到A点的距离为x 取ABC杆为研究对象
BD杆: x
FNBD
例阶梯形杆如图所示。AB、BC和CD段的横截面面积分别为 A1=1500mm2、 A2=625mm2、 A3=900mm2。杆的材料为Q235 钢,[σ]=170MPa。试校核该杆的强度。
1.2m ①
②
由拉(压)杆的强度条件计算各杆的许用轴力
例如图所示的简易起重设备,AB杆用两根70mm×70mm×4mm 等边角钢组成,BC杆用两根10号槽钢焊成一整体。材料均为 Q235钢, [σ]=170MPa。试求设备所许用的起重量W。
(3) 求许用荷载W
1.2m ①
② 由AB杆强度条件计算许用荷载:
由BC杆强度条件计算许用荷载:
所以结构的许用起重量是
课堂练习 1. 已知:q=40kN/m, [s]=160MPa
试选择等边角钢的型号。 解: (1)计算拉杆的轴力
(2)选择等边角钢型号
查型钢表
=3.54cm2
取A=3.791cm2,即等边角钢型号为40mm×5mm 也可以取A=3.486cm2,即等边角钢型号为45mm×4mm 如果取面积比计算的面积小,则必须满足5%的要求。
解(:1)绘出立柱的轴力图 (压力)
(2)求立柱的横截面面积 由立柱的强度条件
得 :
例:高为l的等直混凝土柱如图所示,材料的密度为ρ,弹性模量为 E,许用压应力为[σ],在顶端受一集中力F。在考虑自重的情况 下,试求该立柱所需的横截面面积和顶端B截面的位移。
解:(3)求B截面的位移 (压)
所以:
解:(1)作轴力图
(2)校核强度
由轴力图和各段杆的横 截面面积可知,危险截 面可能在BC段或CD段 。 BC段:
①
②
③
(压应力)
CD段:
(拉应力)
①
②
③
结果表明,杆的最大正应力发生在CD段
相对误差: 故该杆满足强度条件。
例已知三铰屋架如图,承受竖向均布载荷,载荷的分布集度为: q =4.2kN/m,屋架中的钢拉杆材料为Q235钢,[σ]=170MPa,试 选择钢拉杆的直径。(不计钢拉杆的自重)
2. 图示杆系中BC、AC杆的直径分别为
B
d1=12mm,d2=18mm,两杆材料均为Q235钢 ,许用应力[s] = 170MPa,试按强度条件确定
1
容许F值。 解: 取C节点为研究对象
C
2
F
A
C F
例2-13:一高为l的等直混凝土柱如图所示,材料的密度为ρ,弹性 模量为E,许用压应力为[σ],在顶端受一集中力F。在考虑自重 的情况下,试求该立柱所需的横截面面积和顶端B截面的位移。
F
F
F
15m 5m 5m 5m
Ⅱ拉(压)杆的强度计算/三 拉压杆的强度条件/例题
采用等截面石柱
F
15m
Ⅱ拉(压)杆的强度计算/三 拉压杆的强度条件/例题
F
采用三段等长度阶梯石柱
5m 5m 5m
Ⅱ拉(压)杆的强度计算/三 拉压杆的强度条件/例题
采用等强度石柱
F
A0:桥墩顶端截面的面积
这种设计使得各截面的正应 力均达到许用应力,使材料 得到充分利用。
1.2m ①
② 解得
=
:
W
解:(1) 分别取滑轮和B结点为研究对象,求出两杆的轴力 。
例如图所示的简易起重设备,AB杆用两根70mm×70mm×4mm 等边角钢组成,BC杆用两根10号槽钢焊成一整体。材料均为 Q235钢, [σ]=170MPa。试求设备所许C杆的横截面 面积分别为: