隧道监测设计

合集下载

隧道运营期监测方案

隧道运营期监测方案

隧道运营期监测方案一、隧道结构监测1. 监测内容隧道结构监测主要包括隧道内部和外部结构的监测。

内部结构监测包括隧道衬砌、支撑系统、排水系统等的监测,外部结构监测包括隧道的地表沉降、裂缝、地表水位变化等的监测。

2. 监测方法隧道结构监测可以采用人工检查和自动监测相结合的方式进行。

人工检查主要包括隧道内部巡查和外部观察,自动监测主要包括安装传感器、监测仪器、摄像头等进行实时监测。

3. 监测频率隧道结构监测的频率一般每周进行一次人工检查,并且安排专业人员定期对监测数据进行分析和评估,确保隧道结构的安全运营。

4. 责任单位隧道结构监测的责任单位一般由隧道管理方负责,可以委托专业机构进行监测和评估。

二、隧道设备监测1. 监测内容隧道设备监测主要包括通风系统、照明系统、安全设施、消防设备等的监测。

2. 监测方法隧道设备监测可以采用远程监控系统和定期检查相结合的方式进行,远程监控系统可以对设备运行状态进行实时监测,定期检查可以检查设备运行情况和进行维修保养。

3. 监测频率隧道设备监测的频率一般每天进行一次远程监控,每月进行一次定期检查,确保设备的安全运行。

4. 责任单位隧道设备监测的责任单位一般由隧道管理方负责,可以委托专业机构进行设备维护和保养。

三、隧道环境监测1. 监测内容隧道环境监测主要包括空气质量、噪音、震动、火灾等的监测。

2. 监测方法隧道环境监测可以采用安装监测仪器、传感器等设备进行实时监测,对监测数据进行分析和评估,确保隧道环境的安全。

3. 监测频率隧道环境监测的频率一般每天进行一次实时监测,对异常情况及时报警并处理。

4. 责任单位隧道环境监测的责任单位一般由隧道管理方负责,可以委托专业机构进行环境监测和评估。

综上所述,隧道运营期监测方案是保障隧道安全运行的重要保障,隧道管理方应根据隧道的特点和实际情况制定相应的监测方案,并严格按照方案要求进行监测和评估,确保隧道的安全运营。

同时,隧道监测工作需要有专业的监测人员和设备,隧道管理方应加强人员培训和设备更新,确保监测工作的科学性和有效性。

隧道监测方案

隧道监测方案

隧道监测方案隧道监测方案隧道是一种地下建筑工程,由于其特殊的地理环境和使用条件,隧道的安全监测尤为重要。

隧道监测方案是为了及时掌握隧道工程的变形、变化及其他相关信息,以确保隧道的安全使用和正常运营。

下面是一个隧道监测方案的示例,旨在为隧道监测工作提供一些建议和指导。

一、监测目标和内容1. 监测目标:隧道结构的变形及其他相关信息。

2. 监测内容:地表下沉量、隧道内部位移、支撑结构变形、地下水位变化等。

二、监测设备和技术1. 监测设备:选择高精度的监测仪器,包括全站仪、位移传感器、倾斜仪、应变计等。

2. 监测技术:采用远程监测技术,将监测数据实时传输到监测中心,以便实时分析和处理。

三、监测点的选择和布置1. 监测点的选择:根据隧道结构的特点和变形的可能性,选择合适的监测点。

2. 监测点的布置:监测点应均匀分布在隧道结构上,包括入口、出口、墙板、顶板、地基等位置。

四、监测频率和周期1. 监测频率:根据具体情况确定监测频率,一般为每天、每周或每月进行一次。

2. 监测周期:监测周期一般为整个工程周期,从隧道开工到竣工。

五、数据处理和分析1. 数据处理:采集到的监测数据应进行整理和归档,并进行数据质量检查,确保数据的准确性和可靠性。

2. 数据分析:对监测数据进行分析和解读,判断隧道工程的变形和变化情况,提出相应的安全措施和建议。

六、应急响应和措施1. 应急响应:制定隧道监测的应急预案,一旦发生异常情况,能够及时响应和处理。

2. 安全措施:根据监测数据和分析结果,采取相应的安全措施,包括加固支撑结构、降低地下水位、减少车辆通行等。

隧道监测方案是隧道工程中不可或缺的一部分,它能够帮助工程师对隧道的运行状况进行实时监测和及时处理。

在隧道监测方案中,选择合适的监测设备和技术、布置合理的监测点、确定适当的监测频率和周期,以及进行数据处理和分析,都是保障隧道安全和正常运营的重要环节。

此外,制定应急响应和安全措施,能够在发生异常情况时及时采取措施,保护人员和设备的安全。

隧洞工程安全监测方案

隧洞工程安全监测方案

隧洞工程安全监测方案一、前言隧洞工程建设是一个复杂的工程项目,其施工和运营都需要严格的安全监测。

隧洞工程的安全监测是为了保障隧道及其周边的安全,防止发生地质灾害和工程事故,保证周围环境和人民的安全。

本方案将详细介绍隧洞工程安全监测的内容、管理机构及职责、监测方法和技术手段,以及监测结果的应用。

二、监测内容1. 地质环境监测隧洞工程的建设需要充分了解周围地质环境的情况,包括地层结构、岩土性质、地下水情况等。

对于已经建成的隧道,需要定期监测地下水位、地表的沉降情况,以及地质变化趋势,防止地质灾害的发生。

2. 结构安全监测隧洞工程的结构安全监测是为了检测隧道结构的变形、裂缝、渗水等情况,防止发生结构破坏或崩塌。

需要监测隧道内壁的裂缝状况,以及隧道地表的沉降情况,及时发现问题并采取相应的维护措施。

3. 设备运行监测隧道内部的设备运行情况也需要进行监测,包括通风系统、照明系统、沥青路面、排水系统等,保证设备的正常运转,确保隧道的安全通行。

4. 安全生产监测隧洞工程施工和运营过程中,需要进行安全生产监测,包括工人的行为安全监测、施工作业安全监测、设备安全监测等,以避免发生工程事故。

三、管理机构及职责1. 监测方案编制单位由专业的工程监测公司进行隧洞工程的安全监测方案编制,包括监测内容、频次、监测点的选取,及监测数据的分析及应用。

2. 监测单位负责隧洞工程的实际监测工作,包括安装监测仪器设备、实时监测数据的采集及处理,以及对监测结果的分析和报告。

3. 监理单位监测单位的监测结果需要由监理单位进行审查和确认,监督监测单位按照监测方案执行,确保监测数据的准确性和可靠性。

4. 建设单位负责隧洞工程安全监测的技术保障和资金支持,对监测结果给予有效的响应和采取相应的改善措施。

四、监测方法和技术手段1. 地质环境监测地质环境监测可以采用地质勘探、地下水位监测、地质雷达探测等技术手段,了解隧道周围地质环境的情况。

监测点需要选择在隧道周围地下水、地表地质、岩土等方面状况较为典型的地点,以获取准确的监测数据。

隧道工程监测方案

隧道工程监测方案

隧道工程监测方案一、前言隧道工程是一项复杂的工程,涉及到许多因素,如地质条件、水文条件、施工工艺等。

为了确保隧道工程的安全和质量,监测是必不可少的一项工作。

通过监测,可以及时发现隧道工程中存在的问题,及时采取措施进行修复,避免事故的发生,确保隧道工程的顺利进行。

二、隧道工程监测的目的1.保隧道工程的安全通过监测,可以及时发现隧道工程中存在的问题,如地质变化、水文情况变化等,及时采取措施进行修复,避免隧道工程发生事故,确保工程安全。

2.保隧道工程的质量通过监测,可以对隧道工程的施工过程进行监控,及时发现施工质量不达标的情况,及时进行整改,保隧道工程的质量。

三、隧道工程监测方案1.监测内容隧道工程监测内容应包括地质条件监测、水文条件监测、结构变形监测、环境监测等。

地质条件监测:包括地质勘察、地质雷达探测、地下水位监测等。

水文条件监测:包括地下水位监测、地下水压力监测、隧道渗水监测等。

结构变形监测:包括隧道内部变形监测、隧道支护结构变形监测等。

环境监测:包括隧道周边环境监测、隧道施工对周边环境的影响监测等。

2.监测方法地质条件监测:可采用地质雷达、地下水位监测仪等设备,对隧道的地质情况进行监测。

水文条件监测:可采用压力传感器、测井仪等设备,对隧道的水文情况进行监测。

结构变形监测:可采用位移传感器、应变计等设备,对隧道的结构变形情况进行监测。

环境监测:可采用环境监测站、气象站等设备,对隧道周边的环境情况进行监测。

3.监测频率地质条件监测和水文条件监测应每日进行,结构变形监测应每周进行,环境监测应每月进行。

4.报告和处理监测数据应及时整理成报告,并交由工程负责人进行审阅。

如发现问题,应及时采取措施进行处理,并将处理结果整理成报告。

四、结语隧道工程的监测是对工程安全和质量的保障,是一项重要的工作。

通过科学合理的监测方案,可以及时发现工程中存在的问题,并及时进行处理,从而确保隧道工程的安全和质量。

希望每一位工程从业者都能够重视隧道工程的监测工作,做好监测工作,确保工程的安全和质量。

公路隧道环境监测及控制系统设计

公路隧道环境监测及控制系统设计

公路隧道环境监测及控制系统设计一、绪论随着交通运输的发展,公路隧道的建设越来越普遍。

公路隧道作为重要的交通基础设施,为人们的出行提供了便利,同时也对环境和安全提出了更高的要求。

为了保障公路隧道的安全和环境保护,需要建立一套完善的环境监测及控制系统,对隧道内外的环境参数进行实时监测和控制,以便及时发现问题并采取措施进行处理。

二、隧道环境影响因素1. 大气环境:包括温度、湿度、气压、风速、风向等参数,这些参数对于隧道内的通风和空气质量有着重要的影响。

2. 照明环境:隧道内部的照明设施对于车辆和行人的安全具有重要意义,需要对照明设施的亮度、亮度均匀度等参数进行监测和控制。

3. 噪声环境:隧道内部的噪声对于周围居民和隧道使用者的健康和生活质量有着重要的影响,需要对噪声进行实时监测和控制。

4. 空气质量:包括一氧化碳、氮氧化物、颗粒物等污染物的浓度,这些参数对于隧道内的空气质量和使用者的健康有着直接的影响。

三、系统设计要求1. 实时监测:系统需要对隧道内外的环境参数进行实时监测,并能够实现数据的实时显示和存储。

2. 远程监测:系统需要支持远程监测功能,可以通过网络平台实现对环境参数的监测和控制。

3. 报警功能:系统需要设置相应的报警阈值,并能够在参数超出阈值时实现报警功能,以便及时采取措施进行处理。

4. 自动控制:系统需要实现对隧道内部设施的自动控制,包括照明设施、通风设施等,以便根据环境参数的变化进行自动调整。

5. 数据存储和分析:系统需要对监测到的数据进行存储和分析,以便后期对环境参数的变化进行分析和研究。

四、系统设计方案1. 硬件设备:系统的硬件设备包括传感器、监测仪器、控制器等,传感器用于采集环境参数,监测仪器用于对参数进行处理和显示,控制器用于对设施进行控制。

2. 软件系统:系统的软件系统包括数据采集软件、数据处理软件、远程监控软件等,数据采集软件用于对传感器采集到的数据进行采集和处理,数据处理软件用于对数据进行分析和存储,远程监控软件用于实现对环境参数的远程监控和控制。

隧道保护监测方案

隧道保护监测方案

隧道保护监测方案1. 引言隧道作为现代城市交通建设的重要组成部分,承担着大量的交通运输任务。

为了确保隧道的安全运营,需要对隧道进行全面的监测与保护。

本文将提出一种隧道保护监测方案,以确保隧道的安全性和稳定性。

2. 隧道监测要求隧道监测的主要目标是实时监测隧道内部和周围的各种指标,并及时发现异常情况,从而采取相应的保护措施。

具体的隧道监测要求包括:•隧道结构安全监测:监测隧道结构的位移、裂缝变形情况,评估结构的稳定性和安全性。

•隧道环境监测:监测隧道内部的温度、湿度、气体浓度等环境参数,以确保隧道环境的舒适性和安全性。

•隧道灯光监测:监测隧道照明系统的工作状态,及时发现故障并进行维护。

3. 隧道监测方案3.1 结构安全监测方案3.1.1 位移监测采用激光测距仪和倾斜传感器对隧道结构的位移进行实时监测。

激光测距仪可以在测距范围内实时测量隧道结构的位移,倾斜传感器可以检测隧道的水平和垂直倾斜情况。

监测数据通过无线传输技术传送给监测中心,实现对隧道结构位移的实时监测和数据分析。

3.1.2 裂缝监测使用光纤传感技术对隧道结构的裂缝进行实时监测。

光纤传感器可以精确测量裂缝的长度和变形情况,并通过数据传输系统将监测数据传送给监测中心。

监测中心利用数据分析算法进行裂缝的评估与预警,以确保隧道结构的安全性。

3.2 环境监测方案3.2.1 温度监测使用温度传感器对隧道内部的温度进行实时监测。

温度传感器分布在隧道内各个位置,并通过数据采集系统将温度数据传送给监测中心。

监测中心对温度数据进行实时分析,可及时采取措施调节隧道内部温度,以确保乘客的舒适性和隧道的安全性。

3.2.2 湿度监测采用湿度传感器对隧道内部湿度进行实时监测。

湿度传感器分布在隧道内部,通过数据采集系统将湿度数据传送给监测中心。

监测中心分析湿度数据,及时采取排湿措施,防止隧道内部潮湿引发结构腐蚀和设备故障。

3.2.3 气体浓度监测使用气体传感器对隧道内部的气体浓度进行实时监测。

隧道施工监测方案

隧道施工监测方案

隧道施工监测方案1. 引言隧道施工工程是在地下进行的一项复杂工程,需要严格的监测和控制,以确保施工过程的安全性和质量。

隧道施工监测方案是指通过监测技术和方法,对隧道施工过程中的各项参数进行实时监测和分析,以及及时预警和采取措施来保证工程的安全和稳定。

本文将介绍隧道施工监测方案的整体框架和具体的监测内容,以及监测方法和技术的选择。

希望通过本文能够为隧道施工监测人员提供参考和指导,以确保隧道施工工程的顺利进行。

2. 监测内容隧道施工过程中需要监测的主要内容包括:2.1 地质环境监测地质环境监测是指对施工区域的地质情况进行监测和分析,以确定岩土层的性质和稳定性。

其中包括:•岩土层的物理力学性质的测定和分析。

•岩土层的水文地质特征的测定和分析。

•岩土层的地应力场和地应力的演化规律的监测和分析。

2.2 地下水监测地下水监测是指对隧道附近地下水位、水温、水位变化等参数进行实时监测和分析。

主要包括:•地下水位的监测和测量。

•地下水温的监测和测量。

•地下水位变化的监测和分析。

2.3 隧道变形监测隧道变形监测是指对隧道的水平变形、垂直变形以及沉降等参数进行实时监测和分析。

包括:•隧道水平变形的监测和测量。

•隧道垂直变形的监测和测量。

•隧道沉降的监测和分析。

2.4 隧道内环境监测隧道内环境监测是指对隧道内部的温度、湿度、气体浓度等参数进行实时监测和分析。

主要包括:•隧道内部的温度监测和测量。

•隧道内部的湿度监测和测量。

•隧道内部的气体浓度监测和测量。

3. 监测方法和技术选择针对不同的监测内容,我们可以选择不同的监测方法和技术来进行监测。

3.1 地质环境监测方法和技术选择对于地质环境监测,我们可以使用以下方法和技术:•岩土层物理力学性质的测定和分析可以使用岩石力学试验等方法进行。

•岩土层水文地质特征的测定和分析可以使用孔隙水压试验和渗透试验等方法进行。

•岩土层地应力场和地应力的演化规律的监测和分析可以使用应力监测孔和应力较量法等方法进行。

隧道监测方案

隧道监测方案

隧道监测方案1. 引言隧道作为重要的交通设施,对于现代城市交通起着至关重要的作用。

然而,隧道的安全性和可靠性始终是人们关注的焦点。

为了确保隧道的正常运营和及时发现潜在的安全隐患,制定一套科学合理的隧道监测方案势在必行。

2. 隧道监测概述隧道监测是指通过各种监测手段和技术手段对隧道状况进行实时监测、分析和评估的过程。

通过监测隧道结构、环境参数等相关数据,可以及时掌握隧道的变化情况,发现问题,采取相应措施,确保隧道运营的安全与顺畅。

3. 隧道监测方案的设计原则制定隧道监测方案应遵循以下原则:3.1 全面性监测方案应全面考虑隧道结构、环境参数、安全设备等各个方面的监测需求,确保监测的全面性和准确性。

3.2 及时性监测方案应采用实时监测手段,能够及时获取监测数据,并做出相应的处理和决策。

3.3 可靠性监测方案应采用可靠的监测设备和技术手段,确保监测数据的准确性和可信度。

3.4 灵活性监测方案应具备一定的灵活性,能够根据实际情况进行调整和改进,以满足不同阶段和不同需要的监测要求。

4. 隧道监测内容和方法隧道监测的内容主要包括以下几个方面:4.1 结构监测通过监测隧道结构的变形、应力等参数,评估隧道的结构安全性和稳定性。

常用的监测方法包括位移传感器、测点应变仪等。

4.2 环境参数监测通过监测隧道内部的温度、湿度、烟雾等参数,及时发现火灾和环境污染等问题,采取相应的措施。

常用的监测方法包括温湿度传感器、烟雾探测器等。

4.3 通风监测隧道通风是保证隧道空气流通和人员安全的重要措施。

通过监测通风设备和通风系统工况参数,保持隧道内的正常通风状态。

常用的监测方法包括风速仪、压力传感器等。

4.4 视频监控通过设置视频监控设备,对隧道的交通流量、车辆和人员行为进行实时监测,发现交通事故和违规行为,以及及时调度应急资源。

常用的监测技术包括视频摄像机、图像处理软件等。

5. 隧道监测数据的处理和分析监测数据的处理和分析是隧道监测方案中不可缺少的一环。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

隧道监测设计隧道监控测量设计隧道监控量测应达到下列目的:1 确保隧道施工安全及结构的长期稳定性;2 验证隧道支护结构效果,确认支护参数和施工方法的准确性或为调整支护参数和施工方法提供依据;3 确定装配式衬砌组装方案;4 监控工程对隧道周围环境影响;5 积累量测数据,为信息化设计与施工提供依据。

量测项目该隧道的量测项目包括:管片的尺寸、螺栓接头、千斤顶顶力作用、隧道上浮、盾构的掘进(防止过大偏向)、衬砌管片的拼装、地表沉降及地面沉降和地下管线变化、拱顶下沉、周边净空收敛位移、衬砌管片的防水。

主要考虑因素有:①工程地质和水文地质情况(主要在水下);②隧道埋深、跨度、衬砌结构型式和施工工艺;③隧道施工影响范围内现有建筑物的结构特点、形状尺寸及与隧道轴线的相对位置关系。

量测方法本工程采取的监控量测项目、方法和频率详见下表。

监控量测项目、方法及频率监测项目管片的尺寸监测方法和仪器现场观察监测频率对每一片管片尺寸、强度都要检测备注主要检测螺栓接头是否因为承受的正负弯矩相差螺栓接头现场观察每个施工周期检测1到2次过大而引起的接缝张开量过大,导致止水带松弛漏水。

水准测量的方法,千斤顶顶力作用水准仪、塔尺现场观察水准测量的方法,隧道上浮水准仪、塔尺现场观察偏向≥5mm/d,2次/d;偏向1~5mm/d,1次/d;偏向≤1mm/d,1次/3d 偏向≥5mm/d,2次/d;偏向1~5mm/d,1次/d;偏向≤1mm/d,1次/3d 防止管片受力不均导致接缝过大漏水盾构的掘进水准测量的方法,旋转角度≥1度/d,2次/d;水准仪、塔尺旋转角度≤1mm/d,1次/3d 在任何情况下一次纠编量不能过大主要检测组装时环面不平整积累过多引起较大的施工应力。

管片衬砌管片的拼装水准测量的方法,水准仪、塔尺施工期间的对准安放。

还有于盾构堆进时对衬砌施加了很大的顶力,可能发生螺栓连接松动开挖面距量测断面前后<2B时1-2次地表沉降及地面沉降和地下管线变化水准仪和水平尺 /d 开挖面距量测断面前后<5B时1次/d 开挖面距量测断面前后>5B时1次/周每10m到50m一个断面,每个断面7-11个测点开挖面距量测断面前后<2B时1-2次/d 拱顶下沉水准仪、钢尺等开挖面距量测断面前后<5B时1次/d 开挖面距量测断面前后>5B时1次/周开挖面距量测断面前后<2B 时1-2次/d 周边净空收敛位移收敛计开挖面距量测断面前后<5B时1次/d 开挖面距量测断面前后>5B时1次/周主要为管片接缝衬砌管片的防水管片组装后防水和螺栓螺孔防水为重管片尺寸现场预制的管片尺寸要求,精度要求1-2mm。

地表下沉量测测点与洞内收敛、拱顶下沉量测断面里程对应。

测量方法:采用精密光学水平仪、水准尺配合测量地表沉降。

每个断面均绘制下沉时间曲线。

用经纬仪将所有测点设置在同一直线上。

周边水平位移、净空量测测点应及时埋设,以便取得准确的初始值。

并在施工中注意保护以免遭受损坏。

一旦发现测点被埋或损毁,要尽快重新设置,保证量测数据不中断。

量测方法:采用WPm-3型收敛计监测。

拱顶下沉量测每10m到50m一个断面,每个断面2-3个测点每10m 到50m一个断面,每个断面1-3个测点测量方法:采用水平仪、水准尺、挂钩式钢尺配合测量拱顶下沉,精度达1~2mm。

数据处理与反馈及时对量测数据绘制时态曲线和空间关系等曲线。

当位移—时间曲线趋于平缓时,进行数据处理、回归分析,推算最终位移和掌握位移变化规律。

当位移—时间曲线出现反弯点时或接缝张开量过大时,表明衬砌已呈不稳定状态,此时增加量测频率、密切监视围岩动态,并加强衬砌支护,必要时暂停开挖。

隧道周边任意点的相对位移值或回归分析推算的总相对位移值均小于允许数值。

当位移速率无明显下降,而此时实测位移值已接近允许值,或衬砌表面出现明显裂缝时,立即采取补强措施,调整原支护设计参数或施工方法。

当各测试项目的位移速率明显收敛、围岩基本稳定;已产生的各项位移已达到预计总位移量的80%~90%;周边位移速率小于~/d,或拱顶下沉速率小于~/d;施工安全。

围岩量测程序监控量测流程图见图1-1。

图1-1监控量测流程量测断面间距依据《铁路隧道监控量测技术规程》表监控量测断面间距为10m。

量测断面测点布设测点布置:每个量测断面各布置拱顶下沉测点3个、2条水平净空收敛量测基线和隧底拱起测点3个。

每断面测点布置方法见图1-2。

图1-2 量测断面测点布设数据处理分析应用数据处理分析应用根据所绘制的各曲线的变化情况与趋势,判定围岩稳定性,及时预报险情,确定施工时应采取的措施,提供修改参数依据。

将量测资料进行处理和分析,绘制时间~位移曲线。

当衬砌管片的接缝出现过大裂缝或实测敛值已达到或超过实测值,找到回归方程,绘制回归曲线,回归方程推算最终位移值,偏离设计图纸和施工规范规定的净空允许相对位移值时,必须立即报告监理工程师、设计院和业主,请求变更设计,采取补强管片及螺栓设计参数,以便正确指导施工。

当实测的净空收敛的速度明显下降,收敛量已达总收敛量的80~90%,且水平收敛的速度</d,或拱顶位移速度</d时,可判定衬砌基本稳定。

判别衬砌定性时,要综合考虑实测位移,位移变化速度、位移和时间关系曲线等因数,给施工生产提供可靠的技术指导。

对量测数据进行整理分析,找出不同地质围岩类别,不同的量测项目回归方程,绘出回归曲线,根据回归方程推算最终值,与设计图纸对比,反馈给设计院,作为修改初期支护参数和新工程的设计资料和依据。

隧道监控测量设计隧道监控量测应达到下列目的:1 确保隧道施工安全及结构的长期稳定性;2 验证隧道支护结构效果,确认支护参数和施工方法的准确性或为调整支护参数和施工方法提供依据;3 确定装配式衬砌组装方案;4 监控工程对隧道周围环境影响;5 积累量测数据,为信息化设计与施工提供依据。

量测项目该隧道的量测项目包括:管片的尺寸、螺栓接头、千斤顶顶力作用、隧道上浮、盾构的掘进(防止过大偏向)、衬砌管片的拼装、地表沉降及地面沉降和地下管线变化、拱顶下沉、周边净空收敛位移、衬砌管片的防水。

主要考虑因素有:①工程地质和水文地质情况(主要在水下);②隧道埋深、跨度、衬砌结构型式和施工工艺;③隧道施工影响范围内现有建筑物的结构特点、形状尺寸及与隧道轴线的相对位置关系。

量测方法本工程采取的监控量测项目、方法和频率详见下表。

监控量测项目、方法及频率监测项目管片的尺寸监测方法和仪器现场观察监测频率对每一片管片尺寸、强度都要检测备注主要检测螺栓接头是否因为承受的正负弯矩相差螺栓接头现场观察每个施工周期检测1到2次过大而引起的接缝张开量过大,导致止水带松弛漏水。

水准测量的方法,千斤顶顶力作用水准仪、塔尺现场观察水准测量的方法,隧道上浮水准仪、塔尺现场观察偏向≥5mm/d,2次/d;偏向1~5mm/d,1次/d;偏向≤1mm/d,1次/3d 偏向≥5mm/d,2次/d;偏向1~5mm/d,1次/d;偏向≤1mm/d,1次/3d 防止管片受力不均导致接缝过大漏水盾构的掘进水准测量的方法,旋转角度≥1度/d,2次/d;水准仪、塔尺旋转角度≤1mm/d,1次/3d 在任何情况下一次纠编量不能过大主要检测组装时环面不平整积累过多引起较大的施工应力。

管片衬砌管片的拼装水准测量的方法,水准仪、塔尺施工期间的对准安放。

还有于盾构堆进时对衬砌施加了很大的顶力,可能发生螺栓连接松动开挖面距量测断面前后<2B时1-2次地表沉降及地面沉降和地下管线变化水准仪和水平尺 /d 开挖面距量测断面前后<5B时1次/d 开挖面距量测断面前后>5B时1次/周每10m到50m一个断面,每个断面7-11个测点开挖面距量测断面前后<2B时1-2次/d 拱顶下沉水准仪、钢尺等开挖面距量测断面前后<5B时1次/d 开挖面距量测断面前后>5B时1次/周开挖面距量测断面前后<2B 时1-2次/d 周边净空收敛位移收敛计开挖面距量测断面前后<5B时1次/d 开挖面距量测断面前后>5B时1次/周主要为管片接缝衬砌管片的防水管片组装后防水和螺栓螺孔防水为重管片尺寸现场预制的管片尺寸要求,精度要求1-2mm。

地表下沉量测测点与洞内收敛、拱顶下沉量测断面里程对应。

测量方法:采用精密光学水平仪、水准尺配合测量地表沉降。

每个断面均绘制下沉时间曲线。

用经纬仪将所有测点设置在同一直线上。

周边水平位移、净空量测测点应及时埋设,以便取得准确的初始值。

并在施工中注意保护以免遭受损坏。

一旦发现测点被埋或损毁,要尽快重新设置,保证量测数据不中断。

量测方法:采用WPm-3型收敛计监测。

拱顶下沉量测每10m到50m一个断面,每个断面2-3个测点每10m 到50m一个断面,每个断面1-3个测点测量方法:采用水平仪、水准尺、挂钩式钢尺配合测量拱顶下沉,精度达1~2mm。

数据处理与反馈及时对量测数据绘制时态曲线和空间关系等曲线。

当位移—时间曲线趋于平缓时,进行数据处理、回归分析,推算最终位移和掌握位移变化规律。

当位移—时间曲线出现反弯点时或接缝张开量过大时,表明衬砌已呈不稳定状态,此时增加量测频率、密切监视围岩动态,并加强衬砌支护,必要时暂停开挖。

隧道周边任意点的相对位移值或回归分析推算的总相对位移值均小于允许数值。

当位移速率无明显下降,而此时实测位移值已接近允许值,或衬砌表面出现明显裂缝时,立即采取补强措施,调整原支护设计参数或施工方法。

当各测试项目的位移速率明显收敛、围岩基本稳定;已产生的各项位移已达到预计总位移量的80%~90%;周边位移速率小于~/d,或拱顶下沉速率小于~/d;施工安全。

围岩量测程序监控量测流程图见图1-1。

图1-1监控量测流程量测断面间距依据《铁路隧道监控量测技术规程》表监控量测断面间距为10m。

量测断面测点布设测点布置:每个量测断面各布置拱顶下沉测点3个、2条水平净空收敛量测基线和隧底拱起测点3个。

每断面测点布置方法见图1-2。

相关文档
最新文档